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The growing insights in the complex interactions between metastatic cancer-cells and

platelets have revealed that platelet tumor cell interactions in the blood stream are an

important factor supporting tumor metastasis. An increased coagulability of platelets

facilitates the vascular evasion and establishment of solid tumor metastasis. Furthermore,

platelets can support an immunosuppressive tumor microenvironment or shield tumor

cells directly from engagement of cytotoxic lymphocytes as e.g., natural killer (NK) cells.

Platelets are both in the tumor microenvironment and systemically the quantitatively most

important source of TGF-β, which is a key cytokine for immunosuppression in the tumor

microenvironment. If similar platelet-tumor interactions are of physiological relevance in

hematological malignancies remains less well-studied. This might be important, as T- and

NK cell mediated graft vs. leukemia effects (GvL) are well-documented and malignant

hematological cells have a high exposure to platelets compared to solid tumors. As NK

cell-based immunotherapies gain increasing attention as a therapeutic option for patients

suffering from hematological and other malignancies, we review the known interactions

between platelets and NK cells in the solid tumor setting and discuss how these could

also apply to hematological cancers. We furthermore explore the possible implications for

NK cell therapy in patients with solid tumors and patients who depend on frequent platelet

transfusions. As platelets have a protective and supportive effect on cancer cells, the

impact of platelet transfusion on immunotherapy and the combination of immunotherapy

with platelet inhibitors needs to be evaluated.

Keywords: NK cells, platelets, immunosuppressive, tumor microenvironment, antitumor immunity, metastasis,

immunotherapy, cytotoxicity

INTRODUCTION

Natural killer (NK) cells represent the largest fraction of innate lymphocytes, accounting
for 10–15% of all peripheral lymphocytes in humans (1, 2), The physiological importance
of NK cells is commonly ascribed to their capability to form early responses against viral
infections and malignant cells (3). The main effector functions of NK cells encompass
elimination of cells identified as targets, along with the secretion of proinflammatory
cytokines, which can attract further immune cells and thereby promote the formation
of an adaptive immune response (4). NK cell activation is regulated by the integration
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of signals from an array of different germline-encoded activating
and inhibitory receptors (5). Activating receptors on NK cells
bind many stress-induced ligands as for example MICA and
MICB, which are recognized by NKG2D on NK cells (6). The
main inhibitory receptors are the killer cell immunoglobulin
like receptors (KIR) which bind to HLA class I and NKG2A
which binds to HLA-E, thereby allowing NK cells to kill
virally infected or transformed cells that escape T cell-mediated
immunosurveillance by down-regulation of HLA (3, 7, 8). This
unique capability of immediate cytotoxicity toward malignant
and virally infected cells makes NK cells attractive for antitumor
therapy approaches (9). Especially since a clinically relevant
antitumor effect has been described before, when a NK
cell-mediated graft vs. leukemia effect (GvL) was found after
haploidentical hematopoietic stem cell transplantation (HSCT),
in case of HLA mismatch when NK cell tolerance is broken
(10, 11). Currently, different anti-tumor therapies rely on tumor
cell lysis through cytotoxic lymphocytes, mainly NK- and T
cells. This includes beside NK- and T-cell-mediated GvL after
HSCT (10, 12) the therapies inhibiting immune checkpoints
(13). Moreover, the success of monoclonal antibody therapies
including e.g., Rituximab depends on NK cell-mediated antibody
dependent cytotoxicity (ADCC) as a main effector function (14).
Lastly, there are many studies evaluating the therapeutic value of
expanded NK cells or therapies with engineered NK cells or T
cells (15–18).

Platelets have a well-established and important role in
hemostasis and wound healing, but it has become clear that
they also function as immune cells (19). In the context of
cancer, they have been shown to support various steps of tumor
expansion, including local growth, migration in and out of the
blood stream and metastasis establishment. During several of
those steps platelets are important for evasion of the immune
system (20). The protection from immunosurveillance can be the
result of a direct or indirect inhibition of tumor cell engagement
by cytotoxic lymphocytes. Here, we review the different ways how
platelets can support cancer cells to avoid or disarm lymphocyte
cytotoxicity focusing on NK cells. We furthermore explore the
possible implications of NK cell platelet-interactions on NK cell
therapy and platelet transfusions.

PLATELET-MEDIATED IMMUNE ESCAPE
MECHANISMS IN THE TUMOR
ENVIRONMENT

High platelet counts were identified as a risk factor associated
with adverse outcome in numerous different tumor entities
including lung cancer, breast cancer, ovarian cancer, gastric
cancer, pancreas carcinoma, hepato-cellular carcinoma, colon
carcinoma, renal cell carcinoma or glioblastoma to name just a
few (21–28). Based on these robust data, and studies showing
that low lymphocyte counts correlate with shorter survival time
(29), the ratio between lymphocytes and platelets has been
investigated and identified as a predictive marker for the disease
outcome with low platelet-lymphocyte ratios (PLR) favoring a
beneficial course of the disease (30–32). Of note, a meta-analysis

including 1,340 cancer patients that were treated with an immune
checkpoint inhibitor, showed a clear advantage of patients with a
low PLR (33). In sum, these observational studies gave rise to the
question if platelet count and PLR are mere surrogate markers
indicating strong systemic inflammatory response, reflecting
advanced progression, or if clinically relevant interactions
between platelets and lymphocytes can influence the disease
outcome by themselves. Notably, these two explanations are
not mutually exclusive. The understanding of how platelets can
interfere with the function of different lymphocyte subsets has
significantly grown and different mechanisms were uncovered.
It was shown that platelets protect tumor cells from different
cytotoxic lymphocytes including NK cells and effector T cells.
The protective mechanisms from lysis by NK cells can be
divided in those resulting from direct interaction including cell
contact and cytokine interaction and those involving further cell
types (34).

When a single cell or micro metastasis, consisting of a few
cells enters the blood stream, it is at the same time leaving the
immunosuppressive, protective environment of the tumor. It
becomes vulnerable and is more exposed to potential recognition
and elimination by the immune system. Metastatic tumor cells
that enter the blood can activate platelets by tissue factor
(TF)-mediated thrombin generation and the release of ADP
or Thromboxane A2 (TXA2) (35, 36). The activated platelets
can attach to the cancer cells via integrins, fibrin, and P-
selectin, forming a layer of platelets, hiding the malignant cell
from cellular components of the immune system (37) (Figure 1,
left). This “cloaking” of cancer cells with platelets protects
them from NK cell-mediated lysis as it was first described
in mouse models of metastatic cancers (38, 39). Initially, it
was hypothesized that the platelets would simply physically
shield the cancer cells from direct interaction with the NK
cells. More recent research on solid tumor-derived cancer cells
showed that there are several more specific mechanisms by
which the adherent platelets inhibit activation of NK cells.
Adherent platelets can transfer their ligands for inhibitory NK
cell receptors to the cancer cell surface, namely HLA class I
(40), glucocorticoid-induced TNF-related protein (GITR) ligand
(41), and the receptor activator of NFκB (RANK) ligand (42)
(Figure 1, right). While KIRs, the receptors for HLA class I,
are constitutively expressed on the majority of circulating NK
cells, the latter two inhibitory receptors are only up-regulated
under certain circumstances. GITR is expressed at low levels
in resting NK cells from healthy donors but is up-regulated
after activation through IL-2 or IL-15 (43). RANK expression
is also absent on resting NK cells from healthy donors but is
found on NK cells from patients with AML (44), breast cancer,
and colon cancer (42). A recent report suggested that platelet-
derived PD-L1 could protect PD-L1-negative solid tumors from
elimination by T cells (45), a mechanism that extends also to
NK cells (46). In addition, adherent platelets can promote the
shedding of the NKG2D ligands MICA and MICB from the
cancer cell surface through ADAM10/17-mediated cleavage (47,
48) (Figure 1, right). It has also been shown that platelet-coated
tumor cells have less detectable CD112 and CD155 on their
surface, the ligands to the activating NK cell receptor DNAM-1
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FIGURE 1 | Metastasizing tumor cells exploit platelets as physical and immunological shielding from NK cells in peripheral blood. Platelets are activated upon

encountering tumor cells, which release adenosine diphosphate (ADP) and tissue factor (TF), depicted as blue dots. Activated platelets adhere to the tumor cells

surface, providing a physical and an immunological shield by presenting ligands to inhibitory NK cell receptors. Moreover, activated platelets exchange surface

receptors with tumor cells. Several ligands to inhibitory NK cell receptors have been shown to be passed over from platelets to tumor cells, including HLA class I,

glucocorticoid-induced TNF-related protein (GITR) ligand, receptor activator of NFκB (RANK) ligand and PD-L1. The figure furthermore delineates the shedding of

MICA and MICB, which are ligands to the activating NK cell receptor NKG2D.

(48). If the mechanism of this reduction involves the interaction
of platelet DNAM-1 with its ligands on the cancer cells was
not investigated.

The “cloaking” of cancer cells by platelets has mostly been
studied in the context of solid tumor metastasis. However, it
is very likely to play a role in hematological malignancies, too.
Platelets attach to leukocytes in the circulation of healthy donors
(49) and have been shown to adhere to the erythroleukemia
cell line K562 (48), as well as primary acute myelogenous
leukemia (AML) cells in vitro (50). Shedding of NKG2D ligands
was observed when platelets attached to K562 cells, similar
to cell lines derived from solid tumors (48). Hematological
malignancies are often accompanied by thrombocytopenia or
platelet dysfunction, a fact that makes platelets appear less
likely to play a significant role in the immune evasion of
these cancer types, which can explain why the interactions
of platelets with hematological cancer cells have been less
well-studied. However, in a small study, platelets were found
attached to circulating AML blast in three out of eight patients
(50) and a study with cryopreserved material from over
1,000 AML patients found platelets adherent to AML blasts

in about one third of the cases (51). It appears therefore
plausible that leukemia cells may benefit from adhering platelets
in a similar way as metastasizing cells from solid tumors
do. In consequence, those leukemia cells might be more
difficult to target by host immunity, monoclonal antibodies or
cellular immunotherapies.

Beside the direct contact-dependent tumor cloaking, platelets
can support tumor growth and metastasis through the secretion
of various factors (Figure 2). The granules released by platelets
upon activation contain amongst others several factors of the
coagulation cascade, growth factors and cytokines including
TGF-β (52). Platelets are, in fact, the main source of TGF-β
in the human body, both systemically and also specifically in
the tumor microenvironment (53–56). TGF-β figures among the
most extensively investigated immunosuppressive cytokines in
the tumor microenvironment and it has been demonstrated to
exert deleterious effects by affecting different lymphocytes. TGF-
β inhibits the differentiation of T cells into cytotoxic T cells and
raises the number of regulatory T cells (Tregs) (57–59). Tregs
in turn can inhibit effector T cells and NK cells. TGF-β also
exerts direct impact on NK cells: It has been shown that TGF-β
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FIGURE 2 | Depicted is a growing metastasis, highlighting the interactions

between platelets and different lymphocytes. Tumor cells can activate platelets

through release of ADP and TF. ADP directly activates platelets through

engagement of the ADP receptor, while TF activates platelets together with

other coagulation factors. Platelet activation results in the release of the dense

granules and α-granules that contain amongst others more ADP, different

clotting factors, growth factors, and TGF-β, which can impact different tumor

infiltrating lymphocytes. The impact of TGF-β on T cells and NK cells is

indicated by solid line arrows and the suspected impact on transfused cellular

therapy products is shown by dashed line arrows.

impairs the lytic activity as well as IFN-γ production (60, 61).
The mechanisms how TGF-β reduces NK cell activity encompass
downregulation of activating receptors onNK cells as e.g., NKp30
or NKG2D, resulting in decreased capability to kill target cells
with the respective ligands (55, 62) and interference with IFN-γ
transcription (63). Importantly and beside the fact that platelets
are the main source of TGF-β it has been specifically proven
that platelet-derived TGF-β can impair cytokine production and
degranulation of NK cells (55, 64). Taken together, the TGF-β
provided by platelets can restrain cellular immune responses in
solid tumors, as well as in the bone marrow microenvironment
of hematological malignancies and thus support the survival of
cancer cells.

DISCUSSION

Beside the physiological role of NK cells in the control of
transformed or virally infected cells, they are also a cornerstone
of monoclonal antibody therapies as a mediator of ADCC
(14, 65). In addition, NK cells exert, beside T cells, graft
vs. tumor effects in allogeneic HSCT settings (10, 15) and
various cellular therapy approaches based on ex vivo activated
or expanded NK cells are pursued (18). In all these settings,
it is a common goal to maximize cytotoxicity to achieve
tumor eradication. While it remains so far elusive if and to
which extent the killing capacity of cellular therapy products
are reduced by platelets in the tumor microenvironment, we

extrapolate that the infused cellular therapies are likewise
inhibited by platelets. Therefore, it is necessary to assess
the impact of tumor PLT interactions on cytotoxicity of
cellular therapy products. Similar considerations apply to further
immunotherapies, that rely on tumor cell lysis mediated by other
cytotoxic lymphocytes, especially the inhibition of checkpoints
for T cell activation e.g., by anti-CTLA4, anti-PD1 or anti-
PDL1 antibodies, as well as therapies with engineered T cells.
An increasing number of different immunotherapies which rely
on NK cell and other lymphocyte-mediated effector functions
find already broad application or have the perspective of doing
so (18, 66). With a growing understanding of the adverse
effects of tumor cell-platelet interactions and the consequences
on various lymphocytes, new questions arise. Starting from
practical questions; a large portion of patients with hematological
malignancies e.g., receive frequent infusions of platelet products
(67). Regarding the immunosuppressive potential of platelets
described above, an optimization of the transfusion management
might be worth considering if the patient is in need of both
platelets and cellular therapy at the same time, especially as
platelet storage increases the available TGF-β in the transfusion
unit (64). Beyond this, it is highly desirable to find a generally
applicable approach to prevent the adverse interactions between
platelets and NK cells. This may also be beneficial for cancer
patients regardless if they receive immunotherapy. While it
was previously not the scope to target interactions between
platelets and NK cells specifically, different approaches were
evaluated either aiming to reduce the number of platelets in
the tumor microenvironment or to prevent the activation of
platelets or their interaction with tumor cells: It was shown that
a specific inhibition of tumor-associated platelets by directing
the platelet inhibitor ticagrelor to tumor-associated platelets,
using a tumor homing liposomal nanoparticle strongly reduced
lung metastases in a mammary carcinoma mouse model (68).
Another recent study investigated the possibility of targeting
cancer cell TF expression with nanoparticle-mediated delivery of
siRNA to the site of metastasis in a breast cancer mouse model.
This led to a tumor specific silencing of tissue factor, which
in turn resulted in reduced platelet adhesion and ultimately in
lower numbers of lung metastases (69). Similar observations
were made studying the impact of systemic ticagrelor treatment
in a breast cancer mouse model (70). However, while NK
cell-mediated killing of K562 in vitro was inhibited in the
presence of platelets, no difference was observed if the platelets
were pre-treated with ticagrelor or not (71). A very recent
study in mice showed reduced metastasis and a reversal of
TGF-β mediated immunosuppression upon delivery of NO-
releasing nanoparticles. The NO released, inhibited platelet
activation and therefore TGF-β release specifically in the
tumor microenvironment (72). A limitation that all approaches
targeting the platelet activation share, is that the desired
interruption of tumor platelet interaction with tumor cells
comes with the risk of reduced coagulation function of platelets.
Inhibiting platelet activation is therefore likely unsuitable for
thrombocytopenic patients but might be a promising therapy for
patients with normal thrombocyte counts, especially when the
delivery of the platelet inhibitor can be targeted to the tumor
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microenvironment and unspecific coagulation inhibition can be
further reduced.

CONCLUSION

As platelets can protect cancer cells from cytotoxic lymphocytes
by various mechanisms, it is very suggestive that they have an
impact on the efficiency of cancer immunotherapies. So far, most
studies have investigated either immunotherapy or inhibition
of platelet activation, but not the combination of both. Future
research will show if targeting the protective interaction of
platelets with tumor cells can improve the efficiency of NK cell
therapy in solid tumors where results so far were less promising
than in immunotherapy of hematological malignancies. On
the other hand, in hematological malignancies that are often
accompanied by thrombocytopenia, it is less likely that inhibition
of platelet activation would be beneficial for the patients.
Here, however, the effects of platelets on NK cell cytotoxicity
should be considered in the scheduling of platelet transfusions
and treatment.
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