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Abstract
Purpose of Review This review summarises the most recent evidence regarding the effects of dietary flavonoids on age-related
cognitive decline and neurodegenerative diseases.
Recent Findings Recent evidence indicates that plant-derived flavonoids may exert powerful actions on mammalian cognition
and protect against the development of age-related cognitive decline and pathological neurodegeneration. The neuroprotective
effects of flavonoids have been suggested to be due to interactions with the cellular and molecular architecture of brain regions
responsible for memory.
Summary Mechanisms for the beneficial effects of flavonoids on age-related cognitive decline and dementia are discussed,
including modulating signalling pathways critical in controlling synaptic plasticity, reducing neuroinflammation, promoting
vascular effects capable of stimulating new nerve cell growth in the hippocampus, bidirectional interactions with gut microbiota
and attenuating the extracellular accumulation of pathological proteins. These processes are known to be important in maintain-
ing optimal neuronal function and preventing age-related cognitive decline and neurodegeneration.
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Introduction

Advances in medical science over the last century have result-
ed in a considerable increase in human life expectancy.
Despite this positive outcome, with increasing age comes an
increased susceptibility to chronic organ disease and decline
of metabolic and immune functions with impact on the brain
[1]. Although some decline in cognitive function does occur
with normal ageing, there is also an increased age-associated
risk neurodegenerative disorders of which Alzheimer’s dis-
ease (AD) is the most prevalent. As such, with the global
ageing population, the prevalence of dementia worldwide is
estimated to double every 20 years, and expected to increase
to 115 million affected individuals by 2050 [2]. Existing drug
treatments for neurodegenerative conditions rarely curtail the

underlying disease processes, and consequently, there is an
urgent need to develop alternative strategies to directly pre-
vent, slow and even stop neurodegeneration. Lifestyle strate-
gies such as nutritional interventions have potential to be a
safe, cheap and effective alternative to protect against age-
related cognitive decline and neurodegeneration, resulting in
significant personal and societal benefits [3]. In particular,
there has been a growing recent focus on the potential for
dietary flavonoids, plant-derived compounds found abundant-
ly in fruit, vegetables, cocoa and certain beverages such as
coffee and tea, to directly prevent pathological mechanisms
underlying neurodegeneration [4, 5]. This review aims to
summarise the existing evidence in favour of dietary flavo-
noids as a viable alternative approach to directly impact cog-
nitive decline and neurodegenerative disease, with a particular
focus on AD.

Flavonoids, Age-Related Cognitive Decline
and Neurodegeneration

Even in the absence of pathological neurodegeneration, age-
related cognitive decline has been consistently demonstrated

This article is part of the Topical Collection on Neurological Disease and
Cognitive Function

* David Vauzour
D.Vauzour@uea.ac.uk

1 Norwich Medical School, Faculty of Medicine and Health Sciences,
University of East Anglia, Norwich NR4 7UQ, UK

Current Nutrition Reports (2018) 7:49–57
https://doi.org/10.1007/s13668-018-0226-1

http://crossmark.crossref.org/dialog/?doi=10.1007/s13668-018-0226-1&domain=pdf
mailto:D.Vauzour@uea.ac.uk


in studies involving both animals and humans. Alterations in
cognition appear to occur predominantly in domains relating
to storage of newly acquired information including
short-term memory [6], working memory and executive
function [7]. The overall reduced risk of cognitive de-
cline that has been observed with higher intakes of fruit
and vegetables is likely attributable to a higher intake of
specific flavonoids [8]. In line with this, in middle-aged
adults a higher total intake of flavonoids has been as-
sociated with better episodic memory and language per-
formance [9], and greater cognitive performance at base-
line with less decline at follow-up in non-demented
older adults [10]. These findings have encouraged fur-
ther investigation into specific flavonoids, their possible
health benefits and the mechanisms by which they
might exert these effects.

Berries have received particular attention for preventing
age-related cognitive decline due to their considerably high
concentrations of flavonoids. Blueberries are particularly rich
in flavonoids, the most prevalent being anthocyanidins
(delphinidin, cyanidin, petunidin, peonidin and malvidin),
flavanols (catechin, epicatechin, procyanidins B type) and fla-
vonols (quercetin and myricetin) [11]. In aged rodents, blue-
berry supplementation has been shown to improve spatial
memory [12], object recognition memory [13] and inhibitory
fear conditioning learning [14]. Blueberry appears to have a
pronounced effect on short-term memory [15] and has also
been shown to improve long-term reference memory follow-
ing 8 weeks of supplementation in aged rats [12, 16].
Regarding studies involving humans, a long-term prospective
study of neurologically healthy older adults observed a greater
intake of berry anthocyanidins related to a slower rate of cog-
nitive decline and was associated with a 2.5-year delay in the
onset of deficits [17]. In addition to berries, animal studies
involving flavanols from cocoa and tea provide positive evi-
dence that these flavonoids could also protect against cogni-
tive decline. For example, (−)-epicatechin enhanced the reten-
tion of spatial memory in male C57BL/6 mice (8–10 weeks
old), particularly in combination with exercise [18], and a 6-
month administration of green tea catechins in 14-month-old
female C57BL/6 mice prevented spatial learning and memory
decline [19].

Regarding pathological cognitive decline, approximately
60 to 80% of dementia cases are due to AD [20], affecting
over than 25 million people globally [21]. AD is diagnosed
based on a combination of clinical history, often provided by a
close family member, and performance on neuropsychologi-
cal testing with a particular focus on short-term memory per-
formance. Mild cognitive impairment (MCI) is characterised
by cognitive impairment in the absence of significant disrup-
tion to everyday function [22], and individuals diagnosed with
MCI have an increased risk for progressing to AD [23, 24].
Several epidemiological studies have investigated the

associations between higher intakes of dietary flavonoids
and possible neuroprotective effects in the context of demen-
tia. For example, higher intake of flavonoid-rich foods was
associated with a significantly lower risk of dementia in a
large cohort of older adults aged 65 years and over [25].

Gene mutations in encoding the amyloid precursor pro-
tein (APP) or presenilin (PS1 and PS2) [26], and more
recently the APOE gene with the E4 allele mutation, have
been identified as significant genetic susceptibility predic-
tors for AD [27], with over 60% of individuals affected by
AD carrying the APOE4 variant compared to a much lower
prevalence of 25–27% in the general population. The
APOE4 genotype is associated with more rapid cognitive
decline [28] and poorer performance even in neurological-
ly healthy carriers [29]. The APOE4 genotype is also asso-
ciated with an earlier age of disease onset [28] and a higher
conversion rate to AD in individuals diagnosed with MCI
[30]. Of particular relevance is emerging evidence suggest-
ing that the APOE4 genotype may modify the beneficial
effect of flavonoids on cognition and prevalence of AD.
For example, a greater consumption of flavonoid-rich
fruits and vegetables was associated with a decreased risk
of dementia especially amongst APOE4 non-carriers in the
Three-City cohort study [8]. By contrast, in the Kame pro-
ject, a more frequent consumption of flavonoids-rich foods
was suggested to delay the onset of AD particularly in
APOE4 carriers [31]. As such, further investigation is re-
quired in order to elucidate the exact mechanisms by which
the presence of the APOE4 mutation modulates the health
benefits from dietary flavonoids.

Results from intervention studies involving humans are
less prevalent. Previous acute human studies have shown
that cocoa flavanol consumption improved working mem-
ory and attention [32, 33], significantly increased cerebral
blood flow across the brain [34], particularly in the dentate
gyrus [35], in healthy adults. A randomised, placebo-
controlled trial of Concord grape juice in older adults with
memory decline showed improvement on verbal encoding
[36], and similar effects were observed with blueberry
juice administered over 12 weeks [37]. Similarly,
Desideri et al. (2012) also observed better verbal fluency
performance in older individuals with MCI following con-
sumption of a drink high in flavan-3-ol over only 8 weeks
[38]. As such, the consumption of flavonoid-rich foods
may have the potential to limit or even reverse age-
related cognitive decline. However, findings that lend sup-
port to the causal effects of dietary flavonoids on the pre-
vention of age-related cognitive decline and dementia from
interventional studies still remains sparse. Given the promis-
ing results from epidemiological and preclinical studies, fur-
ther attention needs to be dedicated to determining the causal-
ity of flavonoid consumption on improving cognition and
preventing dementia.
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Mechanisms Underlying the Neuroprotective
Effects of Flavonoids

Despite the precise causes of cognitive decline remaining un-
clear, age-related neurodegeneration is considered to be
underpinned by several interlinked cellular and molecular
mechanisms, including cumulative damage due to chronic
neuroinflammation, oxidative stress, impaired mitochondrial
function, activation of neuronal apoptosis, deposition of ag-
gregated proteins and excitotoxicity. The health-promoting
effects of flavonoids have previously been attributed to their
ability to reduce cell damage by directly scavenging free rad-
ical species, according to evidence from in vitro studies.
However, the concentrations of flavonoids that have been
found to exert such antioxidant activity are significantly
higher than can be achieved through diet in humans.
Furthermore, many flavonoids have very limited bioavailabil-
ity as they are efficiently metabolised before being able to
exert their antioxidant effects [39]. Recent evidence suggests
that flavonoids at physiologically attainable concentrations
may exert different activities which directly impact neurode-
generative disease-causing processes. The possible mecha-
nisms by which flavonoids prevent against age-related neuro-
degeneration are explored in further detail here.

Reduction of Neuropathological Protein
Accumulation

The neuropathological hallmarks of AD are the extracellular
deposition of amyloid plaques and the intracellular accumula-
tion of hyperphosphorylated tau proteins—a neuronal
microtubule-associated protein regulated by phosphorylation
of various protein kinases [40]. Most preclinical studies inves-
tigating the effects of flavonoids have focused on models
where there is increased production of beta-amyloid (Aβ), a
small protein produced by the enzymatic cleavage of APP
[41]. One way in which flavonoids may prevent the accumu-
lation of Aβ pathology is by preventing neuronal apoptosis
triggered by neurotoxic processes through the inhibition of β-
secretase (BACE-1) [42] and activation of α-secretase
(ADAM10) [43]. However, these in vitro studies involved
flavonoid concentrations far greater than those encountered
in vivo following a normal diet. In animal studies,
epigallocatechin-3-gallate (EGCG) administered for 6 months
significantly reduced cognitive decline and Aβ in an AD
mouse model, [44] and green tea catechin administration im-
proved spatial learning and memory in senescence-prone mice
[45], the latter being associated with decreased in Aβ accu-
mulation and upregulation of proteins related to synaptic plas-
ticity in the hippocampus. In addition, administration of a
catechin-rich grape seed extract was associated with reduced
cognitive decline in conjunction with decreased concentra-
tions of Aβ oligomers [46]. Similarly, administration of the

citrus-derived flavone nobiletin in APP-SL 7-5 Tg mice was
associated with reduced hippocampal accumulation of neuro-
toxic Aβ proteins [47]. Mechanisms by which some flavo-
noids may prevent Aβ plaque accumulation include inhibition
of amyloid aggregation and fibrillization [46], either due to
metal chelation activity [48] or through facilitating production
of non-toxic oligomers [49], as well as the upregulation of α-
secretase through modulation of A disintegrin and
metalloproteinaise domain-containing protein 10 (ADAM10)
[50].

Despite these promising findings, it is important to note
that the presence of Aβ pathology and cognitive deficits are
not always well correlated. For example, a recent study ob-
served cognitive improvement following a polyphenol-rich
diet without associated changes in classical AD neuropathol-
ogy [51••]. It is possible that some of the protective effects of
flavonoids on age-related cognitive decline could instead be,
at least in part, due to downstream processes from changes in
Aβ, such as tau phosphorylation and fibrillization. The devel-
opment of neurofibrillary tangles could be inhibited by flavo-
noids such as (-)-epicatechin and hesperetin, through their
promotion of protein kinase B, or Akt, phosphorylation lead-
ing to reduced GSK3β-driven hyperphosphorylation of tau
[52, 53]. As such, the benefits of dietary flavonoids in the
context of ADmay extend beyond interactions with processes
underpinning neurotoxic Aβ accumulation.

Stimulation of Neuronal Signalling Pathways
and Synaptic Plasticity

Although the precise sites of the interactions between flavo-
noids and neuronal signalling pathways remain to be deter-
mined, based on existing evidence flavonoids may exert their
effects through (1) modulating signalling cascades that control
neuronal apoptosis; (2) modulating the expression of specific
genes and (3) impacting mitochondrial activity [54]. In partic-
ular, current findings suggest that flavonoids impact on the
extracellular signal-regulated kinase (ERK) pathway [52],
which appears to be mediated by interactions with mitogen-
activated protein kinase (MEK) 1 and 2, and potentially mem-
brane receptors [55]. Evidence from in vitro studies has sug-
gested that flavonoids increase the activation of ERK. For
example, both the flavanol (−)-epicatechin [56] and the citrus
flavanone hesperetin [57] were observed to activate ERK1/2
in cortical neurons at nanomolar concentrations, and
submicromolar concentrations of EGCC were reported to re-
store ERK1/2 activities in 6-hydroxydopamine treated or
serum-deprived neurons [58]. ERK activation often subse-
quently leads to the activation of the CREB transcription fac-
tor, considered critical in supporting synaptic plasticity [59]
and controlling neuronal survival by regulating the expression
of a number of important genes, including brain-derived neu-
rotrophic factor (BDNF) [60]. Flavonoids are also known to
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modulate the activity of the Akt enzyme system (also known
as PKB), regulated by phosphoinositide 3-kinase (PI3K).
Hesperitin, a flavonone from citrus fruits, has been observed
to activate Akt/PKB and subsequently inhibits activation of
proteins associated with neuronal apoptosis including apopto-
sis signal-regulating kinase 1 (ASK1), Bad, caspase-9 and
caspase-3 [57]. Furthermore, flavonoid-elicited activation of
Akt in hippocampal neurons has been observed to result in
increased mRNA translation of the activity-regulated cyto-
skeletal-associated protein (Arc/Arg3.1) [15]. Increased Arc
expression may facilitate changes in synaptic strength and
morphology of dendritic spines [61], and indeed, in vitro stud-
ies have indicated that changes in neuronal morphology and
dendrite growth occur in response to flavonoid supplementa-
tion [62].

Neuroinflammation

A normal inflammatory response is critical for supporting
health and in particular the brain’s defence against damage.
However, a chronic upregulation of neuroinflammation, indi-
cated by increased circulatory pro-inflammatory cytokines
and biomarkers, may contribute to a cascade of events
resulting in progressive neuronal damage [63]. Chronic neu-
roinflammation can interfere with proper neuronal function-
ing, impede episodic memory encoding and facilitate patho-
logical accumulation and impact of Aβ plaques. Chronically
elevated activation of pro-inflammatory cytokines, such as
tumour necrosis factor (TNF-α), contributes to neuronal inju-
ry through amplification of the inflammatory response [64].
Indeed, individuals with MCI have been found to have elevat-
ed circulating levels of serum TNF-α compared to age-
matched controls [65], and is over expressed in affected neural
regions [66] and in cerebrospinal fluid (CSF) of individuals
diagnosed with AD [67]. Furthermore, the acute phase pro-
tein, serum C-reactive protein (CRP), is associated with great-
er risk of dementia onset [68] and memory impairment, and
has also been found to co-localise with pathological Aβ and
neurofibrillary tangles in the brains of AD patients [69, 70].
Indeed, elevated plasma concentrations of CRP have been
consistently found in individuals with MCI [71] and AD [72].

Neuroinflammation has further been implicated in contrib-
uting to AD pathology through increased activation of
microglial and consequently elevated activation of acetyl cho-
linesterase (AChE) and free radical generation [73]. Indeed,
findings of lower AD risk associated with long-term use of
non-steroidal anti-inflammatory drugs (NSAIDs) [74] have
led to increased attention turning to developing anti-
inflammatory pharmaceutical solutions to reduce the impact
of neuroinflammation on brain disease. Flavonoids may also
prevent neuroinflammation via several anti-inflammatory
mechanisms, including (1) inhibiting the microglial activation
of inflammatory cytokines, including TNF-α and IL-1β; (2)

inhibiting iNOS induction and subsequent nitric oxide pro-
duction in response to glial activation; (3) inhibiting activation
of NADPH oxidase and subsequent ROS generation in acti-
vated glia; and (4) downregulating activity of pro-
inflammatory transcription factors such as NF-κB through
modulation of glial and neuronal signalling pathways [75].
However, the majority of evidence from in vitro research has
come from studies using single flavonoids, typically agly-
cones, at supraphysiological concentrations. Few studies how-
ever have investigated the anti-inflammatory effects of phys-
iologically attainable flavonoid concentration in healthy sub-
jects, and the findings from these are less consistent [76].
However, epicatechin and catechin were observed to inhibit
TNF-α release but not iNOS expression or nitric oxide pro-
duction in primary glial cells [77], providing promising evi-
dence that some flavanols at physiologically relevant concen-
trations could exert anti-inflammatory effects. In studies in-
volving humans, higher intake of a flavonoid-rich was asso-
ciated to lower levels of inflammatory biomarkers including
CRP, IL-6 and adhesion factors [78]. Furthermore, total flavo-
noid intake as well as intake of the specific flavonols
anthocyanidins and isoflavones were related to lower blood
levels of CRP in a large cross-sectional epidemiological study
[79]. Finally, blueberry anthocyanin given to adults aged 40–
74 years over 3 weeks significantly reduced plasma concen-
trations of NF-kB-related pro-inflammatory cytokines and
chemokines (IL-4, IL-13, IL-8 and IFN-α) [80]. In contrast,
a short-term interventionwith black tea (900mL/day, 4weeks)
showed no improvements in plasma CRP concentrations in
patients with coronary artery disease [81]. Furthermore, no
significant effect was observed in plasma CRP or ICAM-1
levels in healthy adults consuming diets rich in berries and
apples for 6 weeks [82]. The inconsistent results from these
various trials on the preventive anti-inflammatory effects of
flavonoid supplementation reinforce the necessity for more
prospective randomised trials with larger sample sizes and
under clinical conditions.

Vascular Function and Angiogenesis

The integrity of the vascular system becomes increasingly
vital with increasing age. The risk factors for reduced vascular
health and function, such as diabetes mellitus, smoking, hy-
pertension and arteriosclerosis, are shared by several forms of
dementia including AD [83]. There have been findings that
flavonoid-rich diets are associated with lower cardiovascular
risk through lowering blood pressure, increasing the bioavail-
ability of nitric oxide [84] and improving arterial flow-
mediated dilation [85]. Vascular function within the brain is
not only integral for the prevention of ischaemic events, but
also for maintaining cerebral blood flow underpinning cogni-
tive function. Indeed, evidence suggests that flavonoids can
improve cerebrovascular blood flow through their impact on
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the peripheral and cerebral vascular system [86].
Neuroimaging studies in both healthy older [34, 35, 86, 87]
and younger adults [88] have shown that the consumption of
flavanol-rich cocoa could significantly enhance cerebral blood
flow in response to cognitive tasks. Additionally, significantly
increased perfusion in the middle and inferior right frontal
gyrus was observed following the intake of a high-flavonoid
citrus drink in healthy adults after 2 h compared to baseline
and controls [89•]. These effects are particularly significant, as
increased cerebrovascular function is known to facilitate adult
neurogenesis [90], especially within the hippocampus, and to
enhance vascularisation [91], two events important in the
maintenance of cognitive performance. If such effects prove
possible, then diet would have the potential not only to slow
the progression of neurodegeneration and cognitive decline
but also to potentially reverse cognitive impairment through
stimulation of neuronal growth in the hippocampus.

Interactions with the Microbiome

The gastrointestinal tract plays a key role in protecting and
promoting health, including regulating energy metabolism,
acting as a barrier to potential toxic compounds present in
ingested food and supporting the immune system. The func-
tioning of microbiota in particular can directly impact physi-
ological processes throughout the body. Research over the
past two decades has indicated that the gut microbiome and
its interaction with dietary compounds has important implica-
tions for human health. Dietary flavonoids can have a direct
effect on the gastrointestinal tract and particularly interact with
the gut microbiota. Flavonoids reach the stomach and intestine
in high concentrations, enabling them to exert their most direct
effects here, including potential antioxidant effects, before be-
ing processed by the liver. Flavonoids that are not absorbed in
the small intestine due to their close binding with β-
glucosides [92] and other sugars are then broken down in
the colon by microbiota into phenolic acids and other metab-
olites. Flavonoids and their metabolites are understood to reg-
ulate the function of the gastrointestinal tract through direct
interactions with the gut microbiota. Most notably, flavonoids
can impact the composition of bacterial populations in the
gastrointestinal tract, including promoting the growth of ben-
eficial (commensal) bacteria and potentially inhibiting patho-
genic strains. The impact of flavonoids on specific strains of
bacteria is considered to be dependent on the molecular struc-
ture of certain classes of flavonoid [93]. For example, A-type
proanthocyanidins present in cranberries have been found to
inhibit the adhesion ofEscherichia coli bacterial strains within
the human urinary tract [94]. Quercetin has also been found to
inhibit the growth of Ruminococcus gauvreauii, Bacteroides
galacturonicus and Lactobacillus sp. strains [95], and flavo-
noids present in berries have also shown inhibitory actions
against Bacillus cereus, Campylobacter jejuni, Clostridium

perfingens, Helicobacter pylori, Staphylococcus aureus,
Staphylococcus epidermidis and Candida albicans [96].
Conversely, a diet of apples genetically modified to have
higher concentrations of flavonoids was associated with great-
er concentrations of beneficial strains of Bifidobacterium spp.
and Bacteroides-Prevotella-Poryphyromonas in mice [97].

The interactions between flavonoids and microbiota are
bidirectional, and microbiota in the gastrointestinal tract can
impact the absorption and bioavailability of flavonoids present
in ingested food, which integrally modifies their impact on
health. In addition to gastrointestinal enzymes, microbiota
are also involved in the metabolism of flavonoids.
Proanthocyanidins are poorly absorbed within the gastrointes-
tinal tract, however, once they are metabolised by the micro-
biota into smaller compounds such as phenolic acids that are
readily absorbed [98]. These flavonoid metabolites are then
able to be absorbed into the bloodstream where they are able
to exert more systemic health effects. For example, the gut
metabolites of anthocyanins have been observed to attenuate
the adhesion of monocytes to TNFα-activated endothelial
cells, which suggests they could play a key role in preventing
the development of atherosclerosis at its earliest stages [99•].
Flavonoid metabolites, particularly in certain combinations,
have been suggested to be able to impact health differently
to their parent flavonoid compounds [100–101, 102•]. In par-
ticular, specific combinations of flavonoid metabolites were
found to significantly reduce IL-Iβ secretion, suggesting fur-
ther potential anti-inflammatory effects of flavonoids their
metabolism [102•]. Furthermore, evidence regarding phenolic
acidsmetabolised from anthocyanidins bymicrobiota has sug-
gested that they could interfere with the assembly of Aβ in
rats [103••]. However, more work is required to more fully
understand the complex interactions between flavonoids and
the microbiome and to determine the exact nature of their
subsequent local and systemic health benefits, particularly in
humans.

Conclusion

With an ageing population, age-related cognitive decline
and neurodegeneration pose a significant challenge for
the future. Dementia costs to the UK alone have been es-
timated to be £26 billion each year, with the cost expected
to double in the next 25 years to £55 billion by 2040 [104].
A reduction in age-related cognitive decline by just 1% per
year would cancel out all estimated increases in the long-
term care costs due to our ageing population [104]. The
potential neuroprotective benefits of dietary flavonoids
could provide a promising alternative strategy to combat
age-related cognitive decline and pathological neurodegen-
eration. However, given the lack of intervention trials con-
ducted in humans under clinical conditions, the causality
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of the relationships between flavonoid intake and these
health impacts as well as their exact mechanisms is still
to be established.
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