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While opening new frontiers for the cure of malignant and non-malignant diseases,
the increasing use of cell therapy poses also several new challenges related to the
safety of a living drug. The most effective and consolidated cell therapy approach is
allogeneic hematopoietic stem cell transplantation (HSCT), the only cure for several
patients with high-risk hematological malignancies. The potential of allogeneic HSCT
is strictly dependent on the donor immune system, particularly on alloreactive T
lymphocytes, that promote the beneficial graft-versus-tumor effect (GvT), but may also
trigger the detrimental graft-versus-host-disease (GvHD). Gene transfer technologies
allow to manipulate donor T-cells to enforce GvT and foster immune reconstitution, while
avoiding or controlling GvHD. The suicide gene approach is based on the transfer of a
suicide gene into donor lymphocytes, for a safe infusion of a wide T-cell repertoire,
that might be selectively controlled in vivo in case of GvHD. The herpes simplex virus
thymidine kinase (HSV-TK) is the suicide gene most extensively tested in humans.
Expression of HSV-TK in donor lymphocytes confers lethal sensitivity to the anti-herpes
drug, ganciclovir. Progressive improvements in suicide genes, vector technology and
transduction protocols have allowed to overcome the toxicity of GvHD while preserving
the antitumor efficacy of allogeneic HSCT. Several phase I-II clinical trials in the last 20
years document the safety and the efficacy of HSV-TK approach, able to maintain its
clear value over the last decades, in the rapidly progressing horizon of cancer cellular
therapy.

Keywords: cellular adoptive immunotherapy, gene therapy, allogeneic hematopoietic stem cell transplantation,
suicide gene therapy, TK cells

Introduction

Cellular therapy is an emerging therapeutic modality, designed to treat cancer, genetic and autoim-
mune diseases, currently raising high enthusiasm. Cancer immunotherapy in particular has been
selected as the major breakthrough of 2013 (Couzin-Frankel, 2013), supporting new approaches
that will bring this strategy into wide clinical development in a very near future.
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The major challenge for immunotherapy is to translate
advances in cellular and molecular immunology into strategies
that effectively and safely enhance clinical responses in cancer
patients. This aim has been pursued by different strategies that
include non-specific immunomodulation approaches based on
the administration of cytokines such as IL-2 (Rosenberg et al.,
1998a), or more recently based on the blockade of inhibitory sig-
nals, such as CTLA4 or the PD1/PDL1 axes (Hodi et al., 2010;
Prosser et al., 2012). The active immunization of patients against
their metastatic cancer, using the so-called “cancer vaccines,” rep-
resents another immunotherapeutic approach (Rosenberg et al.,
1998b; Brahmer et al., 2010). The expanding knowledge on the
field of cancer biology has also enabled passive immunothera-
peutic approaches, such as antibody-mediated therapy (Weiner
et al., 2010) and adoptive cellular therapy (ACT), involving the
ex vivo identification of autologous or allogeneic lymphocytes
with anti-tumor activity (June, 2007a,b). Targeting destruction
of malignancies by enhancing T-cell responses is an attrac-
tive therapeutic modality since it potentially combines excel-
lent specificity with potent anti-tumor activity. However, ACT
has been limited, until recently, by several restrictions, includ-
ing the low frequency of naturally occurring tumor-specific
T-cells displaying proper anti-tumor avidity, the low potency
of the biotechnological tools employed, and the rapid ensu-
ing of T-cell exhaustion or tumor immune escape (Pardoll,
2012).

The most effective and consolidated adoptive immunotherapy
approach is allogeneic hematopoietic stem cell transplantation
(HSCT; Appelbaum, 2001), the only cure for several patients with
high-risk hematological malignancies (Ljungman et al., 2010).
The efficacy of allogeneic HSCT in patients with malignancies
derives largely from the so-called ‘graft versus tumor’ (GvT)
effect, an immunological response mediated by donor T lym-
phocytes, responsible also of the detrimental graft-versus-host-
disease (GvHD; Fuchs, 2012). Gene transfer technologies, includ-
ing the suicide gene approach, are promising tools to manipulate
donor T-cell immunity to enforce the GvT effect, to foster func-
tional immune reconstitution, and to prevent or control GvHD.
The herpes simplex virus thymidine kinase (HSV-TK) suicide
gene strategy is the most extensively tested in humans, allow-
ing the safe infusion of a wide T-cell repertoire through the
GvHD control, combined to preservation of GvT and immune
reconstitution (Lupo-Stanghellini et al., 2010).

New gene-transfer-based strategies aim to enhance effector
cell survival, homing, function, and safety, as well as to effectively
target cancer cells by high-avidity tumor-reactive T-cell recep-
tors (TCRs) or chimeric antigen receptors (CARs; Kalos and June,
2013; Kershaw et al., 2013). The suicide mechanism has been effi-
ciently proposed to avoid and control the toxic effects potentially
induced by these innovative cellular therapies.

Recent advances in the understanding and use of geneti-
cally engineered T-cells and monoclonal antibodies have pro-
duced unprecedented results in this emerging field. Attracted
by the wide applicability of these new strategies, multiple
biotech and pharmaceutical companies have consequently begun
active in the clinical development of cancer immunotherapy,
with the goal of offering a standardized, quality-controlled,

regulatory-body-approved treatment for the integration of cell
therapies to benefit patients worldwide (June et al., 2012; Maus
et al., 2014). At the same time, academia is approaching a rev-
olutionary change of point of view in its dialog with the indus-
try, bridging a productive collaboration throughout the entire
pipeline of translational medicine (Couzin-Frankel, 2013).

Overview of Cancer Immunotherapy
and Cell-Based Gene Therapy

By targeting the immune system, instead of the tumor itself,
immunotherapy marks an entirely innovative way of treat-
ing cancer. Advances in the development and application of
immunotherapy for cancer have been impressive in recent years,
fueling optimism that this modality will soon have a meaning-
ful impact in patient care (Mellman et al., 2011). In particular
ACT, that involves the transfer of ex vivo expanded effector cells
as a means of augmenting the antitumor immune responses,
has been utilized with promising results in clinical trials (June,
2007b).

A major advantage of ACT is that the therapeutic effects can
be enhanced, by isolating lymphocytes with desired effector or
regulatory properties, while removing the cells that may have
antagonistic effects. Direct evidence of the potency of effector
T-cells to target and eradicate tumor cells was demonstrated
through the clinical application of donor lymphocyte infusion
(DLI) to treat leukemia after allogeneic HSCT, through the GvT
effect mediated by alloreactive donor T-cells that lead to strong
anti-leukemic responses in a significant portion of patients (Kolb
et al., 1990; Gill and Porter, 2013).

Allogeneic HSCT is, however, complicated by the GvHD, an
immune-mediated reaction against normal host epithelial tissues
that is often associated with significant morbidity and mortality
(Flowers et al., 2011; Jagasia et al., 2012). Despite immune sup-
pressive drug prophylaxis, acute and chronic GvHD, arising from
alloreactive donor T-cells, still represent a major complication of
allogeneic HSCT (Karanth et al., 2006; Dignan et al., 2012; Arai
et al., 2014; Boyiadzis et al., 2014). In most cases, non-selective
lymphocyte depletion of the allograft can prevent GvHD, but
lymphocyte-depleted grafts are accompanied by increased relapse
rate and transplant-related mortality (TRM), mostly from infec-
tions, indicating that a fast immune recovery is essential for
successful transplant outcome (Ciceri et al., 2008; Corre et al.,
2010; Seggewiss and Einsele, 2010). Genetic manipulation, and
suicide gene therapy in particular, may allow addressing the T-cell
dilemma in allogeneic HSCT (Cohen et al., 1999).

Rationale of Immunotherapy with
Engineered T-Cells and Suicide Gene
Therapy
Mature T-cells are among the most suitable cells for genetic mod-
ification. The majority of clinical approaches are based on T-cells
engineered to stably express transgenes after retroviral or, more
recently, lentiviral transduction (Naldini et al., 1996). Although
viral-based approaches result in reasonably efficient transduction
of primary T-cells, they have considerable limitations in terms of
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costs, DNA capacity and risks related to semi-random vector inte-
gration. In this regard, it is important to notice that insertional
mutagenesis has never been observed in patients treated with
genetically modified T-cells. Transduced T-cells have the poten-
tial to last the lifetime of the host and even to expand in number,
therefore the clinical effect might persist, but also adverse effects
attributable to permanent gene transfer may theoretically worsen
over time. A potential solution is to engineer T-cells to express
signaling pathways that cause the T-cell to destroy itself after a
defined number of cell divisions (Friedland et al., 2009). In alter-
native non-viral based approaches might be used: they benefit
from lowermanufacturing cost and are in principle less immuno-
genic than viral approaches. Furthermore, such approaches are
theoretically safer since they are not dependent on viral elements
integrating into the host DNA. Finally transgenes will be diluted
through cell division thus limiting the risks associated to cell ther-
apy. However, the advantages of a living and persisting therapy
might be largely reduced by transient transgene expression (Kalos
and June, 2013). Thus, it might be advantageous to permanently
express transgenes into T-cells, in association with suicide genes,
that enable to selectively control their activity and life span.

A number of “suicide-gene” strategies that allow selective
destruction of administered T-cells on demand have been devel-
oped (Hinrichs and Restifo, 2013). A suicide gene codes for a
protein able to convert, at a cellular level, a non-toxic prodrug
into a toxic product. In allogeneic HSCT, suicide gene modifica-
tion of donor lymphocytes aims at exploiting their GvT effect,
while providing a selective “switch” to GvHD (Bondanza et al.,
2005). The thymidine kinase of HSV-TK is a cell cycle-dependent
suicide gene, that catalyzes the generation of triphosphate ganci-
clovir (GCV), which is toxic to proliferating cells by inhibiting
DNA chain elongation (Springer and Niculescu-Duvaz, 2000;
Lamana et al., 2004; Bondanza et al., 2006). Various clinical stud-
ies with HSV-TK transduced donor lymphocyte have been per-
formed and a Phase III multicentric, randomized clinical trial for
high-risk acute leukemia is currently undergoing in the context
of haploidentical HSCT.

To overcome the immunogenicity of the TK viral pro-
tein, reported in case of immune-competent patients in the
autologous setting (Riddell et al., 1996) and later after non-
T-cell depleted transplantation (Berger et al., 2006), alternative
suicide genes have been proposed. Gene transfer of human
CD20 into T-cells has been investigated as an alternative non-
immunogenic suicide gene strategy, since the CD20 antigen
can be employed both as a selection marker and as a target
for elimination of engineered cells by administration of one of
the widely used clinical-grade anti-CD20 antibodies (Serafini
et al., 2004; Griffioen et al., 2009; Philip et al., 2014). Alternative
suicide genes include a truncated human EGFR polypeptide
(huEGFRt), which confers sensitivity to a pharmaceutical-grade
anti-EGFR monoclonal antibody, cetuximab (Erbitux; Wang
et al., 2011). An inducible, non-immunogenic and rapid-onset
system based on a fusion protein comprised of an extracellu-
lar FK506 binding domain linked to human caspase-9 (iCasp9)
signaling domains to deliver apoptotic signals in response to a
small molecule-mediated dimerization has been developed and
is currently being evaluated in clinical trials (Di Stasi et al.,

2011). A proliferation-independent suicide gene can theoret-
ically induce apoptosis even in non-dividing cells, including
pathogen-specific precursors, determining permanent abroga-
tion of GvHD. Nevertheless an incomplete elimination, although
of ≥90% of iCasp9-modified T-cells has been reported in its
clinical application (Di Stasi et al., 2011), and the residual T-
cells seems to be able to re-expand, containing pathogen-specific
precursors.

Development and Implementation of
TK-Suicide Gene Therapy
The rational of suicide gene therapy lays on the assumption
that an intact donor T-cell repertoire, inclusive of alloreactive
specificities, is required to promote a wide and protective post-
transplant immune reconstitution against infections and a poten-
tial immune protection against disease recurrence. Whereas the
introduction into clinical practice of less toxic chemotherapeutic
agents, new antimicrobials, and more effective GvHD therapies
has significantly reduced the treatment-related mortality of allo-
geneic HSCT over the last decades, the mortality due to disease
recurrence remained largely unchanged (Gooley et al., 2010).

Suicide gene therapy enables the association of GvHD and
GvT that often occurs in the same patient with different kinet-
ics (Appelbaum, 2001). This observation suggests that a large
proportion of the anti-leukemic immunological force of donor
lymphocytes relies on alloreactive cells. Unfortunately, the same
T-cell specificities are responsible of the detrimental GvHD.
Suicide gene therapy combines the possibility to the transfer
into the patients a wide T-cell repertoire, inclusive of alloreactive
specificities, with a selective control of GvHD.

The use of HSV-TK as a suicide gene offers different lev-
els of specificity to GvHD control: first, only transduced cells
are endowed with the ability of converting the prodrug in
the active form; second, only gene-modified T-cells in active
proliferation are sensitive to the active drug; finally this strat-
egy is able to control GvHD, sparing the adverse effects of
post-transplant immunosuppressive prophylaxis and therapy.
GCV administration is therefore meant to eliminate prolifer-
ating alloreactive T-cells, only in selected patients with GvHD,
while sparing resting T lymphocytes (Figure 1), within a per-
sonalized therapeutic framework. GCV administration in most
of the cases eliminates more than 90% of circulating TK cells
(Ciceri et al., 2009). Since the frequency of alloreactive T-cells
is generally low, we can speculate that they can increase their
relative proportion during GvHD, while several non-alloreactive
TK cells might be eliminated because of early post-transplant
T-cell homeostatic proliferation. Of notice, transduced T-cells
can be easily tracked in patients thanks to the presence of the
�LNGFR (truncated low affinity receptor of nerve growth fac-
tor receptor) cell surface marker, thus providing a unique tool
to study the fate of memory T-cells in vivo (Bonini et al.,
2003).

Meanwhile, TK-cells hold an effective antileukemic activity,
warranting substantial clinical benefit for a considerable pro-
portion of patients treated with allogeneic HSCT. The objective
clinical responses, inclusive of complete remissions, correlate
with in vivo expansion of transduced cells (Ciceri et al., 2007). The
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FIGURE 1 | Schematic representation of suicide gene therapy in
allogeneic HSCT. Patients affected by hematologic malignancies, after a
myeloablative conditioning regimen, receive allogeneic HSCT with
CD34-selected donor’s HSCs, followed by the infusion of HSV-TK gene
modified donor lymphocytes. Through the ex vivo transfer of the HSV-TK suicide
gene, T lymphocytes harvested from the same donors permanently acquire the
sensitivity to a the anti-herpes drug, ganciclovir (GCV): in case of GvHD
occurrence, the administration of GCV activates the suicide machinery, leading

to the selective elimination of alloreactive gene-modified T-cells, while resting
transduced T lymphocytes or untransduced cells are spared. Therefore, one
could preserve the beneficial effects of the T-cells on engraftment, immune
reconstitution and tumor control (GvT) in patients not experiencing significant
GvHD. HSCT, hematopoietic stem cell transplantation; HSCs, hematopoietic
stem cells; HSV-TK, herpes simplex thymidine kinase; TK, thymidine kinase;
GCV, ganciclovir; GvT, graft versus tumor; GvI, graft versus infection; GvHD,
graft versus host disease.

long-term complete remission obtained after the infusion of TK-
cells, suggests a persistent GvT activity in these patients (Oliveira
et al., 2012). Moreover, the antileukemic activity of TK-cells was
indirectly evidenced in the context of haploidentical HSCT by
the emergence, after TK-cell infusions, of mutant variants of
the original leukemia with the de-novo loss of patient-specific
HLA haplotype (Vago et al., 2012b), through a newly described
mechanism of relapse strongly related to the immune pressure of
mismatched HSCT (Vago et al., 2009; Crucitti et al., 2014).

In addition to the GvT effect, the administration of donor TK-
cells has a clinical impact in promoting immune-reconstitution
(IR), thus abrogating late TRM (Marktel et al., 2003). In the
TK007 phase II clinical trial, only patients with TK-cell engraft-
ment progressed to full-term IR, whereas in the absence of
circulating TK-cells, the immune recovery was dramatically slow,
causing a high rate of infection-related mortality. Moreover,
while TK cell infusions were necessary and sufficient to promote
a rapid immune recovery, the long-term reconstituting immunity

was comprised of donor-derived T lymphocytes negative for the
suicide gene. Such transgene-negative T-cells were enriched for
recent thymic emigrants, thus suggesting their de novo genera-
tion in the host thymus. The comparison with a cohort of patients
treated with a T-cell-repleted haploidentical HSCT, suggested an
active role of TK cells in supporting a thymic dependent path-
way of IR, which results in the maturation and differentiation of
donor hematopoietic precursors in the recipient thymus (Vago
et al., 2012a). This process is remarkable in such a cohort of adult
patients, usually characterized by a low thymic output. These
findings show that TK cells prompt the generation of a long-
lasting host-tolerant T-cell repertoire (Oliveira et al., 2012). This
complete and physiological donor-derived immune system is per-
sistently maintained in adults surviving long-term after suicide
gene therapy (Oliveira et al., 2014).

The safety of this approach has been extensively confirmed
by pre-clinical and clinical studies: no adverse or toxic events
related to the gene transfer procedure have been reported to date.
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Accordingly, no genotoxic effect of integrating vectors, nor clonal
dominance of gene modified T-cells has been observed (Recchia
et al., 2006; Lupo Stanghellini et al., 2014).

Though highly promising, the TK-based gene therapy
approach has some limitations. The tk gene is immunogenic
in humans and in immunocompetent patients immunity to TK
might lead to the undesired elimination of transduced cells pop-
ulation. The development of a CD8-mediated clearance of TK
cells largely depends on the immunological status of transplanted
patients at the time of TK cell infusion (Traversari et al., 2007).
The immunogenicity of this viral protein is not limiting its
application in haploidentical HSCT, where the recipient is pro-
foundly immunosuppressed (Riddell et al., 1996) and no immune
response against TK has been observed (Ciceri et al., 2009). An
additional limitation derives from the nature of GCV which is
a useful drug to treat cytomegalovirus (CMV) reactivation, often
occurring in immunocompromised patients; in these patients, the
administration of GCV to treat CMV would produce unwanted
TK-cell killing. Finally, TK/GCVmay have limited ability to actu-
ally kill cell populations, particularly those that are post-mitotic.
While in some clinical conditions, the selective elimination
of proliferating alloreactive T-cells, selectively in patients with
GvHD, while sparing resting T lymphocytes, allow a ‘personal-
ized’ modulation of alloreactivity and preserve pathogen-specific
precursors, in other settings, a suicide gene/prodrug system inde-
pendent of the cell cycle could be advantageous (Bonini et al.,
2011). A suicide gene system independent of the cell cycle could
be favorable to completely eradicate all cell populations, including
post-mitotic or resting cells, such as less-proliferating allore-
active cells (i.e., memory T-cells) or slowly dividing cells. Of
course, a suicide gene strategy should be adapted for each spe-
cific application, and the final choice may have to take into

consideration the advantages and disadvantages peculiar of each
approach.

Clinical Application of the TK Suicide Gene
in the Context of Allogeneic HSCT
The exploitation of suicide genes in the context of allogeneic
HSCT to control T-cell reactivity represents one of the most
important demonstration of the feasibility, safety, and clini-
cal relevance of gene therapy (Cieri et al., 2014). Up to the
present, TK cells have been infused within several clinical trials
(Table 1) in 148 patients after HLA-identical and haploidenti-
cal HSCT (Bonini et al., 1997; Munshi et al., 1997; Champlin
et al., 1999; Tiberghien et al., 2001; Burt et al., 2003; Fehse
et al., 2004; Onodera et al., 2006; Ciceri et al., 2007, 2009).
The cumulative follow-up of patients enrolled in different clin-
ical trial at San Raffaele Scientific Institute, treated with TK
cells, is 289 person/year; twelve out of them are alive and well
at more than 5 years from HSCT (unpublished data). Every
case of acute and chronic GvHD occurring after the infu-
sion of TK cells has been controlled, confirming the efficacy
of the suicide gene/prodrug system in controlling alloreactiv-
ity (Bonini et al., 2011). In vivo depletion of TK cells in the
setting of chronic GvHD is crucially dependent by a stable
HSV-TK expression for several months after HSCT (Oliveira
et al., 2014). Nevertheless the incidence of chronic GvHD was
low in HSV-TK studies, probably because of the thymic depen-
dent pathway of long-term immune reconstitution (Vago et al.,
2012a).

We initially reported the use of donor T-cells expressing TK
gene to treat Epstein–Barr virus-induced B lymphoproliferative
disorders after allogeneic HSCT and leukemia relapse in the con-
text of HLA-identical HSCT (Bonini et al., 1997, 2003). The

TABLE 1 | Clinical trials of TK-suicide gene therapy in allogeneic HSCT.

Clinical
application

Vector (suicide
gene/marker gene)

Days of
culture

N◦ of
treated
patients

Clinical
response (n◦
of patients)

Incidence
of GvHD
n◦ pts

Complete
response of
GvHD to GCV

Immunity
against
HSV-TK

Reference

To treat disease
relapse occurring
after
HLA-identical
allogeneic HSCT

RV (HSV-TK/�LNGFr)
RV (HSV-TK/NeoR)
RV (HSV-TK/NeoR)
RV (HSV-TK/NeoR)
RV (HSV-TK/�LNGFr)

14
Ne
Ne
24–48
9–11

23
23
3
9
5

11a

6a

1a

2a

4a

4
0
1
1
2

3/3b

Ne
Ne
1/1
2/2

9/23f

Ne
Ne
Ne
Ne

Bonini et al. (1997),
Ciceri et al. (2007)
Champlin et al. (1999)
Munshi et al. (1997)
Burt et al. (2003)
Onodera (2008)

Day 0 in TCD
allogeneic HSCT

RV (HSV-TK/NeoR)
RV (HSV-TK/NeoR)

12
–

12
3

4a

1a
5
1

5/5c

1/1
4/12
Ne

Tiberghien et al. (2001)
Fehse et al. (2004)

Day 60 in TCD
allogeneic HSCT

RV (HSV-TK/�LNGFr) 10 9 7a 1 1/1 1/9 Borchers et al. (2011)

Day 42 in TCD
haploidentical
HSCT

RV (HSV-TK/�LNGFr)
RV (HSV-TK/�LNGFr)
RV (TKmut2/�LNGFr)

14
10
10

8
28
4

3d

22d

4d

1
11
0

1/1
10/10e

Ne

0/8f

0/28f

Ne

Bonini et al. (2007)
Ciceri et al. (2009)

Total 127 61 27 24/24 14/127

The table includes clinical data about patients treated with TK-suicide gene strategy in the context of allogeneic HSCT. HSCT, hematopoietic stem cell transplantation;
GCV, ganciclovir; Ne, not evaluable; HSV-TK, herpes simplex thymidine kinase; TCD, T-cell depleted; GvHD, graft versus host disease. aClinical outcome is measured
as clinical response of the malignant disease. bOne patient with GvHD achieved complete response (CR) after GCV administration and immunosuppressive drugs. cOne
patient with GvHD achieved CR after administration of GCV and steroids. dClinical outcome is measured in terms of T-cell immune reconstitution (evaluated as more than
100 circulating CD3+ T lymphocytes/μl). eFour patient with GvHD achieved CR after administration of GCV and short course low dose steroids, two patients with GvHD
achieved CR after GCV administration and immunosuppressive drugs. fImmunity against HSV-TK was monitored by the appearance of TK–specific CD8+ effectors,
leading to undesired elimination of a transduced cell population (Traversari et al., 2007).
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activation of the suicide gene machinery granted successful con-
trol of acute or chronic GvHD in all the patients who required
GCV administration. Moreover, a considerable portion of the
patients experienced a substantial benefit from gene manipulated
DLIs: the in vivo expansion of TK cells directly correlated with
the achievement of a partial or complete remission from disease
(Ciceri et al., 2007).

Based on these encouraging results, the TK approach was
then translated into the more challenging mis-matched fam-
ily haploidentical HSCT, historically limited by a high rate of
late TRM and relapse incidence, associated with a delayed IR
secondary to the procedures for severe GvHD prevention and
treatment. Different strategies have been developed to modu-
late, abrogate or control T cell-mediated alloreactivity, with the
purpose of reducing the risk of GvHD while preserving post-
transplant IR and GvT activity in haploidentical HSCT. T-cell
depletion (TCD), achieved through CD34+ positive selection
of the graft in the absence of post-grafting immunosuppres-
sion, is associated to low rates of acute GvHD and absence of
chronic GvHD, but is marked by a rate of non-relapse mortal-
ity (NRM) of ∼40%, largely due to infections and a cumulative
incidence of relapse of 51% for patients transplanted in relapse
(Aversa et al., 2005; Ciceri et al., 2008). The group of Perugia has
recently reported results of a protocol based on the infusion of
donor Tregs following a TCD haploidentical transplant to fur-
ther reduce the risk of GvHD (Di Ianni et al., 2011). Based on
the evidence that alloreactivity appears to cluster with specific
T-cell subsets (such as CD8 or naïve T-cells, or αβ T-cells), the
infusion of donor T-cells depleted of selected T-cell subsets has
been also tested in clinical trials (Bertaina et al., 2014). In the
last years, haploidentical HSCT has gained considerable atten-
tion worldwide, due to the development of new promising tools
to prevent GvHD, such as the post-transplant administration of
high-dose cyclophosphamide and the use of granulocyte-colony
stimulating factor-primed bone marrow (Luznik et al., 2012; Di
Bartolomeo et al., 2013; Raiola et al., 2013); based on these
two innovations, the number of transplants performed using
unmanipulated haploidentical grafts has grown. A sirolimus-
based GvHD prophylaxis has also been adopted to allow the
infusion of unmanipulated peripheral blood stem cells (PBSCs)
grafts from haploidentical donors, and proved able to promote
a rapid immune reconstitution skewed toward T-regulatory cells
(Peccatori et al., 2014). Despite all these efforts, acute and chronic
GvHD still represent crucial complications of haploidentical
HSCT.

In the heterogeneus panorama of allogeneic transplants, the
TCD haploidentical HSCT still represents an ideal platform
to develop and validate innovative adoptive immunotherapy
approaches: the rapid and robust hematopoietic reconstitution,
associated to a profound lymphodepletion and to the absence of
immunosuppressive drugs, represent favorable grounds for the
engraftment and expansion of adoptively transferred T-cells.

In the TK007 multicentric phase I-II clinical trial, 50 adult
patients were enrolled to receive a TCD haploidentical HSCT
followed by the infusion of TK cells, for high-risk hemato-
logic malignancies. Again TK cells proved safe, with no doc-
umented adverse event related to the genetic modification. In

this study, 28 adult patients were treated with multiple infu-
sions of TK cells starting 1 month after haploidentical HSCT, in
the absence of pharmacologic prophylaxis for GvHD; 22 patients
obtained immune reconstitution at a median of 75 days (range
34–127) from HSCT and 23 days (13–42) from TK-cell infu-
sion. Twelve patients developed acute GvHD, and one developed
chronic GvHD. Direct association of TK-cells and GvHD was
confirmed by vector-encoded protein immunostaining of lym-
phocytes infiltrating affected lesions. In all cases the TK/GCV
machinery proved effective, leading to a rapid and complete
resolution of all clinical symptoms and providing a long-term
immunosuppressive therapy free survival, in absence of GvHD
related deaths or long-term complications (Lupo Stanghellini
et al., 2014). Beside the efficient control of donor T-cell allore-
activity, the infusion of TK cells granted a rapid and wide
immune reconstitution, which was instrumental for the abroga-
tion of the late TRM, reported for TCD haploidentical HSCT.
In immune reconstituted patients, progressive normalization of
antiviral responses was associated with a decline in the number
of infectious events, while patients who failed immune recon-
stitution continued to have frequent infectious complications.
At 3 years, intention to treat NRM was ≈40%, with all events
occurring in the first 6 months after HSCT. For patients with pri-
mary acute leukemia, transplanted in complete remission, relapse
mortality at 3 years was 19% (Ciceri et al., 2009). All patients
in complete remission 3 years after transplant remained so in
the following years (longest follow-up 11 years; Oliveira et al.,
2012).

The HSV-TK strategy is currently under evaluation in a phase
III clinical trial in patients undergoing haploidentical HSCT for
high-risk acute leukemia. In this pivotal, ongoing phase III trial
(TK008, NCT00914628), up to 4 monthly infusions of TK cells
are given at 1x107 for kg of patient body weight, starting 21–
49 days after TCD haploidentical HSCT in the experimental arm.
Control arm consists of either TCDor post-transplant cyclophos-
phamide haploidentical HSCT, at physician discretion. So far,
34 patients have been enrolled from eight EU and US sites.
Preliminary results of this ongoing trial (median follow-up is
1.2 years) confirm the potential clinical benefit of T-cell gene
transfer technology integrated with TCD haploidentical HSCT,
and highlight the role of early IR as surrogate endpoint for sur-
vival outcomes and the dose-related antileukemic effects of TK
(Bonini et al., 2014).

Herpes simplex virus thymidine kinase suicide gene strategy,
employed as cytotoxic therapy, may also improve the outcomes
of solid tumors, especially as adjuvant to local therapies (Nanda
et al., 2001; Li et al., 2007; Xu et al., 2009; Aguilar et al., 2015).

The efficacy of the suicide gene approach in controlling the
adverse events associated to DLIs open up to the opportunity to
increase the safety profile of additional T-cell therapy approaches,
such as that based on the expression of tumor redirected T-cells,
obtained through TCR gene transfer or CAR based gene therapy.

Adoptive T-Cell Therapy and TCR Gene
Transfer
ACT is based on the possibility to isolate tumor-specific T-cells
from the patient’s peripheral blood, or from tumor samples (TILs;
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Rosenberg, 2012). TIL-based approaches derive from the concept
that T lymphocytes in biopsy specimens are enriched for anti-
tumor reactivity but have become functionally anergized, and
that ex vivo culture of these cells results in their re-activation.
However, their application is currently limited by a number of
factors: for several cancers tumor specimens are not readily avail-
able, even when available TILs are reproducibly detectable only
in a minority of cancer types, expansion protocols remain rel-
atively labor-intensive, expensive, and difficult to standardize
(Ruella and Kalos, 2014). Furthermore, prolonged T-cell culture
required to expand rare tumor-specific T-cells often results in
their functional exhaustion.

Thus, several challenges need to be faced for a successful adop-
tive cancer immunotherapy: the extent of T-cell activation, the
T-cell differentiation phenotype and most importantly the T-
cell specificity of the cellular product represent variables able
to significantly affect the efficacy and safety of the cell therapy
approach (Kershaw et al., 2014). Indeed for an effective adop-
tive immunotherapy, the choice of the tumor associated antigen
(TAA) or epitope to be targeted is critical. An ideal tumor anti-
gen should be highly specific for cancer cells, originated from a
founder mutation, possibly required for the oncogenic pheno-
type and should be widely expressed in different patients and
possibly shared by different tumor types (Restifo et al., 2012).
In Cheever et al. (2009), the National Cancer Institute pub-
lished a list of ‘ideal’ cancer antigens, based on several features
(immunogenicity, oncogenicity, specificity, frequency) with the
aim of promoting translational research in the field of adoptive
immunotherapy.

The fundamental premise behind genetic retargeting of T-cells
is the fact that the endogenous potent tumor-specific T-cell reper-
toire has been compromised as a consequence of central and
peripheral tolerance. Indeed, comparative analyses have demon-
strated that TCRs against tumors have substantially lower anti-
gen affinity (∼0.5 logs) compared with TCRs directed against
virus-derived antigens, providing at least partial explanation for
the lack of clinical efficacy of approaches directed to triggering
the self-antigen-reactive T-cell repertoire (Aleksic et al., 2012).
Genetic engineering of circulating autologous lymphocytes from
cancer patients by using genes that encode receptors capable of
recognizing cancer antigens is used to generate high-avidity T-
cells with specificity for tumors. These high-avidity T-cells can
be equipped with conventional TCRs expressing a heterodimeric
αβ receptor, which recognize processed antigenic peptides pre-
sented by major histocompatibility complex (MHC) proteins or
with CARs, which recognize TAA through single chain variable
fragments that are isolated from antigen-specific mAbs.

Gene encoding TCRs, made up of α- and β-chains, can be
obtained from tumor-specific T-cells, which can naturally occur
in humans, and cloned into a transfer vector, more often a retro-
viral or lentiviral vector, which can then be used to transduce
mature T lymphocytes. TCR affinity can be increased through
several approaches, such as the introduction of amino acid sub-
stitutions into the CDR regions of α and β chains, especially
into the peptide-binding CDR3 regions, or by the modula-
tion of the TCR glycosylation (Li et al., 2005; Chervin et al.,
2008; Robbins et al., 2008; Kuball et al., 2009; Schmitt et al.,

2013). The genetic transfer of tumor-specific TCR α and β can
allow the generation of high number of antigen-specific T-cells
from virtually every patient. This approach bypasses the need
to isolate the tumor-specific effector cells from each patient.
TCR-engineered T-cells secrete immunostimulatory cytokines,
exert antigen-specific cytotoxicity upon encounter with antigen-
positive tumor cells and expand in response to this antigenic
stimulation (Johnson et al., 2009). This approach has been
applied with a variety of antigens including MART-1 and gp100
(melanoma); NY-ESO-1 (epithelial tumor and sarcomas); CEA
(colorectal cancer); and 2G-1 (renal cell carcinoma; Johnson
et al., 2009; Robbins et al., 2011). To completely and permanently
abrogate the expression of the endogenous TCR and the risk
of mispairing between the endogenous and the tumor-specific
TCR chains, a novel approach, named TCR gene editing, has
been recently developed (Provasi et al., 2012). This approach
aims for the first time to substitute, instead of adding, the T-cell
specificity, thus increasing the efficacy and safety profile of the
cellular product, and permitting a safe use also of allogeneic cells,
by abrogating the risk of GvHD. However, even this approach
can be complicated by potential “on-target, off-organ” adverse
effects caused by recognition of low-level expression of the tar-
geted tumor-associated antigen on healthy tissues, which can
be recognized by high-affinity TCRs (Johnson et al., 2009). The
major challenge for immunotherapy using gene-modified T-cells
remains the identification of antigens that can be targeted to
destroy the cancer without causing toxicity to normal tissues.
In a recent clinical trial using T-cells engineered to express an
affinity enhanced TCRs specific for a MAGE-A3 derived epi-
tope, HLA-A1 restricted in patients with multiple myeloma and
melanoma, the first two treated patients developed cardiogenic
shock and died within a few days after T-cell infusion, due to
T-cell cross-recognition of a titin-derived peptide, expressed by
cardiomyocites (Cameron et al., 2013; Linette et al., 2013). The
cross-recognition could not have been predicted from preclini-
cal studies, and indicates the need to increase the safety profile of
new cellular products.

Recently, the increasing use of high throughput screening of
cancer genomes that allow to identify a large numbers of novel
TAA, including mutated antigens, has opened up a new therapeu-
tic window for a highly effective, ultrapersonalized adoptive T-cell
therapy approach (Rosenberg andQueitsch, 2014). The wider will
be the range of tumor antigens that can be targeted by TILs and
genetically modified cells, the highest will inevitably be the risk of
toxicity, again suggesting the need for selective approaches, such
a implementation of suicide genes in transfer vectors, to eliminate
the adoptively transferred cells in case of severe adverse events.

CAR-Based Gene Therapy
The use of CARs, that recognize non-MHC-restricted struc-
tures on the surface of target cells, is highly attractive for sev-
eral reasons: first it allows to overcome HLA-restriction, thus
permitting to use the same CAR for several patients, second,
because tumors can frequently fail to present tumor antigens to
T-cells through the down-regulation of MHC expression (Curran
et al., 2012), and such mechanism would not affect CAR effi-
cacy. CAR engineered T-cells combine the antigen specificity
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and high avidity of antibodies and the cytotoxic properties of T
lymphocytes. CARs are generated by fusing the antigen-binding
motif of a monoclonal antibody (mAb) with the signal trans-
duction machinery of the TCR. The genetic modification of T
lymphocytes with chimeric receptors specific for TAA allows for
their redirection toward tumor cells. In contrast to antibodies,
CAR-modified T-cells can specifically traffic to tumor sites and
persist, at least for some time, as memory cells in vivo. The
most advanced CAR-based approach, redirects T-cells against
CD19, a differentiation molecule of the B cell lineage. More
than 200 patients affected by acute lymphoid leukemia, chronic
lymphocytic leukemia, and non-hodgkin lymphoma have been
treated to date with clinical responses rates reaching more than
90% (Porter et al., 2011; Grupp et al., 2013; Davila et al.,
2014; Maude et al., 2014). Most responses are complete clini-
cal responses and were achieved in highly pretreated patients,
who had often failed transplantation and treatment with anti-
CD19 antibodies. This exciting clinical experience is, however,
limited by some degree of toxicities (Brentjens et al., 2010).
The “on-tumor toxicity” is due to excessive cytokine release,
associated to the use of second-generation CD19-CAR T-cells.
The cytokine release syndrome is acute and usually reversible,
associates with massive elevation of plasma IL-6 and can be
treated with anti-IL6r antibodies. Severe forms, usually associ-
ated with high tumor burden, lead to hypotension and respiratory
distress. These observations prompted to draw some clinical rec-
ommendations, including implementing careful dose-escalation
plans and co-expressing a suicide gene for switching-off unpre-
dicted or controlling long-term toxicities (Ertl et al., 2011).
Currently, there are a number of active and recruiting phase
I/II clinical trials aiming at the demonstration of the safety and
the efficacy of CARs both in the US and in Europe (Kohn
et al., 2011; Ramos and Dotti, 2011). The majority of clini-
cal trials are focused on lineage marker-specific CARs, that is
CARs specific for molecules selectively expressed by the malig-
nant counterpart of normal blood cells (Casucci et al., 2015).
In addition to the successful CD19-specific CARs, a number
of novel oncoantigen-specific CARs, that is CARs specific for
antigens whose expression is somewhat linked to the malignant
phenotype, have been described and have entered the clini-
cal arena for some types of liquid and solid tumors (Casucci
et al., 2015). Novel CAR-based approaches have been recently
designed to increase the efficacy and safety profile of CAR-
based therapy. We developed a CAR specific for CD44v6, a
CD44 variant highly expressed by several tumors and asso-
ciated to chemoresistance. To overcome chronic toxicity that
might result from the in vivo ablation of CD44v6 express-
ing monocytes, we implemented the suicide gene approach in
the vector (Casucci et al., 2013). A recent study show that
huEGFRt represents a highly efficient transgene-encoded cell
surface polypeptide for selection, in vivo tracking, and abla-
tion of CAR-engineered T-cells. (Wang et al., 2011) A novel
construct also incorporates the IL-15 gene and iCasp9-based
suicide gene in T lymphocytes expressing a CAR targeting the
CD19 antigen, to safely increase the anti-lymphoma/leukemia
effects of CAR in patients with B-cell malignancies (Hoyos et al.,
2010).

Conclusion and Future Perspectives

Cancer cellular therapy is an emerging and promising field, and
a built-in suicide mechanism has been successfully combined to
improve the safety of novel approaches. Thanks to a 20-years
consolidated clinical experience, confirming its efficacy and flex-
ibility, the application of TK-suicide gene strategy can be easily
extended to different medical needs.

A fundamental area is the use of suicide gene therapy for
DLI infusions after HSCT, to operate a meaningful dissociation
between the GvT effect and GvHD.

Donor lymphocyte infusion can produce lasting remissions
in patients with relapsed chronic myeloid leukemia, but are less
effective in other hematological diseases. Combination of anti-
tumor agents with DLI or the use of donor T-cells encoding a
CAR targeting a tumor antigen might be the solution to further
increase the GvT effect of DLI. Chemotherapy-induced lym-
phodepletion (i.e., cyclophosphamide and fludarabine) before
DLI has been shown not only to enhance activation of donor
lymphocytes but also to cause significantly more severe GvHD
than DLI alone, thus limiting its application (Schmid et al.,
2007). In the search for novel treatment strategies, azacyti-
dine in addition to DLI has been employed to improve the
survival of relapsed acute myeloid leukemia or myelodysplasia
occurring after allogeneic HSCT (Czibere et al., 2010), while
bendamustine followed by escalating doses of DLI appears to
be effective as salvage treatment in hodgkin lymphoma relaps-
ing after allogeneic HSCT (Sala et al., 2014). However, acute
and chronic GvHD are reported in a significative proportion of
patients. To safely balance the toxic versus beneficial effects of
activated donor lymphocytes, the infusion of donor T-cells engi-
neered to carry a suicide gene has been evaluated for treating
patients with aggressive hematologic malignancies (Maury et al.,
2014). Strategies that combine ACT with the use of agents that
impact tumor biology such as demethylating agents, tumor sig-
naling, metabolic pathway and cell cycle inhibitors, will need to
be better investigated in the next future. Finally, an attractive

TABLE 2 | TCR- and CAR-redirected T-cells.

TCR CAR

Targetable Ag:
�Intracellular Ag
�Surface Ag
�Lipid Ag

+
+
+/−∗

-
+
+

Ag processing required + −
HLA restriction +/−∗ −
Persistence ++ +
Indications for suicide gene
implementation:

�cytokine storm
�on target/off tumor recognition
�off target/off tumor recognition

+
+/−
+∗∗

++
+/−
−

The table describes the different characteristics of TCR- and CAR-redirected
T-cells. TCR, tumor-reactive T-cell receptor; CAR, chimeric antigen receptor; Ag,
antigens; HLA, human leukocyte antigen. ∗Some TCRs have been shown to rec-
ognize tumor-associated lipids restricted on CD1 molecules (Lepore et al., 2014),
∗∗potentially abrogated by TCR gene editing.
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option is the combination of ACT with T-cell engaging bispe-
cific antibodies, which target T-cells and tumor cells (Topp et al.,
2014).

Since suicide gene therapy for HSCT has demonstrated
the potential to safely balance GvT and GvHD, it is rea-
sonable to think that the implementation of a suicide gene
in CAR-redirected T-cells may help mitigating their risks,
while preserving their therapeutic effects (Casucci et al., 2013).
Although TCR- and CAR-redirected T-cells are in general
well tolerated (Table 2), their broader use requires having
solid strategies to treat or, better, prevent on-target, off-tumor
effects and cytokine storms. Applying suicide gene modifi-
cation to TCR- and CAR-redirected T-cells may therefore
greatly increase their safety profile and facilitate their clin-
ical development (Hoyos et al., 2010; van Loenen et al.,
2013).

Moreover, the implementation of a pre-established suicide
system represents an efficient method to control survival and
avoid systemic toxicity of genetically modified mesenchymal
stem cells (MSCs) and hematopoietic stem cells (HSCs; De
Palma et al., 2003; Bourgine et al., 2014). MSCs, ideally suit-
able for the immunomodulatory properties and in regenerative
medicine, are also promising vehicle for targeted cancer gene
therapy because of their potential tumor tropism (Choi et al.,
2012; Lee et al., 2013). Innovative approaches are thus revisit-
ing the mythic trojan horse concept to carry therapeutic nucleic
acids to pathologic tumor site (Collet et al., 2013). More consol-
idated is the use of HSCs for the cell and gene therapy of several
inherited and acquired diseases. HSC therapy using retroviral or
lentiviral vectors is a promising approach to provide life-long
correction of genetic defects, successfully applied to severe com-
bined immunodeficiency-X1, ADA-SCID, adrenoleukodystro-
phy, β-thalassemia, Wiskott–Aldrich-syndrome, and metachro-
matic leukodystrophy (Larochelle et al., 1996; Cavazzana-Calvo
et al., 2000; Aiuti et al., 2002; Frittoli et al., 2011; Aiuti et al.,
2013; Biffi et al., 2013). However, genetic modification with
viral vectors in general and stable integration of the therapeu-
tic gene into the host cell genome bear safety concerns; in
particular, insertional mutagenesis by enhancer mediated dys-
regulation of neighboring genes or aberrant splicing is still a
major issue (Kohn et al., 2013). To alleviate the risks related to

the persistence and potential genotoxicity of such cellular ther-
apies, the inclusion of a suicide gene to ablate gene-modified
cells has been undertaken in some cases (Gschweng et al.,
2014).

Furthermore, new and emerging area could benefit from the
suicide gene approach. During the last decade considerable clin-
ical progress has been achieved in allogeneic HSCT for hemato-
logical disorders, generating interest in extending its application
to non-malignant disorders (i.e., thalassemia, aplastic anemia;
Bernardo et al., 2012). Allogeneic HSCT can provide long-term
disease control also in immune-mediated neurological diseases,
and a durable clinical remission was reported after allogeneic
HSCT in two patients suffering from severe forms of neuromyeli-
tis optica, suggesting HSCT as a treatment option for patients
with aggressive and refractory forms of the disease (Greco et al.,
2014). In this peculiar setting, the incorporation of an inducible
suicide gene and its pharmacologic activation in case of GvHD,
to efficiently eliminate gene-modified T-cells, could potentially
increase the safety and extend the application of allogeneic HSCT
also in non-malignant diseases.

In conclusion, advances in the understanding of the T-cell
biology and T-cell engineering have provided multiple novel
adoptive transfer strategies to maximize cure, that are now poised
for translation into clinical trials, safely and easily managing
possible toxicities with the suicide gene strategy.
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