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Abstract

Background: Stress echocardiography is a well-established diagnostic tool for suspected coronary artery disease (CAD).
Cardiovascular risk factors are used in the assessment of the probability of CAD. The link between the outcome of stress
echocardiography and patients’ variables including risk factors, current medication, and anthropometric variables has not been
widely investigated.

Objective: This study aimed to use machine learning to predict significant CAD defined by positive stress echocardiography
results in patients with chest pain based on anthropometrics, cardiovascular risk factors, and medication as variables. This could
allow clinical prioritization of patients with likely prediction of CAD, thus saving clinician time and improving outcomes.

Methods: A machine learning framework was proposed to automate the prediction of stress echocardiography results. The
framework consisted of four stages: feature extraction, preprocessing, feature selection, and classification stage. A mutual
information–based feature selection method was used to investigate the amount of information that each feature carried to define
the positive outcome of stress echocardiography. Two classification algorithms, support vector machine (SVM) and random
forest classifiers, have been deployed. Data from 529 patients were used to train and validate the framework. Patient mean age
was 61 (SD 12) years. The data consists of anthropological data and cardiovascular risk factors such as gender, age, weight,
family history, diabetes, smoking history, hypertension, hypercholesterolemia, prior diagnosis of CAD, and prescribed medications
at the time of the test. There were 82 positive (abnormal) and 447 negative (normal) stress echocardiography results. The framework
was evaluated using the whole dataset including cases with prior diagnosis of CAD. Five-fold cross-validation was used to validate
the performance of the framework. We also investigated the model in the subset of patients with no prior CAD.

Results: The feature selection methods showed that prior diagnosis of CAD, sex, and prescribed medications such as
angiotensin-converting enzyme inhibitor/angiotensin receptor blocker were the features that shared the most information about
the outcome of stress echocardiography. SVM classifiers showed the best trade-off between sensitivity and specificity and was
achieved with three features. Using only these three features, we achieved an accuracy of 67.63% with sensitivity and specificity
72.87% and 66.67% respectively. However, for patients with no prior diagnosis of CAD, only two features (sex and
angiotensin-converting enzyme inhibitor/angiotensin receptor blocker use) were needed to achieve accuracy of 70.32% with
sensitivity and specificity at 70.24%.

Conclusions: This study shows that machine learning can predict the outcome of stress echocardiography based on only a few
features: patient prior cardiac history, gender, and prescribed medication. Further research recruiting higher number of patients
who underwent stress echocardiography could further improve the performance of the proposed algorithm with the potential of
facilitating patient selection for early treatment/intervention avoiding unnecessary downstream testing.
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Introduction

Cardiovascular disease (CVD) is the leading cause of death in
Western societies [1]. In the United Kingdom, 7.4 million people
are living with CVD, which is more than twice the number of
people who suffer from cancer and Alzheimer disease. More
than 43,000 people under the age of 75 die each year due to
CVD costing national health services in the United Kingdom
about £9 billion (US $11 billion) [2]. Coronary artery disease
(CAD) is the most common form of CVD and may lead to
sudden death [3].

Diagnosing CAD early can save lives and reduce risk of
myocardial infarction and stroke. Diagnostic procedures are
typically performed in specialized cardiac centers to diagnose
CAD and risk stratify patients using tests such as a stress
echocardiogram. Stress echocardiography is a diagnostic tool
to assess the functionality of the heart and blood delivery under
stress, such as treadmill or bicycle exercise test or following
administration of a drug such as dobutamine. Dobutamine is a
pharmacological agent administered intravenously to increase
the heart rate in a similar way that would occur during physical
exercise. During dobutamine stress echocardiography,
incremental doses of dobutamine in 3-minute stages are
administered until the termination of the test criteria is achieved.
The principle of stress echocardiography is to increase the
myocardial oxygen uptake/demand; if the supply is insufficient
due to blocked heart arteries, echocardiographic features of this
mismatch can be detected by identifying regional wall motion
abnormalities in the underperfused heart muscle region during
the test. Echocardiographic images are acquired at rest, during
the intermediate stage, peak stress, and in recovery. The classical
criteria were used as a termination of the test (ie, target heart
rate achieved, development of typical chest pain symptoms with
or without regional wall motion abnormalities, hemodynamically
significant arrhythmias, or development of symptomatic
hypotension). Positive or abnormal stress echocardiography is
defined as developments of new regional wall motion
abnormalities. Wall motion abnormalities were defined as
hypokinesia if the wall thickness was maintained and the
endocardial excursion was between 5 and 2 mm, akinesia if the
wall thickness was reduced and the endocardial excursion was
less than 2 mm, and dyskinesia if the wall thickness was reduced
and the endocardial excursion was outward moving in systole.
Dobutamine stress echocardiography has a sensitivity and
specificity of 83% and 86%, respectively [4]. A computer-based
algorithm in image analysis and interpretation can play a
significant role in the early diagnosis of CAD. Many machine
learning–based methods have been devolved for image analysis
to aid diagnosis and prognostic monitoring of CAD [5].

Machine learning is a term used to define computer algorithms
that can be trained to learn the patterns in training data. These
algorithms are then effectively able to make predictions on
unseen data. The ability of machine learning techniques to learn

from experience without any explicit guidelines for the program
or following any predefined rules is making these techniques
increasingly popular in many domains [6]. Machine learning
in health care has enormous potential in supporting health care
practitioners in decision making, enhancing diagnostic accuracy,
and reducing health care cost [7]. Machine learning can be used
as part of a computer-aided clinician decision support system
to assimilate patterns and act as an appropriate source of
knowledge.

Several frameworks that employ machine learning for CAD
prediction have been proposed [8]. These techniques are used
either for predicting the outcome of observations or discovering
the hidden pattern and structure in the data not readily
recognizable to humans. The data often used for this kind of
research include patient anthropometric data, blood test results,
and data obtained from various investigation modalities used
in the diagnosis of CAD such as electrocardiography, computed
tomography angiography, and transthoracic echocardiography
[8].

Clinical data have been used to predict coronary events: Voss
et al [9] used 10 years of follow-up data from 5159 middle-age
men with a 6.3% incidence of coronary events during that period
of time. Multilayer perceptron was used to build their model.
The study involved 57 clinical and laboratory variables to train
the multilayer perceptron. The reported results showed that the
area under the curve was 0.89. Gharehchopogh and Khalifelu
[10] employed deep learning as a learning algorithm for building
a prediction model; the learning algorithm was trained using
data from 40 participants that included age, sex, hypertension,
and smoking. The reported classification accuracy was 0.85 for
heart failure cases.

Another study employed machine learning on clinical and
laboratory data of 378,256 patients to predict the first CVD
event [11]. The data used consisted of 30 attributes including
risk factors, laboratory data, medications, and information about
history of CVD and other chronic diseases such as poor mental
health, chronic obstructive pulmonary disease, kidney disease,
and rheumatoid arthritis. The authors applied four machine
learning algorithms: random forest, logistic regression, gradient
boosting, and neural networks. The reported results showed that
the best performance was achieved by the neural network
algorithm with a sensitivity of 67.5% and specificity of 70.7%.

In this pilot study, we aimed to investigate the performance of
a machine learning algorithm in predicting the stress
echocardiography outcome in patients investigated for suspected
CAD. Unlike previous research, we are testing a sophisticated
feature selection method to investigate the significance of
cardiovascular risk factors, current medication, and
anthropometric data in this prediction.
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Methods

Population and Data Sources
The cohort of patients was derived from the Cardiology
Department at Milton Keynes University Hospital in the United
Kingdom. Anonymized clinical data had been extracted from
patients’ electronic records, predominantly based on the very
detailed stress echocardiography reports introduced
prospectively by one author (AK), a senior cardiologist, at the
time of the development of stress echocardiography services in
the hospital. We included all patients (n=563) examined using
dobutamine stress echocardiography between 2002 and 2004
with available data. However, we excluded 34 patients who had
incomplete clinical data about their risk factors, leaving 529 for
this study.

This study used real patient data, which can raise some ethical
concerns such as the patient’s permission to use their data and
any confidential information that may exposed because of this
research. This was resolved by having hospital staff, the direct
clinical care provider, anonymize the records before they were

sent for analysis. This study was registered by the institutional
clinical governance department, Milton Keynes University
Hospital (clinical governance project reference number: 33).

Table 1 summarizes patient characteristics for the whole
population and separately for the two groups with positive and
negative stress echocardiography results. All of these patients
had a complete dataset for the anthropometric variables; risk
factors such as gender, age, weight, family history (defined as
having a first-degree relative who had a myocardial infarction
or died suddenly below the age of 60 years), diabetes, smoking
status, hypertension, hypercholesterolemia, and prior history of
CAD; prescribed medication related to CAD including beta
receptor blockers, calcium channel blockers,
angiotensin-converting enzyme inhibitor/angiotensin receptor
blocker (ACE-I/ARB), antiplatelets, nitrates, statins, and
diuretics; and the stress echocardiography results. The features
in the table describe the number of patients who have that risk
factor positive, for example; 306 of the total 529 participants
had hypertension, and 313 of them had abnormal serum
cholesterol level.

Table 1. Characteristics of patients and their stress echocardiography outcome.

SE negative (n=447)SEa positive (n=82)Total (n=529)Characteristic

Risk factor

188 (42.1)61 (74.4)249 (47.1)Sex, male, n (%)

60.93 (12.06)62.92 (10.56)61.23 (11.83)Age in years, mean (SD)

80.45 (17.49)83.06 (15.88)80.82 (17.25)Weight (kg), mean (SD)

264 (59.0)42 (51.2)306 (57.8)Hypertension, n (%)

263 (58.8)50 (61.0)313 (59.2)Hypercholesterolemia, n (%)

Smoking, n (%)

83 (18.5)24 (29.3)107 (20.2)Ex-smoker

290 (64.8)40 (48.8)330 (62.4)Nonsmoker

74 (16.5)18 (22.0)92 (17.4)Smoker

80 (17.8)19 (23.2)99 (18.7)Diabetes mellitus, n (%)

188 (42.0)35 (42.7)223 (42.2)Family history, n (%)

83 (18.5)40 (48.8)123 (23.3)Prior history of CADa, n (%)

Medication, n (%)

223 (49.8)58 (70.7)281 (53.1)Beta receptor blocker

115 (25.7)22 (26.8)137 (25.9)Calcium channel blocker

199 (44.5)59 (72.0)258 (48.8)ACE-I/ARBa

280 (62.3)64 (78.0)344 (65.0)Antiplatelet therapy

123 (27.5)36 (43.9)159 (30.1)Nitrate

255 (57.0)59 (72.0)314 (59.4)Statin

106 (23.7)23 (28.0)129 (24.4)Diurectic

aSE: stress echocardiography
aCAD: coronary artery disease.
aACE-I/ARB: angiotensin-converting enzyme inhibitor/angiotensin-receptor blocker.
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Proposed Framework
The collected data were used to predict the outcome of the stress
test based on the patient’s clinical information. Figure 1 shows
the architecture of the framework that was used to study the
risk factors and medication (referred to as features in this
article); we then used these features to investigate the prediction
power of this clinical data. Raw data were received as a mixture

of text and numerical values. Therefore, the first stage in the
proposed framework was the preprocessing stage where natural
language processing was used to extract and quantify the needed
information from the text, including sex, age, weight, risk
factors, medications, and the final outcome of the stress test
(positive/negative). The criteria shown in Table 1 were used to
convert the text into numerical values.

Figure 1. Experiment framework.

Feature normalization is the second stage used for continuous
features (age and weight), which are normalized using the
following equation for normalizing continuous features:

.

Two normalized features were then discretized using the equal

width discretization method: , where N is the
number of bins [12]. In this method, the value of these features
is allocated to one of the decimal numbers between 1 and 10.
This method divides the range of the feature values into 10 bins
of equal width.

Each feature value is assigned to a bin based on the range into
which it falls. The reason for the discretization stage is that most
of the machine learning algorithms perform better with
discretized data [13]. Due the bias of the feature selection stage
on the continuous features [14], the discretization stage is also
needed to discretize these features before they were submitted
to the feature selection stage.

Feature selection, the fourth stage in this framework, is a set of
techniques used to measure the significance of each feature for
predicting the class label (outcome of the stress test). In this
study, the joint mutual information maximization (JMIM) filter
feature selection method [15] is used to rank the features
according to the amount of information the feature adds to the
selected subset. The method measures the amount of information
that each feature shares with the class. At the end of this stage,
all features (sex, age, weight, risk factors, and medications) will
be ranked based on their significance in predicting the class
label. This method has been developed based on information
theory [16], and the mechanism of the method is explained
below.

The value of mutual information between any two variables can
be calculated using entropy. It is the amount of uncertainty
about a random variable. Suppose F = {f1,f2,....fN} is a discrete
variable and C = {c,c,....cN} is a class label; the probability

density function is .

The mutual information equation between F and C is as follows:

The JMIM method employs the maximum of the minimum
criterion. The feature selected by the JMIM method is the one
that maximizes the goal function, shown below, where I(fi,fs;C)
is the joint mutual information between the candidate feature
and the features already selected in the previous iteration. The
method employs the forward greedy search algorithm, seen
below the equation.

The method does not rank the features based on their individual
discriminative power, it selects the features that provide the
most information as a subgroup; the interaction information
between the features is important in selecting the next significant
feature. Therefore, if the list of submitted features is changed,
the rank order may be different. The whole dataset was
submitted to the JMIM method to identify the significant subset
of features (clinical variables). Smialowski et al [17] reported
that the feature selection stage should be included within
folds-cross validation. However, that can cause instability to
the results of the feature selection as submitting data with
different instances may lead to different values of probability
density function which consequently may lead to changes in
the order of the significant features. This paper aims to define
the clinical variables that can best predict the outcome of stress
echocardiography in the diagnosis of CAD. Therefore, the whole
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dataset was used at the feature selection stage to take advantage
of each valuable instance in the data.

The outcome of the stress test was predicted in the classification
stage. Two alternative classifiers were tested at this stage:
support vector machine (SVM) [18] and random forest
classifiers [19]. The performance of each classifier was
evaluated using 5-fold cross-validation. The dataset is
imbalanced; there are more than 4 times the negative stress
echocardiograms in the data than positive stress
echocardiography cases. To overcome this problem, more weight
was given to the minority class, and a ratio of 4:1 has been used
with SVM; this means giving the minority class 4 times the
weight that is given to the majority class. Due to this skewness
in the number of classes, classification accuracy will not be a
good measure for the performance, as it will be affected mainly
by the ability of the classifier to recognize the majority of classes
correctly. Therefore, sensitivity and specificity were used to
provide a measure for the performance of the classifier in
correctly classifying each class.

The data were randomly divided into 5 folds, with 4 of them
used to train the classifier and 1 for testing, and then this process
was repeated 4 more times, at each time 4 folds were used for
training and 4 of the folds that had never been used for testing
before was used to test the classifier. At each time, the accuracy,
sensitivity, and specificity were calculated. The overall accuracy,
sensitivity, and specificity are the average of the 5.

To find the subset of features that produces the best prediction
performance, the classifier is trained and tested after adding
every feature according to its rank identified at the feature
selection stage.

Results

The proposed framework was used to study the whole dataset
including the risk factors and medications, and it was also used
to study a subset of the dataset that excluded the cases with
prior CAD to investigate the influence of this variable on the
performance of the model. Table 2 shows the characteristics of
this subset of patients referred to in the rest of this paper as the
subdataset.

The prevalence of abnormal stress echocardiography was 15.5%.
A total of 447 patients had negative stress echocardiography
results (84.5%). There were fewer women than men within the
positive group, and the opposite was true with the negative
stress echocardiography results. Mean age was 62.92 (SD 10.56)
years and 60.93 (SD 12) years in the positive and negative
groups, respectively (Table 1).

The feature selection stage was used to rank the features (clinical
variables) in the whole dataset, and the significant features for
the whole dataset are depicted by Table 3. The table shows that
for the whole cohort of patients, CAD is the most significant
feature for predicting stress echocardiography outcome, followed
by sex, ACE-I/ARB use, and smoking status.

The results showed that prior CAD has the strongest power to
distinguish between positive and negative stress
echocardiography results. Sex appeared second because most
of the positive cases were male, and most of the negative were
female. ACE-I/ARB use was the only applied medication among
the five most significant features. On the other hand, age, family
history, and diabetes appeared the least contributory features in
this model.
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Table 2. Characteristics of patients and their stress echocardiography outcome in those with no prior ischemic heart disease.

SE negative (n=364)SEa positive (n=42)Characteristic

Risk factor

147 (40.4)33 (78.6)Sex, male, n (%)

60.96 (12.20)64.28 (9.80)Age in years, mean (SD)

80.46 (17.37)80.31 (13.18)Weight (kg), mean (SD)

216 (59.3)25 (59.5)Hypertension, n (%)

219 (60.1)33 (78.6)Hypercholesterolemia, n (%)

Smoking, n (%)

13 (3.5)13 (31.0)Ex-smoker

227 (62.3)17 (40.5)Nonsmoker

65 (17.8)12 (28.6)Smoker

67 (18.4)6 (14.3)Diabetes mellitus, n (%)

132 (36.2)17 (40.5)Family history, n (%)

Medication, n (%)

166 (45.6)28 (66.7)Beta receptor blocker

89 (24.4)9 (21.4)Calcium channel blocker

148 (40.6)32 (76.2)ACE-I/ARBa

216 (59.3)34 (81.0)Antiplatelet therapy

95 (26.1)24 (57.1)Nitrate

201 (55.2)29 (69.0)Statin

87 (23.9)12 (28.6)Diurectic

aSE: stress echocardiography.
aACE-I/ARB: angiotensin-converting enzyme inhibitor/angiotensin receptor blocker.
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Table 3. Feature rankings.

FeatureNo

Prior diagnosis of coronary artery disease1

Sex2

ACE-I/ARBa3

Weight4

Smoking status5

Beta receptor blocker6

Hypercholesterolemia7

Antiplatelet therapy8

Statin9

Nitrate10

Hypertension11

Calcium channel blocker12

Diuretic13

Diabetes mellitus14

Family history15

Age16

aACE-I/ARB: angiotensin-converting enzyme inhibitor/angiotensin-receptor blocker.

Feature selection has been also applied on the subdataset. The
order of the features was slightly different as the prior CAD
feature was excluded from the data. Table 4 depicts the order
of the features, and it shows that sex, ACE-I/ARB, cholesterol,
nitrates, and smoking status are the five most significant

features. The only difference from the previous results when
the whole dataset was used is the swap between serum
cholesterol and smoking status. Serum cholesterol status became
the third most significant feature followed by nitrates
medication, which was not among the most important.

Table 4. Feature ranking in the model for patients with no prior ischemic heart disease.

FeatureNo

Sex1

ACE-I/ARBa2

Hypercholesterolaemia3

Nitrate4

Smoking status5

Statin6

Weight7

Beta receptor blocker8

Antiplatelet therapy9

Hypertension10

Diuretic11

Calcium channel blocker12

Diabetes mellitus13

Family history14

Age15

aACE-I/ARB: angiotensin-converting enzyme inhibitor/angiotensin-receptor blocker.
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As mentioned earlier, two classification algorithms were used
in this study: SVM and random forest. The results showed that
the performances of the two classifiers were close to each other.
However, the SVM slightly outperformed the random forest
classifier. In this paper, only results produced by the SVM are
presented.

Figure 2 shows that the best trade-off between sensitivity and
specificity, 72.87% and 66.67%, respectively, was achieved by
the subset of the most significant four features (prior CAD, sex,
weight, and ACE-I/ARB use). The classification accuracy was

67.63%. The figure also showed that when more features were
added, sensitivity started to decrease and specificity started to
increase; therefore accuracy is correlated more with sensitivity
due to this skewness in the number of classes. This drop in
sensitivity means that the rest of the features are either redundant
or irrelevant for recognizing positive cases. When whole features
were used only about 50% of the positive cases were classified
correctly. On the other hand, random forest showed a slightly
lower performance when the value of sensitivity, specificity,
and classification accuracy were all the same (69.2%); this figure
has been achieved with the most significant four features.

Figure 2. Performance of support vector machine classifier: (a) classification accuracy ± standard error and (b) sensitivity and specificity ± standard
error.

The experiment was repeated on data from patients with no
known prior CAD. The performance of the classification stage
is depicted in Figure 3. The sensitivity was slightly affected by
excluding patients with CAD as a feature from the data,
however, the specificity increased. The classifier produced the

best trade-off between sensitivity and specificity, both 70.24%,
with only using two features (sex and ACE-I/ARB use). The
accuracy also increased to 70.32% due to the increase of the
specificity figure.
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Figure 3. Performance of support vector machine classifier for subdataset: (a) classification accuracy ± standard error and (b) sensitivity and specificity
± standard error.

To test the robustness of the proposed framework, the
experiment was repeated again and the model trained without
sex features. The results showed that the best performance was
achieved with the best four features (prior CAD, ACE-I/ARB,
beta receptor blocker, and smoking status): 72.87% and 60.23%,
respectively. The accuracy decreased to 62.19%.

Discussion

Principal Findings
Feature selection is used as part of the proposed framework;
these techniques have the capability to investigate the
multidimensional relation between features and class label. In
previous research [11], classifiers were used to evaluate the
significance of the features based on their importance for the
classification algorithm. The selected features are very specific
to the classifier. This study employed the classifier independent
feature selection method (JMIM) to investigate the relation
between features of clinical data and class label (test outcome)
in the context of the features that were selected in the previous
iterations. This means that once we have selected the features,
they can be used with any classifier. SVM and random forest
classifiers were tested in this study, and SVM slightly
outperformed random forest in our dataset.

The results of the feature selection and classification stages
showed that prior CAD is the most important risk factor for
distinguishing between positive and negative cases. Sex, weight,
and smoking status are among the group of most significant

five features, and the only current medication that is within this
group is ACE-I/ARB. Hypertension, diabetes, and positive
family history are shown as the least significant features for the
discrimination task. Only four features were needed to achieve
the best performance (prior CAD, sex, weight, and ACE-I/ARB
use), which means by knowing only this information about
patients, the proposed framework is able to classify 72.87% of
the positive cases and 66.67% of the negative cases correctly,
outperforming the previous study [11]. ACE-I/ARB is used for
several cardiovascular conditions and secondary prevention
after an acute coronary event. This feature carries information
about these conditions, and that is why it is the most powerful
predictor of stress echocardiography outcome. For patients with
no prior history of CAD, knowing the sex and whether the
patient is taking ACE-I/ARB is sufficient to predict stress
echocardiography outcome in the majority of cases.

To study the robustness of the framework, performance was
tested without any information about prior diagnosis of CAD.
Once this was tested, the order of the feature changed;
cholesterol and nitrate medication became among the most
significant of the five features. The feature weight was less
significant in this model. This change in the order of the features
can be attributable to the information interaction between them.

Because prior diagnosis of CAD is such a powerful predictor
of a positive stress echocardiogram, the other features contribute
so little information by comparison, and it is hard to see their
value. However, once these patients are removed from the
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dataset, we can see the predictive power of the other features
for patients with no previous history of CAD.

Features like age, diabetes, and family history are shown to be
less significant for discriminating between positive and negative
cases. It also showed that information about medications added
significant value and could enhance the discrimination power
of the clinical data. It also showed that interaction between
features is important and can affect the order of the selected
subset. Moreover, increasing the granularity of the value of the
risk factors may improve their discriminative power by using
continuous instead of categorial variables.

Strengths
To our knowledge, this is the first study that has investigated
applying machine learning techniques to a simple dataset of
patient anthropometrics, cardiovascular risk factor profiles, and
cardioactive medications to predict positive or abnormal stress
echocardiography results. The study also investigated the
performance of different machine learning techniques and
employed a sophisticated feature selection method to study the
significance of the clinical attributes. This method considers
the interaction between clinical variables when analyzing their
significance and the class label. The proposed framework
outperforms the other tools that have been proposed in the
literature [11] in predicting CAD by more than 9%. The
proposed framework can also be employed on data collected
using other cardiovascular stress tests aimed to detect inducible
ischemia.

Limitations and Future Work
In this paper, we report preliminary results using only 529
patients. The data includes only anthropometric and clinical
data that has been collected during the patient’s hospital visit.
Including more data from patient medical records could enhance
the generic behavior of any proposed model and improve the
performance of the developed model. As we have a large dataset
going back nearly 20 years, the model could be extended to
predict mortality due to a cardiovascular event.

Conclusions
Machine learning techniques can offer the very promising
prospect of faster and more accurate diagnosis (especially for
high-risk groups), prioritizing higher risk patients and increasing
the capacity of clinicians. However, it is well known that most
machine learning techniques are considered to be black boxes,
where the model produces results that are difficult to interpret.
Despite the black box nature of various machine learning
approaches, feature selection techniques can improve
understanding of the relationship between the diagnosis and
clinical attributes. Data visualization methods can improve
understanding of the produced model and interpretation of the
output.

None of the clinical information detailing the results of the
positive stress test such as wall motion score index were
included with the clinical data. Inclusion may further
differentiate between high- and low-risk patients.
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