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ABSTRACT
Noninvasive neuroimaging is a powerful tool for quantifying diverse aspects of brain structure and function in vivo,
and it has been used extensively to map the neural changes associated with various brain disorders. However, most
neuroimaging techniques offer only indirect measures of underlying pathological mechanisms. The recent develop-
ment of anatomically comprehensive gene expression atlases has opened new opportunities for studying the tran-
scriptional correlates of noninvasively measured neural phenotypes, offering a rich framework for evaluating
pathophysiological hypotheses and putative mechanisms. Here, we provide an overview of some fundamental
methods in imaging transcriptomics and outline their application to understanding brain disorders of neuro-
development, adulthood, and neurodegeneration. Converging evidence indicates that spatial variations in gene
expression are linked to normative changes in brain structure during age-related maturation and neurodegeneration
that are in part associated with cell-specific gene expression markers of gene expression. Transcriptional correlates
of disorder-related neuroimaging phenotypes are also linked to transcriptionally dysregulated genes identified in
ex vivo analyses of patient brains. Modeling studies demonstrate that spatial patterns of gene expression are involved
in regional vulnerability to neurodegeneration and the spread of disease across the brain. This growing body of work
supports the utility of transcriptional atlases in testing hypotheses about the molecular mechanism driving disease-
related changes in macroscopic neuroimaging phenotypes.

https://doi.org/10.1016/j.bpsgos.2021.10.002
The advent of magnetic resonance imaging (MRI) ushered in a
new era of biological psychiatry, arming researchers with a
powerful tool for studying the neural correlates of mental
illness noninvasively. Thousands of research articles published
in the intervening years have shed important light on the dis-
ruptions of brain structure and function that occur in associ-
ation with a diverse range of psychiatric disorders. However,
owing to the limited spatiotemporal resolution of current MRI
methods and the biophysical properties of the acquired sig-
nals, the resulting imaging-derived phenotypes (IDPs) often
represent indirect proxies for the cellular and molecular pro-
cesses that ultimately drive disease pathophysiology. As a
result, in vivo neuroimaging is an excellent tool for mapping
where changes occur in the brain and at which specific stage
of disease, but it can offer only limited insight into the physi-
ological mechanisms that underpin these changes.

Over the past 2 decades, imaging genetics has offered a
means for studying the molecular basis of disease-related
IDPs. A growing body of evidence indicates that genetics
plays a substantial role in shaping how the brain is organized
(1–7). Heritability studies show that a range of IDPs are highly
heritable (6,8–12) and genome-wide association studies
(GWASs) have begun to identify robust links to DNA variation
(13–16), uncovering hundreds of associations between single
nucleotide polymorphisms and diverse measures of brain
structure, function, and connectivity (13–15,17,18). The gen-
eral assumption is that DNA variants implicated in GWASs or
variants in linkage disequilibrium affect protein expression and/
or function, thereby influencing cellular form and physiology to
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give rise to phenotypic variability. However, multiple factors
can influence the transcriptional activity of a gene and the
subsequent abundance of its protein product (19–21), meaning
that allelic variations of DNA can be somewhat distant from the
molecular mechanisms influencing a particular phenotype.
Studies of gene expression can more directly interrogate the
transcriptional activity of genes, as measured in postmortem
specimens. Because of the complexities of tissue curation,
processing, and analysis, such investigations have historically
been limited to small subsets of brain regions, precluding an
opportunity to link disease-related changes in gene expression
to brainwide IDPs. Over the past decade, advances in high-
throughput tissue processing and analysis pipelines have
facilitated the development of brainwide gene expression
atlases (22,23), opening new opportunities to investigate how
the spatial patterns of gene expression relate to anatomical
variations in brain structure and function in both health and
disease [for a review, see (3)]. Of particular relevance to psy-
chiatry, this emerging field of imaging transcriptomics makes it
possible to generate and test hypotheses about the tran-
scriptional correlates of disease-related changes in IDPs,
offering a bridge between molecular organization and macro-
scale measures of brain dysfunction.

In this review, we consider how imaging transcriptomics can
shed light on putative pathophysiological mechanisms in
psychiatric disorders, primarily focusing on studies using
brainwide gene expression data derived from the Allen Human
Brain Atlas (AHBA), which offers the most anatomically
comprehensive expression atlas. We first provide an overview
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of some fundamental methods in the field and then examine
applications of these methods to understand neuro-
development, neuropsychiatric illness, and neurodegeneration.
These studies indicate that regional gene expression patterns
are related to normative changes in brain structure during age-
related maturation and neurodegeneration. Genes related to
synaptic signaling, metabolism, and other neurobiologically
relevant categories are consistently associated with clinical
alterations in neuropsychiatric disorders. Disorder-associated
expression signatures tend to involve transcriptionally dysre-
gulated genes in postmortem brain tissues of patients. More-
over, spatial patterns of gene expression play a role in both
regional vulnerability to neurodegeneration and the spread of
neurodegeneration across the brain. Finally, we discuss some
methodological challenges and consider future directions for
the field.
A
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D

Figure 1. Approaches for relating gene expression to neuroimaging data.
(A) Transcriptional atlas data can be collated into a region 3 gene matrix,
from which different estimates of gene expression can be quantified. In this
example, the regional expression profile of any given gene, indicating the
spatial patterning of the gene’s transcriptional activity, corresponds to a
single column of the matrix. A given region’s expression profile across genes
corresponds to a row of the matrix. Correlated gene expression is therefore
calculated by correlating pairs of rows (resulting in region 3 region similarity
matrix), while gene coexpression is calculated by correlating pairs of col-
umns (resulting in gene 3 gene similarity matrix). (B) When applied to brain
disorders, spatial maps of a given IDP measure in cases and controls are
compared to yield some kind of difference map. This difference map is then
correlated (C) with the spatial maps of each gene (D) in a hypothesis- or
data-driven method. Genes associated with high spatial correlations to the
difference map represent transcriptional correlates of the IDP. IDP, imaging-
derived phenotype.
FUNDAMENTAL METHODS OF IMAGING
TRANSCRIPTOMICS

Brainwide imaging transcriptomic studies rely on transcrip-
tional atlases that assay gene expression across multiple lo-
cations in the brain. The methods available for quantifying
gene expression depend on a range of factors, including the
organism of interest, tissue availability, and the required spatial
resolution. In smaller species such as mice, for which speci-
mens are more readily available, gene expression can be
measured using in situ hybridization (23) in which the tran-
scriptional activity of each gene is measured in separate tissue
samples at a cellular resolution. Tissue availability in humans is
very limited and bulk tissue microarray (24) remains the most
accessible method for high-throughput spatial transcriptomics
(22). With microarray, the expression levels of thousands of
genes are quantified simultaneously using a single tissue
sample. The AHBA provides the most anatomically compre-
hensive gene expression data for the human brain, quantifying
expression levels of more than 20,000 genes in 3702 different
regions using microarray (22). Although atlases for develop-
mental (25) and human-specific spatiotemporal gene expres-
sion patterns (26) are also available, the spatial coverage of
these atlases is much sparser compared with that of AHBA,
extending across only 16 brain regions [for an overview of
different gene expression atlases, see (27)]. The AHBA there-
fore represents the most readily accessible resource for linking
measures of gene expression to a given brainwide IDP.

Several considerations about the AHBA must be borne in
mind. First, the atlas comprises data from only 6 individuals,
with the majority of samples derived from the left hemisphere,
precluding detailed investigations of individual variability in
regional gene expression and the lateralization of expression
patterns across hemispheres. While it appears that expression
differences are greater across regions than between people
(28), the full extent and functional significance of interindividual
variation in gene expression remains unclear. Second, all
measures are derived from adult brains, with donors ranging in
age from 24 to 57 years; variations in expression may therefore
be related to the myriad endogenous and exogenous factors
that can influence transcriptional activity throughout life (29).
While many genes show neotenous patterns of expression
(30), many others show marked changes in transcriptional
320 Biological Psychiatry: Global Open Science October 2022; 2:319–
activity across the life span (31). These changes can be
tracked for some brain regions through developmental gene
expression atlases (25,32), but our understanding of regional
differences in the transcriptional dynamics of different genes
remains incomplete. Third, as gene expression in the AHBA is
assayed using bulk tissue microarray, regional differences in
gene expression could reflect variations in the cellular, func-
tional, or anatomical composition of that region. Single-cell
transcriptomics offers a way of disentangling these contribu-
tions, but the anatomical coverage of these atlases remains
limited in comparison (33–35). Finally, the relationship between
the transcriptional and translational activity of a gene is com-
plex and influenced by multiple factors (36,37). It is ultimately
the latter that determines protein form and abundance and
thus cellular function. Transcriptional atlases thus offer an in-
direct marker of more proximal molecular drivers of phenotypic
variation.

Three main categories of analyses are performed in imaging
transcriptomics (Figure 1A). One focuses on regional gene
expression patterns and aims to identify correlations between
spatial variations in gene expression and anatomically defined
IDPs across spatial locations (38,39). A second category of
analyses considers correlated gene expression (CGE), which
quantifies the transcriptional similarity between pairs of regions
across a set of genes. CGE can then be related to IDPs defined
at the level of pairs of brain regions, such as measures of
structural or functional connectivity (8,40–42). A third analysis
331 www.sobp.org/GOS
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category examines gene coexpression, which quantifies the
similarity of spatial expression profiles between pairs of genes,
resulting in a gene 3 gene matrix. Statistical summaries of
these gene 3 gene matrices, such as eigengene measures
of coherent subsets of coexpressed genes, have been
computed and related to IDPs (43,44). Note that in the litera-
ture, “gene coexpression” has also been used to refer to
analyses of CGE (41,45).

An important consideration in any of these analyses is that
both neuroimaging and transcriptional measures typically
exhibit some degree of spatial autocorrelation, meaning that
values in different brain regions are not independent of each
other. This spatial autocorrelation commonly takes the form of
a dependence between regional expression values that decays
with distance, such that regions physically closer to each other
have values that are more highly correlated than pairs of
distant regions (46,47). This dependence must be accounted
for to ensure valid inference, and multiple approaches have
been used (8,41,46,48–52). A comprehensive comparison of
the efficacy of some of these approaches is provided by
Markello and Misic (53).

Imaging transcriptomics has been most commonly
deployed in clinical contexts to investigate associations at the
level of brain regions. More specifically, these analyses involve
comparing a spatial map that quantifies case-control differ-
ences in a given IDP to the spatial expression pattern of each
gene in either a hypothesis-driven or data-driven way
(Figure 1B). Hypothesis-driven analyses typically focus on
specific sets of genes identified a priori, whereas data-driven
approaches aim to identify patterns across thousands of
genes, which involves scoring each gene based on its asso-
ciation with a given phenotype, using either mass univariate,
gene-specific analyses or multivariate approaches that relate
IDPs to linear combinations of genes (39,41,42,54,55). Based
on experimental and theoretical evidence, genes have been
grouped according to their biological and molecular functions,
making it possible to test for the enrichment or over-
representation of certain classes of genes using established
annotation systems such as the Gene Ontology (GO) (56) or the
Kyoto Encyclopedia of Genes and Genomes (57) through gene
category enrichment analysis (GCEA). A range of statistical
methods have been developed to accommodate different
implementations of these analyses. For instance, when
continuous gene scores are used, GCEA tests whether a
summary score for each category is higher than expected,
given some null distribution (58). Over-representation analysis,
in contrast, is used for thresholded lists of genes, when the
purpose of the analysis is to determine whether there are any
gene sets that are statistically over-represented in that list
compared with chance. Appropriate null models for such an-
alyses are an active area of development (49,52,59). In a recent
study, Fulcher et al. (59) showed that standard null models can
dramatically inflate false positive rates across GO categories.
We discuss some of these issues in more detail below, but
the caveats are important to keep in mind when interpreting
the findings presented in the literature. A further complication
is that the gene expression data must be processed before
they can be related to imaging measures. This processing
involves multiple steps, each requiring choices between
different processing options (60) that can have a substantial
Biological Psychiatry: Global O
effect on the final results (50,61). The recently developed
abagen toolbox can assist in running consistent workflows
(61).
NEURODEVELOPMENT AND ITS DISORDERS

Age-related changes in cortical structure and function are
associated with normal brain development (62–64), with
cortical thinning being regarded as a morphological hallmark of
cortical maturation (65,66). Brainwide changes in cortical
thickness, mostly involving cortical thinning, are also associ-
ated with a range of psychiatric disorders (67–70). Cortical
thickness differences observed in many neurodevelopmental
disorders, including schizophrenia, are thus often thought to
arise from altered trajectories of brain maturation (71,72).
These cortical thickness changes may be driven by changes to
neuronal and/or synaptic size and/or density or the myelination
of fibers penetrating the cortical mantle (73).

To shed light on the molecular correlates of brain changes
that occur in both normal and aberrant neurodevelopment,
imaging transcriptomic studies have used the expression
profiles of specific cell-type marker genes to identify cellular
corelates of these IDPs. The expression levels of cell-specific
marker genes have been shown to act as indirect proxies for
the relative abundance and/or function of each cell type
(74,75). A correlation between the cell-type marker and the IDP
is regarded as implicating that cell type in relation to the
phenotype, but such correlational relationships should be
interpreted with some caution. Indeed, while the relationship
between gene expression and cell abundance for some cell
types is very strong, not all cell-type markers demonstrate the
same degree of correspondence (76).

One analysis of cell-type markers found that regional vari-
ations of the magnetization transfer ratio (MTR), which is
commonly used to index myelin content (77), are associated
with CA1 pyramidal and ependymal cells, but not myelination,
in mid-adolescence (mean age = 14 years) (78). Considering
that the CA1 pyramidal gene set is enriched in genes that are
also related to dendritic organization, the authors suggest that
variations in the MTR across the brain could be related to
regional differences in dendritic arborization. Subsequent lon-
gitudinal changes in the MTR from mid-to-late adolescence,
however, were related to the expression of oligodendrocyte
cell markers and genes involved in myelination (78). The
involvement of oligodendrocyte cell markers in age-related
cortical myelination was further confirmed in a detailed longi-
tudinal investigation (79). In particular, oligodendrocyte gene
markers were associated with age-related decreases in the
ratio of myelination across the cortical depth, suggesting
accumulation of myelin in mid-to-deep layers of the cortex.
Similar associations implicating oligodendrocyte and
neurotransmission-related genes were found in relation to
changes in both the MTR and cortical thickness between 14
and 24 years through the partial least squares (PLS) regression
(55). The fact that a single PLS component demonstrated as-
sociations with both measures implies that cortical myelination
and thinning may act together as mechanisms of cortical
consolidation that are at least in part driven by genes with
correlated expression patterns. Other studies, conducted both
cross-sectionally and longitudinally, indicate that
pen Science October 2022; 2:319–331 www.sobp.org/GOS 321
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transcriptional markers of astrocytes, microglia, and CA1 py-
ramidal cells are linked to a thicker cortex in young individuals
and enhanced cortical thinning later in life, as shown in
Figure 2A (80,81). This suggests that changes in cortical
thickness across the life span are closely tied to the expression
levels of these genes. Dendritic spine- and dendrite-related
genes show associations with cortical thinning in late child-
hood (9–12 years) and late adolescence (17–19 years),
whereas myelin-specific genes were related to cortical thinning
in midadolescence (12–15 years) (82). Moreover, the
Figure 2. Transcriptional correlates of neurodevelopment and neurodevelopme
degree of cortical thinning per year) throughout life and gene expression in each o
circles) were identified for astrocyte, microglia, and CA1 pyramidal cell markers.
(characterized by the loss of the X chromosome) and chromosome ranking from a
latent variable linking gene expression with regional morphometric similarity chang
which is consistent with the chromosomal deletion known to cause the disorder.
Left: differences in cortical thickness, surface area, and subcortical volumes in AD
d corresponds to decreases in a particular measure in patients with ADHD vs. con
expression of genes involved in apoptosis, autophagy, neurodevelopment, neurot
neurodevelopment-related genes demonstrate significant negative associations
brain volume in patients with ADHD. Panel (A) adapted with permission from
permission from (85). ADHD, attention-deficit/hyperactivity disorder; CA, cornu
Genetics through Meta Analysis; LCBC, Center for Lifespan Changes in Brain an
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directionality of the relationship changed over time such that in
early maturation, regions with higher expression of those
genes showed greater cortical thinning; in later stages, greater
cortical thinning was observed in regions with lower expres-
sion. Multivariate analyses have further indicated that accel-
erated cortical thinning during the period from 3 to 21 years is
associated with increased expression of gene markers for
inhibitory and excitatory neurons, in addition to genes linked to
synaptic remodeling and neurodevelopment, mood, and
addiction disorders (83). The spatial expression patterns
ntal disorders. (A) The relationship between cortical thinning profile (i.e., the
f 9 cell types. Both in early and late life, significant associations (indicated by
(B) Regional morphometric similarity change observed in Turner syndrome
PLS analysis, based on the median rank of gene loadings on a PLS-derived
e. The chromosomal gene set for the X chromosome shows the lowest rank,
(C) Correspondence between brain changes in ADHD and gene expression.
HD as identified by the ENIGMA Consortium, where larger positive Cohen’s
trol subjects. Right: the relationship between regional brain volumes and the
ransmission, and oxidative stress-related genes. Apoptosis, autophagy, and
such that higher expression of those genes is associated with reductions in
(81). Panel (B) adapted with permission from (39). Panel (C) adapted with
ammonis; CNV, copy number variant; ENIGMA, Enhancing Neuro Imaging
d Cognition; PLS, partial least squares.

331 www.sobp.org/GOS

http://www.sobp.org/GOS


Imaging Transcriptomics of Brain Disorders
Biological
Psychiatry:
GOS
across different gene groups can explain a large proportion of
variation in average cortical thickness across regions, ac-
counting for up to 70% early in life (80).

A recent study of different neurogenetic conditions has shown
the potential power of imaging transcriptomics for identifying
pathophysiologically relevant links between IDPs and spatial
gene expression patterns. The conditions considered are caused
by well-localized genomic copy number variations, including
Turner syndrome, velocardiofacial syndrome, Down syndrome,
Wilms tumor2aniridia syndrome, and sex chromosome aneu-
ploidies (XXX, XXY, XYY, XXYY) (39). The distinct gene sets
defining each of these conditions are known, leading to clear
hypotheses about which specific genes should show correlated
expression patterns with macroscale imaging measures of brain
pathology. In this particular analysis, the authors focused on the
average morphometric similarity (MS) of each region to all other
brain areas, with MS defined as inter-regional correlations
across multiple imaging measures of regional neuroanatomy
and microstructure (39). The analysis revealed that regional
differences in MS between cases and controls were related to
the specific spatial expression of causal genes for each disorder
(Figure 2B). Similar approaches have been applied to neuro-
developmental disorders with more complex genetics, such as
attention-deficit/hyperactivity disorder (ADHD) and autism
spectrum disorder (ASD). Measures of ADHD-associated de-
creases in subcortical volume, cortical thickness, and surface
area, estimated in 2 large samples through analysis of ENIGMA
(Enhancing Neuro Imaging Genetics through Meta Analysis)
Consortium data, were consistently associated with genes
implicated in apoptosis and autophagy pathways, such that
higher expression of those genes corresponded to stronger de-
creases in these brain measures (84,85) (Figure 2C). Moreover,
cell deconvolution analysis, which aims to infer cell-type abun-
dance from gene expression levels, identified that smaller regions
had elevated levels of astrocytes and oligodendrocyte progenitor
cells, implying a compensatory response of glial cells (85). In
ASD, two separate studies provide convergent evidence that
changes in both cortical thickness (86) and regional volumes (87)
are related to the expression of genes that are transcriptionally
downregulated in ASD postmortem cortical tissue. In addition,
the regional distribution of cortical thickness alterations observed
in ASD was also associated with synaptic transmission genes
(86), whereas changes in regional volumes were associated with
nervous system and ion transport–related genes (87).

Together, this work indicates that developmental alterations
in cortical properties are associated with the expression of cell-
type marker genes, supporting a link between cellular prop-
erties and macroscale phenotypes measured using noninva-
sive brain imaging. In particular, the analyses of neurogenetic
conditions with known genetic origins serve as evidence for
the utility of imaging transcriptomics for investigating the ge-
netic correlates of disorder-associated changes.
PSYCHIATRIC DISORDERS

Cell-type marker gene analyses have also been applied to
study disorders with onset later in life. Using data from the
ENIGMA Consortium, one study found that the spatial
patterning of cortical thickness differences between cases and
controls for six psychiatric disorders, including ADHD, ASD,
Biological Psychiatry: Global O
major depression, obsessive-compulsive disorder, bipolar
disorder, and schizophrenia, is consistently related to the
regional expression of transcriptional markers for CA1 pyra-
midal cells, astrocytes, and microglia (88). These same cell-
specific groups of genes have been associated with cortical
thickness across the life span (80,81), pointing to shared ge-
netic mechanisms linking neurodevelopmental and adult psy-
chiatric disorders.

More specific investigations into individual psychiatric dis-
orders have identified the involvement of neurobiologically
relevant and disorder-associated genes. For example, half of
the genes implicated in schizophrenia through GWASs were
correlated with deviations in regional gray matter volume be-
tween cases and controls (89). Consistent with the hypothe-
sized neurodevelopmental origins of schizophrenia (90), the
same set of genes was also enriched for chemical synaptic
transmission, central nervous system development, and cell
projection, categories that are linked to both connectivity and
developmental processes. Interneuron-related dysfunction has
been regarded as one of the core features of psychopathology
in schizophrenia (91). In line with this hypothesis, polygenic risk
for schizophrenia has been shown to be significantly enriched
for genes demonstrating spatial coexpression to PVALB
genes, one of the core markers for interneurons that demon-
strates a characteristic spatial variability correlated with vari-
ations in functional MRI signal amplitude across the brain (92).
Extending the link to nonclinical populations, schizotypy-
related regional MTR variations show associations with
genes involved in neuronal affiliation, astrocytes, and micro-
glia, which are transcriptionally dysregulated in postmortem
schizophrenia studies (93). These results indicate that genes
involved in neurodevelopment and synaptic function are
related to macroscale brain changes in schizophrenia.

Other work has focused on various aspects of brain con-
nectivity, in line with the dysconnectivity hypothesis of
schizophrenia (94,95). Connectivity can be assessed indirectly,
using MS networks (96) or structural covariance networks,
which quantify inter-regional coupling of morphometric mea-
sures such as gray matter volume or cortical thickness (97–99),
or more directly, using diffusion MRI (100,101) [see also (94)].
Regional mean MS differences between cases and controls
have been linked to the expression of genes regulating syn-
aptic signaling, nervous system development, and the ade-
nylate cyclase–modulating G protein–coupled receptor
signaling pathway that is responsible for changes in the con-
centration of cAMP (cyclic adenosine monophosphate), a
molecule used in intracellular signal transduction (102)
(Figure 3A). Moreover, genes that were overexpressed in re-
gions with reduced MS were significantly upregulated in
postmortem studies of schizophrenia, suggesting a tight
coupling between ex vivo measures and the transcriptional
correlates of IDPs measured in vivo. Regional white matter
dysconnectivity in schizophrenia, quantified with diffusion MRI,
was significantly correlated with the spatial profile of
schizophrenia-related genes identified through the same
GWAS (38), providing a direct link between structural risk
variants, gene expression, and macroscale alterations of
connectivity in the disorder. Notably, connectivity changes in
bipolar disorder were associated with the expression of risk
genes implicated in bipolar disorder, but not schizophrenia,
pen Science October 2022; 2:319–331 www.sobp.org/GOS 323
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Figure 3. Transcriptional correlates of brain changes in neuropsychiatric disorders. (A) Gene expression profiles are associated with morphometric similarity
differences between psychosis cases and controls. Cortical maps represent regional PLS1 scores (right) and case-control differences in morphometric
similarity. (B) Associations between the cortical gene expression of SST interneurons, CORT, and NPY and reduced GBC in depression. The scatter plot
represents the relationship for SST genes; regression lines represent relationships for all 3 gene markers. Panel (A) adapted with permission from (102). Panel
(B) adapted with permission from (105). CORT, cortistatin; GBC, global brain connectivity; NPY, neuropeptide Y; PC1, first principal component; PLS, partial
least squares; SST, somatostatin.
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suggesting some level of diagnostic specificity to these as-
sociations. There is also some evidence that these genes are
specifically linked to diffusion MRI IDPs, given that they have
shown only weak associations with other measures (103).

Studies of major depressive disorder have consistently
identified links between IDPs and the spatial expression
pattern of genes that are also transcriptionally dysregulated in
postmortem studies. Li et al. (104) used multivariate analysis to
identify linear combinations of almost 3000 genes enriched in
synapse-related terms and other neurobiologically relevant
categories that were related to regional case-control differ-
ences in MS. Thirty-four of those genes were also transcrip-
tionally dysregulated in postmortem tissues, mirroring previous
findings (93,105). These associations were specific to
depression and not evident for genes dysregulated in other
psychiatric disorders (104). Functional MRI analysis has
revealed that temporal fluctuations in regional signal homo-
geneity are linked to the expression of several neurobiological
gene categories that include synaptic signaling, metabolism,
central nervous system development, and neurodegenerative
disease (106). Hypotheses including interneuron and glial
dysfunction, changes in glutamatergic signaling, and broader
dysregulation in apoptotic stress and neuroinflammation-
related pathways have been proposed to underlie neurobio-
logical substrates of depression (107–109). In particular,
dysfunction of cortical interneurons and astrocytes, which
express the neuropeptide somatostatin, have been suggested
to affect the disease onset (107,109,110). One study identified
spatial correlations between transcriptomic markers of so-
matostatin interneurons and regional variations in resting-state
functional amplitude, mean regional strength of functional
connectivity, and cortical thickness linked to a history of
depression and negative affect across 3 large-scale neuro-
imaging cohorts, supporting a role for cortical somatostatin
interneurons in depression-related brain changes (105)
(Figure 3B). Moreover, these depression-related changes in
324 Biological Psychiatry: Global Open Science October 2022; 2:319–
anatomical and functional maps were correlated with the
spatial expression pattern of genes downregulated in post-
mortem specimens from patients. Such associations were not
found for other psychiatric disorders, again supporting the
specificity of these links between imaging and transcriptional
measures (105).

In summary, across different psychiatric disorders and im-
aging modalities, genes that are spatially correlated with
disorder-related changes in brain structure or function tend to
overlap with genes that are transcriptionally dysregulated in
postmortem samples derived from clinical populations and/or
genes implicated in disease risk by large-scale GWASs. While
there is evidence of diagnostic specificity in some of these
associations, some transcriptional correlates are consistent
across disorders and may reflect common genetic influences
on disease risk (88).
NEURODEGENERATION AND ASSOCIATED
DISORDERS

Neurodegenerative diseases, such as Huntington’s disease
(HD), Alzheimer’s disease (AD), and Parkinson’s disease (PD),
are associated with characteristic neurodegenerative patterns
(111–113) that are linked to the accumulation of particular
neurochemical agents such as amyloid-b protein and tau in AD
and a-synuclein in PD (111). Transcriptional atlas data can be
used to identify the molecular correlates of regional vulnera-
bility to disorder-specific neurodegeneration and help under-
stand how the disease spreads across the brain. For instance,
HD is caused by a mutation in the single gene, HTT (114), but
imaging transcriptomics has begun to shed light on other
potential molecular pathways related to brainwide dysfunction
in the disorder, given evidence that degeneration of cortico-
striatal and interhemispheric connectivity in premanifest HD
has been associated with the spatial expression patterns of
genes related to chemical synaptic transmission and cell
331 www.sobp.org/GOS
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projections, with the genes most strongly linked to the IDPs
also being transcriptionally dysregulated in postmortem
studies of patients (115).

In comparison with HD, the genetic mechanisms underlying
risk for AD are more complex (116). Cell-type specific marker
analyses indicate that decreases in cortical thickness in pa-
tients with AD compared with that in healthy subjects are
linked to the expression of the same cell-specific gene groups
that are involved in both age-related changes in cortical
thickness and psychiatric disorders, namely, CA1 pyramidal
cells, microglia, and astrocytes (Figure 4A). Moreover, genes
that were coexpressed with microglial genes were significantly
enriched for AD risk, providing a direct link to the etiology of
the disease and implying a critical role for neuroinflammation
(81). One study first identified spatial clusters of voxels that
showed reduced volume in people carrying a higher number of
AD risk alleles (117). These reductions were then investigated
in relation to the expression patterns of genes that are in close
proximity to AD risk loci, resulting in a set of 216 genes.
Figure 4. Gene expression is related to neurodegeneration and neurodegenerat
in AD. Correlation distributions quantifying the relationship between cell-specific
types and cortical thickness reductions in AD (patients with AD vs. HCs; AD vs. M
correlation coefficients. Vertical black line denotes the average correlation coe
empirical null distribution. (B) Gene expression is associated with cortical iron d
represent QSM scores and regional linearly weighted sum of gene expression s
across the brain: misfolded a-synuclein propagates via structural connections;
estimated from patients with Parkinson’s disease. Simulated and empirical atrop
lation, r = 0.63, p = 2 3 1025). Panel (A) adapted with permission from (81). Pane
from (132). a-syn, a-synuclein; AD, Alzheimer’s disease; CA, cornu ammonis; DBM
impairment; PLS, partial least squares; QSM, quantitative susceptibility mapping

Biological Psychiatry: Global O
Although only 5 of those genes showed significant associa-
tions with the volumetric reductions, 3 of them (MEF2C, CLU,
and SLC24A4) were previously identified as AD risk genes,
linking the spatial patterning of gene expression back to
structural risk variants.

Type 2 diabetes (T2D) is associated with increased risk for
AD (118). Nugent et al. (119) investigated the expression of
genes that are close to 46 T2D risk single nucleotide poly-
morphisms and found that the spatial expression patterns of
just 5 of these genes could explain more than 70% of variance
in regional glucose metabolism uptake in both healthy and
probable AD groups, thus demonstrating a link between risk
factors for T2D and glucose metabolism in both normal aging
and AD. Similar findings were demonstrated in PD, in which
regional expression of only 17 genes that were previously
implicated in the disease explained 42% of variance in regional
disease–related atrophy patterns (120). Regional gene
expression could also explain 20% of variance in quantitative
susceptibility mapping measures, which index iron deposition
ive disease spread. (A) Cell-specific marker association with cortical thinning
gene expression profiles for CA1 pyramidal, microglia, and astrocyte cell
CI; MCI vs. HC). Vertical axis denotes estimated probability density for the

fficient across all genes; shaded gray box indicates the 95% limits of the
ecomposition, quantified using QSM, in Parkinson’s disease. Cortical maps
cores defined by PLS2. (C) Schematic representation of pathology spread
simulated neuronal loss (atrophy) is compared against empirical atrophy,
hy patterns show a high level of spatial correspondence (Spearman corre-
l (B) adapted with permission from (121). Panel (C) adapted with permission
, deformation-based morphometry; HC, healthy control; MCI, mild cognitive
.
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(121) (Figure 4B). Genes associated with iron deposition were
transcriptionally dysregulated in postmortem specimens of
patients with PD, PD with dementia, and dementia with Lewy
bodies, pointing to common mechanisms that drive regional
susceptibility to neurodegeneration across diagnostic
categories.

Other hypothesis-driven work has supported the general
involvement of the tau protein in different neurodegenerative
conditions. Regional expression of the MAPT gene, which
codes for the tau protein, is associated with the severity of
neurodegeneration in AD (122) and has been linked to reduced
functional connectivity in patients with PD (123). At the same
time, the expression of APP, a gene that encodes amyloid
precursor protein, was associated with regional amyloid
burden but not neurodegeneration (122). Together, the results
from these 2 studies suggest that the spread of neuro-
degeneration in both AD and PD is primarily mediated by tau
pathology.

Multiple lines of evidence suggest that neurodegeneration
across disorders originates in a relatively small number of
susceptible regions and then propagates along axonal path-
ways (124–127). These spreading processes can be modeled
mathematically using various diffusion models simulated on an
underlying brain-network architecture (128–130). One such
model was used to predict the pathological seed regions and
pattern of disease spread in PD and then test the assumption
that transcriptional profiles of 67 PD risk genes derived from a
GWAS are associated with disease origination and progression
(131). The results indicated that the expression patterns of
those genes are related to the likelihood of a region being
identified as the initiation site for the pathology and are related
to early disease spread, but not the resulting regional atrophy
pattern. More specifically, the expression of several immune-
related (HLA-DQA1, HLA-DRB6, IL1R2) and lysosomal (GBA,
TMEM175) PD risk genes was most strongly associated with
seed regions consistent with a causal role of lysosomal
dysfunction and neuroinflammation in PD pathogenesis (131).
Another study proposed an agent-based S-I-R model in which
the agents are individual proteins that spread to affect different
regions in the network, leading to regions having the status of
either susceptible (S, yet to be infected), infected (I, capable of
transmitting the infection), or removed (R, no longer active in
disease spread), as shown in Figure 4C (132). Incorporating the
regional expression of SNCA and GBA genes, which are
involved in the synthesis and clearance of a-synuclein,
respectively, into the model improved the correspondence
between modeled and empirically observed atrophy patterns in
PD (132). Extending this agent-based model to include a factor
responsible for the transmission probability of pathological
agents, by incorporating the expression patterns of the LRRK2
gene implicated in the development of PD through the trans-
membrane transport, further improved model accuracy, sup-
porting a role of LRRK2 in modulating the propagation of
misfolded proteins (133). Transcriptional atlas data thus pro-
vide a principled way of constraining and parameterizing
models of dynamic processes in both health and disease [see
also (134)].

Together, studies of neurodegeneration highlight the role of
cell-specific and disorder-related genes in regional vulnera-
bility to neurodegeneration. Specifically, the involvement of
326 Biological Psychiatry: Global Open Science October 2022; 2:319–
CA1 pyramidal cells, microglia, and astrocytes is evident
across the life span, suggesting common mechanisms asso-
ciated with healthy development, aging, and clinical neuro-
degeneration. Differences in regional vulnerability to
neurodegeneration and subsequent spread of the disease are
also linked to the expression patterns of genes involved in
disease pathology. The integration of transcriptional atlas data
with models of network dynamics appears to be a particularly
fruitful avenue for testing different hypotheses about disease
evolution.
CHALLENGES FOR THE FIELD

The findings considered here highlight the potential of imaging
transcriptomics to identify the molecular correlates of clinically
relevant IDPs. However, the field is nascent, and several
methodological challenges must be overcome to ensure the
robustness of the findings. One such challenge is that the
transcriptional atlas data often require a degree of processing
before they are ready for analysis. The processing involves
several steps, including mapping of tissue samples to regions
of interest defined using a specified parcellation, selecting
representative gene probes to quantify the expression of a
gene, and accounting for gene expression differences between
donor brains. Some of these steps entail choices that can alter
resulting spatial expression maps and affect the final results
(50,60,61). Just as variations in the processing of neuro-
imaging data can affect final outcomes (135–139), different
choices in the processing of expression data can influence
one’s findings. Some of these choices have been investigated
in detail, leading to the proposal of recommended workflows
and open-source toolboxes (60,61).

A second challenge is related to the intrinsic spatial auto-
correlation of both gene expression and neuroimaging data.
This autocorrelation is such that regions that are in close
proximity to each other often exhibit more similar gene
expression profiles and IDP values (46,47,60,140,141).
Spatially autocorrelated patterns are prominent across spe-
cies, including in mouse (41,47) and human (42,60,142–144),
with gene expression correlations decaying approximately
exponentially with separation distance. Moreover, the corre-
lation length scales with brain size across mouse development
(47). The spatial autocorrelation of gene expression patterns
results in nonindependent spatial samples and thus requires
more careful statistical analysis than applying traditional sta-
tistical methods that assume independence. Accordingly,
studies that have used parametric statistical methods or
randomization approaches that do not preserve the intrinsic
spatial autocorrelation of the data will yield lenient estimates of
statistical significance and inflate the false positive rates (53).
Alternative null models, such as permutation-based proce-
dures that preserve the spatial structure of the data (48,51),
model-based techniques that generate surrogate data that
preserve spatial autocorrelation structure (46,49), or
regression-based measures that account for distance effects
(41) are required for valid significance testing between spatial
maps. Notably, the performance of different spatially con-
strained randomization techniques can depend on the
research context (53).
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A third challenge relates to characterizing the specificity
of any identified associations. Certain categories of genes
may be more likely to be identified as significantly enriched
because they have a spatial expression pattern that is
conserved across individuals. Although analyses of the
AHBA indicate that the variation in gene expression across
regions is greater than across individuals (28), the limited
number of specimens comprising the AHBA precludes any
opportunity for a detailed study of individual differences in
gene expression. Thus, while imaging transcriptomics
can offer a first approximation of molecular correlates of
anatomically varying IDPs, further investigation is required
to understand how such correlates vary across individual
brains. The specificity of findings in hypothesis-driven studies
should also be appropriately addressed to ensure that any
observed associations are not a by-product of correlations
with other genes. At a minimum, gene specificity should
be examined relative to randomly selected subsets of random
genes of the same size as the hypothesized set (52).
One recent study has demonstrated that even among the
associations (identified through linear regression) that survive
spatial null hypothesis testing, 42% are not specific
to selected genes but can be found for a wide range of
random genes, and only 5% of associations could surpass
both spatial and random gene nulls, suggesting that gene
and spatial specificity should be evaluated in tandem for
appropriate significance testing (52). Moreover, other proper-
ties of spatial gene expression, such as their tissue specificity
and the strength of coexpression between genes in a tested
set, need to be considered to provide a null distribution
that is adequate for evaluating the specificity of the relation-
ships between IDPs and brain-specific variations in gene
expression (52,59).

A fourth challenge concerns statistical inference in GCEA.
Traditional GCEA workflows were developed for the investi-
gation of individual tissue samples or structural DNA variation
and were not designed to deal with spatially embedded atlas
data. The approaches have nonetheless been used in virtually
all enrichment analyses in imaging transcriptomics studies
thus far. Under the traditional workflow, the statistical signifi-
cance of a gene category is computed with respect to a null
distribution generated by randomizing gene-to-category as-
signments. Fulcher et al. (59) showed that this approach, when
used to test for enrichment of correlations with random
brainwide phenotypic maps, can lead to a .500-fold average
inflation in the false positive rate across all GO categories. The
false positive bias is largely driven by gene-gene coexpression
within a category, such that categories containing genes with
more consistent expression patterns are more susceptible to
this bias. This effect is additionally modulated by gene-specific
variations in spatial autocorrelation properties. These issues
raise concerns regarding the validity of many enrichment
analyses that apply GCEA to transcriptional atlas data,
considering that GO categories with the highest false positive
rates tend to be related to brain function and, as shown by
Fulcher et al. (59), are among the most frequently reported in
the literature. One way to address this problem is to randomize
the IDP rather than the gene-expression data. Depending on
the hypothesis, it may be appropriate to randomize the IDP in
a way that accounts for its intrinsic spatial autocorrelation
Biological Psychiatry: Global O
[e.g., (49,53)]. With this approach, the number of significantly
enriched categories observed for several neural phenotypes
measured in human and mouse dropped considerably when
compared with the standard implementation; for example, 9 of
14 GCEA analyses performed by Fulcher et al. (59) yielded
significantly enriched GO categories under the conventional
null, whereas only 1 analysis revealed significant enrichment
under a random phenotype null, and none under a null using
random spatially autocorrelated phenotypes null. These re-
sults highlight the importance of performing enrichment ana-
lyses with respect to carefully designed null models and
indicate the need for caution when interpreting GCEA reports
in imaging transcriptomics.

CONCLUSIONS

Imaging transcriptomics has been applied in diverse clinical
settings across the lifespan. IDPs of neurodevelopmental
conditions have been linked to gene groups involved in cell
death and neuronal communication or those known to play a
causal role in the disorder. For disorders with later onset,
specific transcriptional correlates of IDPs are related to tran-
scriptionally dysregulated genes in clinical postmortem sam-
ples and genes implicated in disease risk by GWASs.
Transcriptional correlates of connectivity-related phenotypes
show some evidence of disorder specificity, whereas those
related to cortical thickness may be disorder general. In neu-
rodegeneration, the expression of pathology-related genes for
specific diseases is related to regional vulnerability and spread
of the disease.

As the field develops, we anticipate that the refinement of
existing methodologies will enable more robust and rigorous
inference. Functional genomics data derived from consortia
initiatives such as PsychENCODE have already provided
valuable information that can be incorporated into imaging
transcriptomics research, allowing the identification of brain-
expressed genes and cell-specific expression profiles (145).
Rapid developments in single-cell RNA sequencing have
already produced single-cell transcriptomic atlases of early
human brain development (146,147) and later life (148) with
increasing spatial coverage. Comparative transcriptomics
datasets further extend the scope for cross-species in-
vestigations identifying conserved and human-specific tran-
scriptional signatures (149). When coupled with increasingly
more comprehensive and precise transcriptional atlas data,
measured across more individuals and multiple points across
the life span, these methods will offer a powerful framework for
identifying the molecular correlates of disease-related brain
changes observed in vivo and thus for linking microscale
models of disease pathophysiology with macroscale measures
of brain dysfunction.
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