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Abstract
Pediatric neoplasms in the central nervous system (CNS) are the leading cause of cancer-related deaths in children. Recent 
developments in molecular analyses have greatly contributed to a more accurate diagnosis and risk stratification of CNS 
tumors. Additionally, sequencing studies have identified various, often entity specific, tumor-driving events. In contrast to 
adult tumors, which often harbor multiple mutated oncogenic drivers, the number of mutated genes in pediatric cancers is 
much lower and many tumors can have a single oncogenic driver. Moreover, in children, much more than in adults, fusion 
proteins play an important role in driving tumorigenesis, and many different fusions have been identified as potential driver 
events in pediatric CNS neoplasms. However, a comprehensive overview of all the different reported oncogenic fusion pro-
teins in pediatric CNS neoplasms is still lacking. A better understanding of the fusion proteins detected in these tumors and of 
the molecular mechanisms how these proteins drive tumorigenesis, could improve diagnosis and further benefit translational 
research into targeted therapies necessary to treat these distinct entities. In this review, we discuss the different oncogenic 
fusions reported in pediatric CNS neoplasms and their structure to create an overview of the variety of oncogenic fusion 
proteins to date, the tumor entities they occur in and their proposed mode of action.
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Introduction

Neoplasms in the central nervous system (CNS) account for 
the second most common cancer and are the leading cause of 
cancer related deaths in children [165]. However, overall sur-
vival and therapy response vary widely between and within 
different pediatric CNS tumor entities. Treatment options 
include resection followed by radio- and/or chemotherapy 
depending on the patient’s age. This intensive therapy often 
has detrimental and long-term side effects, while the overall 
survival remains low for many entities or subentities. This 
is partly due to the lack of molecularly stratified trials and 
entity specific treatments [162].

Pediatric CNS tumors comprise a vast and expanding 
spectrum of molecularly defined entities [137]. Histologi-
cally, these entities present with various morphological pat-
terns that are not unique for a single entity, thus complicat-
ing an accurate diagnosis based on standard histopathology 
alone. The need for a proper diagnosis together with the need 
for adequate targeted treatment options calls for identifica-
tion of specific driver events and genetic and molecular sig-
natures that better define tumor types. Molecular characteri-
zation by means of next generation sequencing (NGS) has 
added to the better understanding of these tumor signatures 
and has emphasized the oncogenic differences between pedi-
atric and adult cancers. While adult neoplasms have high 
numbers of somatic mutations, these often lack in pediatric 
neoplasms [236]. In contrast, pediatric tumors show a higher 
frequency of germline alterations, copy number alterations, 
and structural alterations such as enhancer hijacking events 
and gene fusions as possible oncogenic drivers [4]. While 
already being well-described in pediatric hematological neo-
plasms and sarcomas, fusion proteins are now also emerg-
ing as important oncogenic driver events in pediatric CNS 
neoplasms [7, 98, 109, 144, 147, 150, 176].
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Fusion genes in neoplasms

The first oncogenic fusion gene was already detected in the 
1980s in chronic myeloid leukemia, but it was not until the 
use of NGS technologies for detection of rearrangements 
in the cancer transcriptome that the majority of fusion 
genes has been detected [73, 114, 191, 203]. The chromo-
somal rearrangements causing these fusions can be either 
balanced or unbalanced. An unbalanced rearrangement is 
often the result of the deletion of part of a chromosome, 
which then combines two genes that were formerly sepa-
rated by an interstitial chromosomal segment. Balanced 
rearrangements can occur due to translocations, insertions, 
or inversions of chromosomal parts. Both balanced and 
unbalanced aberrations can occur between genes on the 
same chromosome (intra-chromosomal) as well as between 
genes on separate chromosomes (inter-chromosomal). 
These different types of rearrangements have been exten-
sively reviewed [148, 149].

The outcome of these rearrangements is either an 
altered expression of one of the gene products, or a new 
fusion product due to the combination of the transcripts 
of both genes. The first occurs when the coding sequence 
of one gene is placed next to the promoter sequence of 
another gene. Although this is not a fusion protein, it 
does lead to altered expression levels and is seen in, for 
example, medulloblastoma (e.g., DDX31–GFI1B), neuro-
blastoma (e.g., HAND2–MYC), multiple myeloma (e.g., 
PRDM1–MYC), Burkitt lymphoma (e.g., IG–MYC), embry-
onal tumor with multilayered rosettes (TTYH1–C19MC) 
and in the newly identified CNS neuroblastoma tumors 
with FOXR2 activation (e.g., JMJD1C–FOXR2) [2, 109, 
134, 161, 216, 253]. Such type of rearrangements are now 
known as enhancer hijacking events and will not be dis-
cussed in this review [161]. A new fusion product occurs 
when the promotor and 5′-coding region of one gene is 
fused with the 3′ coding region and UTR of the second 
gene, resulting in a chimeric transcript that can be trans-
lated into a fusion protein. Although many of these fusions 
have been identified on a RNA level, in this review we 
will address them as fusion proteins since their functional 
domains and protein functions are being discussed.

For this review, we present an overview of all chimeric 
proteins in pediatric CNS neoplasms that are either iden-
tified in two or more independent studies or for which 
additional molecular validation has been presented.

Chimeric proteins in pediatric CNS tumors

Fusion proteins have been reported in 43 different pediat-
ric CNS neoplasms. By totalling all fusions per entity, 171 
distinct fusion–entity combinations have been detected 
(Fig. 1a. Online Resource) [3, 8, 11, 13–15, 17, 19, 21–23, 
27, 28, 30, 33, 34, 36, 39, 40, 42, 44, 46, 47, 50, 58, 59, 
62–64, 66, 69, 70, 74, 76, 79, 81–87, 93, 96, 97, 99, 101, 
105–107, 111, 114–116, 119, 121, 127–129, 132, 133, 
135, 142, 145, 146, 154, 155, 157, 159, 162, 164, 167, 
169, 175–177, 180–182, 184, 189, 190, 192, 198, 201, 
202, 204–207, 210, 214, 216, 217, 221, 222, 225–229, 
235, 239, 240, 242, 244–246, 248–250, 252, 255]. These 
171 combinations exist of 110 unique 5’ and 3’ fusion 
partner gene combinations. The majority (66%; 73/110) 
of these unique fusions are entity specific (Fig. 1b), and 
their detection could aid diagnosis. For example, Yes1 
associated transcriptional regulator (YAP1)–MAMLD1 
fusions are restricted to supratentorial ependymoma (ST-
EPN). The remaining 37 (34%) fusion proteins have been 
detected in multiple (two to six) tumor types (Fig. 1a, b). 
Additionally, there are genes with multiple fusion partners 
such as neurotrophic receptor tyrosine kinases (NTRKs) 
and fibroblast growth factor receptors (FGFRs). However, 
the fusions with one of the partner genes may still be spe-
cific to a tumor type, while other fusion partners occur in 
multiple tumor types. With the ever-expanding sequencing 
of tumors, these unique fusion genes might be detected 
in the future in other tumor types as well. Furthermore, 
fusions that we have not included here due to their pres-
ence in only a single case might in the future be confirmed 
in other cases adding to the complexity of the fusion net-
work in pediatric CNS tumors.

Strikingly, most of the reported fusion proteins (89%; 
152/171) are observed in glial tumors, while only five (3%) 
fusions are present in sarcomas, two (1%) in embryonal 
tumors and 12 (7%) fusions occur in other CNS tumor 
diagnoses (Fig.  1c, Online Resource 1). Most of the 
well-known fusion proteins, such as KIAA1549–BRAF, 
are especially prevalent in pediatric low-grade gliomas 
(LGG). Thus we examined whether the 171 identified 
fusion–entity pairs represent more low-grade tumors, 
based on data extracted from the original reports where 
tumor types were graded according to the WHO grad-
ing system [136]. When we divide tumors into low grade 
(I–II) and high grade (III–IV), low-grade tumors (50%; 
85/171) harbor more fusions than high-grade tumors 
(40%; 69/171) (Fig. 1d). Since prevalence is not taken 
into account, it might be possible that overall, fusions 
are even more common in a certain tumor grade. For 
example, KIAA1549–BRAF has been detected in at least 
five different entities, however this fusion is reported in 
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70–80% of the pilocytic astrocytomas, making the fusion 
the most prevalent in grade I tumors [91, 112]. More than 
half of the reported unique fusions are inter-chromosomal 
(54%; 59/110) (Fig. 1e). However, due to the difficulties 

in detecting intra-chromosomal fusions, their incidence 
number might be underrepresented and might therefore 
increase with improved detection algorithms.

Fig. 1  Characteristics of fusion proteins observed in pediatric brain 
tumors. a Complete fusion partner network in pediatric CNS neo-
plasms. Green = N terminal partner, red = C terminal partner. Multi-
ple connecting lines indicate that fusions were identified in multiple 
tumor types. b The majority (73/110) of fusions have been observed 
in a single tumor type. 37/110 fusions have been detected in two or 
more tumor types. The tumor types are annotated as mentioned in 
the original publication, it might be possible that some tumor types 
have been wrongly diagnosed or that diagnosis was changed after this 
publication. This is not considered. c The majority (152/171) of the 

pediatric CNS tumors with fusions present are glial tumors. d Based 
on WHO classification there are slightly more pediatric CNS low 
grade (LG) tumors than high grade (HG) tumors with driving fusion 
proteins. The WHO classification is based on the original publication 
and/or the tumor type. e Fusions in pediatric CNS tumors are slightly 
more often the results of inter-chromosomal rearrangements than 
intra-chromosomal rearrangements. f Most of the fusion proteins have 
at least one partner that functions as a kinase. Most other fusions have 
at least one transcription factor
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For most of the unique fusion proteins (65%; 72/110), 
one partner is either a tyrosine or a serine/threonine kinase 
(Fig. 1f). Interestingly, these 72 fusions are comprised of 
12 different kinase genes, classified into seven kinase fami-
lies: (1) NTRK family (NTRK1–3), (2) Raf proto-oncogene, 
serine/threonine kinase (RAF) family (RAF1/BRAF), (3) 
FGFR family (FGFR1–3), (4) ALK receptor tyrosine kinase 
(ALK), (5) ROS proto-oncogene 1, receptor tyrosine kinase 
(ROS1), (6) MET proto-oncogene, receptor tyrosine kinase 
(MET), and (7) protein kinase C alpha (PRKCA) (Fig. 2a). 
PRKCA only accounts for one fusion–entity pair and will 
thus not be discussed further. In pediatric CNS neoplasms 
these 72 kinase fusions appear as 118 unique fusion–entity 
pairs, mainly in glial entities (97%; 114/118), except for 
some NTRK- (2%; 2/118), ALK- (1%; 1/118) and ROS1- 
(1%; 1/118) fusions that have been identified in non-glial 
tumors (Fig. 3a) [133, 145, 190].

We determined whether the different groups of kinase 
fusions have a preference towards a certain tumor type. 
Most are present in multiple different tumor types (Fig. 3b). 
However, ALK fusions mostly occur in infant hemispheric 
gliomas (IHG), while pilocytic astrocytomas are mainly 
characterized by BRAF and RAF1 fusions. Furthermore, 
no BRAF and RAF1 fusions were found in glioblastoma, 
which are characterized by fusions with NTRK, FGFR, MET 
or ROS1. In oligodendrogliomas there are mostly fusions 
with members of the FGFR family. Nonetheless, it should be 
kept in mind that there may be discrepancies due to updated 
nomenclature and differences in diagnostic methods and 
criteria used.

The 39 fusions lacking a kinase domain, representing 
53 fusion–entity pairs, are mainly observed in glial tumors 
(72%; 38/53) (Fig. 3a). However, they also occur in embry-
onal tumors (2%; 1/53), sarcomas (9%; 5/53) and other 
CNS tumor diagnoses (17%; 9/53). They cover a variety of 
fusion partners, including recurrent partners such as EWS 
RNA binding protein 1 (EWSR1), MYB proto-oncogene, 
transcription factor (MYB), and zinc finger translocation 

associated (ZFTA, formerly C11orf95) [15, 27, 33, 105, 
132, 176, 207, 226, 245, 255]. Instead of harboring kinase 
domains, these fusions are mostly characterized by tran-
scription factors and partners with a DNA binding domain, 
indicating that besides kinases, these are important partners 
in oncogenic fusions in pediatric CNS tumors.

Receptor Tyrosine Kinases and the MAPK 
pathway in CNS tumors

Ten of the 13 kinase families involved in fusion proteins 
are receptor tyrosine kinases (RTKs), while BRAF, RAF1 
and PRKCA serine/threonine kinases (STKs) are part of 
their downstream pathways (Fig. 2a). Under physiological 
conditions, RTKs, only activate the downstream pathways 
upon binding of extracellular growth factors, thereby induc-
ing proliferation, differentiation, and cell survival [20, 95]. 
In pediatric CNS neoplasms, mutations or fusions cause 
dimerization and cross-phosphorylation of the intracellular 
domain independent of this mitogenic signal. Therefore, 
the RTKs constitutively activate their downstream signal-
ing pathways, including the RAS/MAPK pathway. BRAF, 
RAF1 and PRKCA are all signaling through this pathway. 
During development, the RAS/MAPK pathway is important 
in cortex, midbrain and cerebellum formation [194, 197]. 
Its role in neurogenesis is especially interesting in regards 
to glial pathogenesis, considering that the cell-of-origin for 
gliomas is now proposed to be a neural stem cell or neural 
precursor instead of a post-mitotic glial cell [96, 130]. The 
exact mechanism how the RAS/MAPK pathway contributes 
to brain development is still controversial and potentially 
also depends on the spatial localization of the cell [25, 68]. 
Nonetheless, the RAS/MAPK pathway is often deregulated 
in gliomas [90, 91, 96, 98, 113, 128]. High-grade gliomas as 
well as low-grade gliomas are defined by aberrations in the 
pathway, although the aberrations differ between different 
entities. High-grade gliomas more often have aberrations 
in the upstream components such as the receptor tyrosine 
kinase NTRK, while the low-grade gliomas such as pilo-
cytic astrocytoma have more aberrations in the intracellular 
RAF kinases [90]. Genomic studies showed that almost all 
of the pilocytic astrocytomas bear an aberration in the RAS/
MAPK pathway without additional mutations or alterations 
[97, 179, 245].

Kinase fusions types

We have distinguished three different types of kinase fusion 
proteins. In the first type, the kinase domain of the RTK/STK 
is always retained. The RTK/STK is the C-terminal partner, 
meaning that the expression of the chimeric protein is driven 

Fig. 2  Fusion proteins are most common in the RAS/MAPK pathway. 
a Schematic representation of the RAS/MAPK, PI3K/AKT/mTOR 
and  JAK/STAT pathway. Kinases implicated in fusions in pediat-
ric CNS tumors are marked with a red dashed circle. Created with 
BioRender.com b Five common trends in fusion proteins observed in 
pediatric CNS tumors. I. C-terminal kinase protein fused to a protein 
with dimerization domains. II. C-terminal kinase protein fused to a 
protein that is highly expressed in the CNS. III. N-terminal kinase 
protein fused to a protein with dimerization domains. IV. Transcrip-
tion factors with a transcription activation domain fused to proteins 
with a DNA binding domain. V. C-terminal transcription factors with 
a transcription activation domain and a DNA binding domain fused 
to a protein with no clear functional domains. c Examples of onco-
genic fusions in pediatric CNS tumors that belong to the five different 
fusions types as mentioned in b. For every protein, the exons that are 
retained in the fusion protein are specified, as well as the total exons 
(in between brackets) in the original protein

◂
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by the promoter of its N-terminal fusion partner (Fig. 2b I). 
This may lead to an elevated RTK/STK expression level 
compared to the endogenous RTK/STK expression, as is 
seen in fusions with CLIP2, EML4, ETV6, KIF5B, QKI, and 
TFG. Due to these genes being relatively high expressed in 
the glial cell lineages, the oncogenic C-terminal RTK/STK 
expression is elevated. These fusion partners further contrib-
ute to the oncogenicity of the fusion protein by facilitating 
the dimerization of the RTK in absence of its ligands, an 
example of such fusion is HIP1–ALK (Fig. 2c). In most of 

these kinase fusions type I (Fig. 2b) the extracellular domain 
as well as the transmembrane domain of the RTK is lost and 
therefore the fusion protein localizes to the cytoplasm. Since 
the RAS signaling is lipid membrane-dependent it remains 
to be elucidated how oncogenic fusions activate the RAS/
MAPK pathway [126]. Some of these chimeric proteins, 
such as EML4–ALK, can induce lipid membrane-independ-
ent RAS signaling by formation of protein-based granules 
[231]. Further research is necessary to show if more fusion 
proteins make use of this mechanism.

Fig. 3  Characteristics of kinase fusions in pediatric CNS neoplasms 
a Eight kinase families are responsible for all kinase fusions that are 
mainly present in glial tumors. b Kinase proteins are not limited to 
one pediatric CNS tumor type but are present in multiple different 
tumor types. Graphs made by https:// app. rawgr aphs. io. AA anaplastic 
astrocytoma, DA diffuse astrocytoma, DIPG diffuse intrinsic pontine 
glioma, DLGT diffuse leptomeningeal glioneural tumor, DNET dyse-
mbryoplastic neuroepithelial tumor, DOD diffuse oligodendroglioma, 
EPN ependymoma, FSCN fibroblastic spindle cell neoplasm, GBM 

glioblastoma, GNT glial neuronal tumor, CNS-GNB central nervous 
system ganglioneuroblastoma, HGG high grade glioma, IHG inter-
hemiscpheric glioma, IMT inflammatory myofibroblastic tumor nerv-
ous system—ganglioneuroblastoma, LGG low grade glioma, MNG 
meningioma, NBS-HGG non brain stem high grade glioma, NET neu-
ral epithelial tumor, OA oligoastrocytoma, OD oligodendroglioma, 
PA pilocytic astrocytoma, GG ganglioglioma, PGNT papillary glial 
neuronal tumor, PLNTY polymorphous neuro-epithelial tumor of the 
young, PXA pleomorphic xanthoastrocytoma

https://app.rawgraphs.io


433Acta Neuropathologica (2022) 143:427–451 

1 3

BRAF fusions belong to the second type of fusions, 
where the kinase domain is retained in the C-terminal part-
ner but there is no common oncogenic contribution within 
the N-terminal partners (Fig. 2b II, c II). In FGFR fusions, 
who belong to the third type of fusions, FGFR retains its 
kinase domain and is always the N-terminal partner. The 
C-terminal partner almost always contains a dimeriza-
tion domain, as also seen with TACC1 (Fig. 2c III). Since 
FGFR is the N-terminal partner it does not depend on the 
expression level of their partner (Fig. 2b III). A reason for 
this could be that tumors with FGFR fusions arise during 
brain development at a stage that FGFR genes are highly 
expressed in progenitors, or alternatively, because the regu-
latory domains in the 3′ UTRs of FGFR genes that nega-
tively regulate FGFR expression are lost in these fusions 
[38].

Fusions involving kinases in pediatric CNS 
tumors

RAF fusions

BRAF and RAF1 are both RAF kinases that occur as fusion 
proteins with various and different partners. BRAF is seen 
as an oncogenic driver in a wide variety of solid and hemato-
logical malignancies. Most of the aberrations found in BRAF 
are mutations, and by far the most common mutation occurs 
within the kinase domain at amino acid V600 (V600E). 
While the V600E mutation in melanoma is approved for 
therapy with BRAF inhibitors dabrafenib and vemurafenib, 
these same inhibitors are controversial in other malignancies 
and they seem not able to inhibit tumorigenesis in pediatric 
astrocytomas harboring BRAF fusions and may even lead 
to tumor progression [103]. However, the MEK inhibitor 
selumetinib has recently been tested in pediatric patients 
with LGG harboring the well-known KIAA1549–BRAF 
fusion and has shown to be effective in a phase I and II trial 
[16, 55, 56]. Many new BRAF fusions have been identified 
over the last couple of years, with one study identifying 29 
different BRAF fusions across seven different tumor types 
[189]. In pediatric CNS tumors, 14 different BRAF fusions 
have been described (Online Resource 2). In these fusions, 
the C-terminal part of BRAF is fused to the N-terminal part 
of its partner. The most common partner is KIAA1549 but 
other N-terminal partners like CLCN6, GNAI1, GTF2I, 
GIT2, or FAM131B, have also been reported [76, 97, 184, 
192, 225, 245]. The BRAF kinase domain (encoded by 
exon 11–18) is retained in all pediatric CNS fusions. Most 
fusion breakpoints occur at the 9th exon of BRAF and in 
all fusions the inhibitory regulatory domain that is located 
within the first six exons is cut off by the fusion. So far 
there has been no evidence that the N-terminal partner is 

of specific importance other than the removal of the regula-
tory domain [110, 208, 238]. Six of the 14 fusion partners 
have either no significantly important domain in the fusion 
part or a domain of unknown function. The other fusion 
partners have domains that vary from E3 ligase, zinc-finger 
to coiled-coil, thus showing no clear trend in the N-terminal 
fusion partners.

RAF1 is the second member of the RAF kinase family 
that is implicated in fusions and functions alongside BRAF 
in the RAS/MAPK pathway. RAF1 fusions are identified in 
pediatric LGG (p-LGG) as well as several adult malignan-
cies such as prostate cancer, breast cancer, pancreatic cancer 
and thyroid cancer [171, 215, 243]. As with BRAF fusions, 
due to the limited number of discovered fusion events, their 
prevalence and oncogenic potential as well as the effectiv-
ity of inhibitory compounds is still being elucidated. While 
second generation RAF inhibitors are effective for BRAF 
fusions, they are not effective for RAF1 fusions. Vemu-
rafenib has even been found ineffective targeting RAF1 
fusions in pediatric astrocytoma due to a paradoxical acti-
vation of the RAS/MAPK pathway [208]. RAF1 has at least 
six different fusion partners in pediatric CNS tumors (Online 
Resource 3). It is hypothesized that the N-terminal fusion 
partners in RAF1 fusions are important for the oncogenic 
potential of the fusion proteins in contrast to the partners of 
BRAF. Moreover, several partners such as QKI and SGRAP 
have already been implicated in other malignancies as well 
[15, 37, 118, 123]. Furthermore, all RAF1 fusion proteins 
identified in pediatric CNS tumors have N-terminal part-
ners that possess a coiled-coil or other dimerization domain, 
meaning they belong to type I of kinase fusions (Fig. 2b). 
This might indicate that the dimerization of these fusion 
partners is necessary for the oncogenic mechanism of the 
fusion protein. Subsequently, RAF inhibitors may not be 
able to disrupt these oncogenic dimers and are thus unable 
to inhibit downstream signaling. For further research, com-
bination therapies should be considered that combine a RAF 
inhibitor together with molecules that block the dimerization 
of N-terminal fusion partners.

ALK fusions

ALK belongs to the insulin receptor superfamily of RTKs. 
Under physiological conditions, the gene translates into a 
membrane bound receptor in nerve cells where it activates 
next to MAPK also the PI3K/AKT/mTOR and JAK/STAT 
pathways [75]. ALK rearrangements are common in all 
types of adult and pediatric cancers. Over 30 fusions have 
been described in various tumor types [35]. In pediatric CNS 
tumors, 13 different partners have been observed (Online 
Resource 4). These fusions are mainly found in IHGs and 
include HIP1–ALK, EML4–ALK and PPP1CB–ALK 
as well as the more recently identified ZC3H7A–ALK, 
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MAD1L1–ALK and MSI2–ALK [41]. All ALK fusions con-
tain the complete kinase domain of ALK at the C-terminal 
end, while the N-terminal partners retain variable domains 
in the chimeric protein, although most of the N-terminal 
partners have a coiled-coil or dimerization domain (69%; 
9/13). ALK fusions are therefore part of the type I kinase 
fusions (Fig. 2b). The extent of oligomerization that is 
endorsed by these domains differs per partner, leading to 
a diversity in the oncogenic potential of the different ALK 
fusions [212, 213]. Interestingly, due to these variables, dif-
ferent ALK-fusion positive tumors have varying sensitivity 
to ALK inhibitors such as crizotinib, ceritinib, alectinib, bri-
gatinib, and lorlatinib. Not only the expression, dimerization 
and stability of the chimeric protein plays a role in this, but 
also the signaling pathway that is activated, should be con-
sidered when treating patients with ALK inhibitors. Fusion 
proteins that induce a > 0.5 ratio phosphorylated ALK/total 
ALK can activate the MAPK pathway [35]. Other fusions 
potentially activate different signaling pathways and this 
influences the oncogenic mechanism and its sensitivity to the 
different ALK inhibitors. In vitro and in vivo tests with ALK 
inhibitors showed pre-clinical evidence for tumor reduction 
in a PPP1CB–ALK positive tumor as a response to ALK 
targeted therapy with lorlatinib [40]. However, the effect on 
tumors with different ALK fusions remains unknown.

ROS1 fusions

ROS1 closely resembles ALK both in sequence and struc-
ture. Both RTKs have an extracellular domain, a trans-
membrane domain and an intracellular kinase domain and 
both receptors signal via the RAS/MAPK as well as the 
JAK/STAT and PI3K/AKT/mTOR pathways [1, 160, 172, 
254]. ROS1 fusions are identified in several tumor types 
and are relatively common in non-small cell lung cancer 
(NSCLC), spitzoid neoplasms and inflammatory myofi-
broblastic tumors [170, 232]. In pediatric CNS tumors six 
different fusions have been described (Online Resource 
5). In contrast to ALK, the most common ROS1 fusion, 
GOPC–ROS1, induces oncogenic signaling by translocat-
ing to the Golgi apparatus rather than by dimerization [29]. 
However, more recent research shows that dimerization and 
kinase activation is also a key step in the constitutive activa-
tion of ROS1 in fusion proteins [31]. The exact oncogenic 
mechanism of the chimeric protein is also determined by 
the fusion partner [100]. Although the breakpoints might 
be slightly different, all fusions retain the kinase domain of 
ROS1 encoded by exons 36–41 [220, 233]. Furthermore, all 
fusions lose the transmembrane domain of ROS1, leading 
to a cytoplasmic location of the fusion protein. Addition-
ally, all the fusion partners contain a coiled-coil domain and 
sometimes an additional leucine zipper domain that leads to 
the dimerization of the fusion protein and hence the ligand 

independent activation of the ROS1 kinase. Although this 
type I kinase fusion activation is the most credible reason 
for the oncogenic signaling to date, it is possible that the loss 
of N-terminal regulatory domains as in type II fusions also 
play a role in enhanced signaling of ROS1 (Fig. 2b). More 
research is required to determine whether other mechanisms 
also play a role in ROS1 kinase activation [232]. Specific 
ROS1 inhibitors do not exist but there is evidence that next 
generation tyrosine kinase inhibitors (TKI) like entrectinib 
are potent against ROS1 fusions [53]. Furthermore, entrec-
tinib unlike other TKI can sustain prolonged CNS exposure 
making it a suitable drug for treating ROS1 positive primary 
CNS tumors [60]. Current research is focusing on whether 
entrectinib is also suitable for pediatric CNS tumors [188].

NTRK fusions

Members of the NTRK family of RTKs are especially highly 
expressed in neural tissue [6, 185]. These receptors par-
ticipate in the development and proper functioning of the 
CNS. The NTRK family exists of three members, NTRK1, 
NTRK2, and NTRK3, which besides the RAS/MAPK path-
way can also signal via the PI3K/AKT/mTOR and the PLCγ/
PLK pathways, depending on which docking protein binds 
to the kinase domain. Via these pathways, the signal trans-
duction leads to proliferation, prevention of neuron degen-
eration, development, synaptic plasticity, sensory neuron 
maintenance and neuronal differentiation [108, 131, 156, 
211]. These receptors and their signaling cascade are also 
implicated in neoplastic cells [156].

Whether NTRK fusions signal via the same preferred 
pathways as their full-length counterparts is still unknown. 
Experiments with the ETV6–NTRK3 fusion showed that 
this fusion protein signals mainly through RAS/MAPK but 
also activates PI3K/AKT/mTOR. Activating both pathways 
might induce the oncogenic potential since it activates pro-
liferation and inhibits apoptosis [152, 223].

Although mutations and alternative splicing occur, 
fusions are the most common aberrations of NTRK in 
tumors. The most common alteration is a fusion between 
an NTRK gene and another N-terminal partner [71, 143, 
219, 224, 234]. All these aberrations result in the constitu-
tive activation of the kinase, due to loss of the extracellular 
domain. Of the 80 different N-terminal partners observed in 
tumors [80], 22 occur in pediatric CNS neoplasms (Online 
Resource 6). NTRK fusions have been identified in several 
pediatric gliomas such as pilocytic astrocytoma, high-grade 
glioma and glioblastoma (Fig. 3b) [19, 40, 93, 97, 116, 135, 
177, 182, 184, 192, 240, 245]. In contrast to other tumor 
types, NTRK2 is the most common fusion partner of the 
NTRK family in pediatric brain tumors [215, 229, 234]. 
NTRK fusions belong to the type I kinase fusions as in 16/22 
(73%) NTRK fusions the N-terminal partner has at least one 
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coiled-coil or other type of dimerization domain (Fig. 2b). 
This probably leads to a constitutively active kinase, con-
tinuous downstream signaling and thus proliferation and cell 
survival. However, N-terminal partners such as CHTOP and 
VCL do not have a dimerization domain or another onco-
genic functional domain. For these fusions it might be pos-
sible that the loss of the regulatory domain in the N-terminus 
of NTRK is enough to drive oncogenesis or there might be 
another yet undiscovered mechanism.

While the percentage of NTRK fusion driven tumors is 
quite low, the incidence in pediatric HGG and diffuse infil-
trating pontine glioma is around 5% and even 40% in infants 
with non-brainstem HGG [163, 240]. NTRK inhibitors could 
be a potential effective targeted therapy in these tumors. 
Furthermore, these NTRK inhibitors have already shown 
high efficacy in several case reports of NTRK fusion driven 
tumors [49, 52, 57, 120, 153, 195, 209, 252]. Recent phase 
I and II trials have confirmed the effectivity of larotrectinib 
and entrectinib in pediatric brain tumors. Moreover, laro-
trectinib is now approved for NTRK fusion positive tumors 
in pediatric patients [45, 51, 117, 122, 173].

FGFR fusions

The FGFR family exists of four transmembrane tyrosine 
kinase receptors (FGFR1–4). The FGFR family plays an 
important role in embryonal CNS development as well as 
in tumorigenesis, regulating angiogenesis, proliferation, 
differentiation, migration, and survival. Aberrant signaling 
of the FGFR family is seen in many different cancers as a 
result of SNVs, overexpression or rearrangements (reviewed 
in [230]). FGFR fusions have been identified as oncogenic 
drivers in brain, bladder, lung and breast tumors. In pediatric 
CNS tumors nine different FGFR fusions have been identi-
fied (Online Resource 7).

All FGFR fusion proteins retain the kinase domain of 
FGFR and almost all C-terminal partners contain a coiled-
coil domain. This means FGFR fusions belong to type III 
kinase fusions (Fig. 2b). Other oncogenic mechanisms are 
also proposed, for example, the FGFR3–TACC3 fusion dis-
places FGFR3 to the mitotic spindle leading to aneuploidy 
and tumorigenesis [178, 210]. Simultaneously, the constitu-
tively active signal of FGFR3 also transduces via the RAS/
MAPK pathway [158]. In contrast to other RTK fusion pro-
teins, FGFR fusions depend on their own promoter for the 
expression of the chimeric protein. FGFR3 is very lowly 
expressed in normal brain and fusion negative adult glio-
blastoma but is highly expressed in fusion positive glioblas-
toma, which is likely due to the loss of microRNA regulation 
[174, 199]. The 3′ UTR of the FGFR3 gene is negatively 
controlled by microRNAs in the normal brain. However, in 
the fusion gene, this region is lost and FGFR3 can thus no 
longer be controlled by mir-99a [174]. The sequence of the 

3′ UTR regions in FGFR genes is quite diverse but is lost 
in all the fusion genes. Additionally, computational analy-
sis has shown that these UTRs are presumably regulated 
by different miRNAs. Therefore, it is likely that the loss of 
the 3′ UTR of FGFR in fusion genes leads to the enhanced 
expression of the chimera [94]. To date, no fusions have 
been detected with family member FGFR4 in pediatric CNS 
neoplasms. Furthermore, fusions with FGFR1 and FGFR3 
often occur due to a small deletion on the chromosome, fus-
ing them to partners in close proximity. In contrast, FGFR2 
often translocates to partners on other chromosomes [175].

Since new aberrations in the FGFR pathway are detected 
in a variety of tumor types, there is an interest in FGFR path-
way inhibitors. Clinical trials with FGFR inhibitors in brain 
tumors are being conducted [48, 92]. The FGFR inhibitor 
ponatinib has an improved therapeutic activity of temozolide 
in in vitro patient derived DIPG cells [200]. Further research 
will show the efficacy of the FGFR inhibitors in the different 
FGFR fusion positive pediatric tumors.

MET fusions

The least common RTK fusions in pediatric CNS neoplasms 
are fusions involving MET. In the three different MET 
fusions in pediatric CNS tumors, CLIP2-MET, TFG-MET, 
and PTPRZ1-MET, the kinase domain of MET is retained 
within the fusion (Online Resource 8). In CLIP2-MET and 
TFG-MET, only the C-terminal part of the protein con-
taining the kinase domain is retained and therefore lacks 
its autoregulatory domain leading to a constitutive active 
MET [19, 141]. MET fusions can thus be classified as type 
II kinase fusions (Fig. 2b). Additionally, TFG has also been 
described as a partner for RTKs in chimeric proteins in other 
neoplasms [72, 77]. The PTPRZ1–MET fusion has been 
described in adult glioblastomas and entails the full length 
MET protein fused to the first exons of PTPRZ1 and prob-
ably uses its promoter to overexpress MET [17]. Additional 
to the MET fusions, all patients also harbored TP53 muta-
tions or CDKN2A and CDKN2B deletions, indicating that 
the tumorigenesis due to MET fusions is probably dependent 
on additional aberrations in the cell cycle regulation [19]. 
It is shown that in a preclinical setting MET inhibition with 
RTK inhibitors is effective and MET fusion positive pediat-
ric glioblastoma respond positively before relapse [19]. This 
initial data promotes further research with MET inhibitors 
in pediatric glioblastomas.
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Fusions involving transcription regulators 
in pediatric CNS tumors

There are 38 fusions reported in 53 fusion–entity pairs, that 
do not have a kinase domain. Most of these (94%; 50/53), 
however contain a transcription activation domain, indi-
cating that transcription regulators also play an important 
role in oncogenic fusions in pediatric CNS tumors. There 
are three (6%) fusion–entity pairs with two fusions that 

do not belong to this group and only have uncharacterized 
domains: RNF213–SLC26A11, and SETD2–ROBO1. Nine 
fusion partners are responsible for the majority of fusions 
(86%; 43/50) driven by transcriptional regulators (Fig. 4a). 
These nine transcription regulators occur with multiple 
partners, while the remaining transcription regulators have 
only one fusion partner and account for the remaining 
seven fusion–entity pairs: NAB2–STAT6, ATXN–NUTM1, 
PAX3–NCOA1 and PLAGL1–FOXG1, these will not be 

Fig. 4  Characteristics of transcription regulator fusions in pediatric 
CNS neoplasms a Nine transcription factors are responsible for most 
transcription factor fusions that are mainly present in glial tumors. b 
Kinase proteins are not limited to one pediatric CNS tumor type but 
are present in multiple different tumor types. Graph made by https:// 
app. rawgr aphs. io. AB astroblastoma, AFH angiomatoid fibrous histio-
cytoma, AG angiocentric glioma, APA anaplastic pleomorphic astro-
cytoma, AO anaplastic oligodendroglioma, CNS EFT–CIC central 
nervous system Ewing Sarcoma Family Tumor with CIC alteration, 
CNS—ET central nervous system embryonal tumor, CNS-HGNET 

MN1 central nervous system high grade neuroepithelial tumor with 
MN1 alteration, DA diffuse astrocytoma, DSRCT  desmoplastic small 
round cell tumor, ELTMD ependymoma like tumor with mesenchy-
mal differentiation, EPN ependymoma, GBM glioblastoma, GG gan-
glioglioma, GNT glial neuronal tumor, HPC hemangiopericytoma, 
IHG interhemiscpheric glioma, IMMT intracranial myxoid mesenchy-
mal tumor, IRMS intracranial rhabdomyosarcoma, MNG meningioma, 
NF neurofibroma, OD oligodendroglioma, PA pilocytic astrocytoma, 
PESS primary epidural spinal sarcoma, PNET primitive neuroecto-
dermal tumor, SFT solitary fibrous tumor

https://app.rawgraphs.io
https://app.rawgraphs.io


437Acta Neuropathologica (2022) 143:427–451 

1 3

discussed further (Online resource 1). Transcription regu-
lator fusions mostly occur in the glial tumor types (69%; 
37/53) (Fig. 4a). The different fusions are not exclusively 
present in certain tumor types (Fig. 4b).

Overall, we have identified two different types of tran-
scription regulator fusions. Most of these fusions contain at 
least one partner that functions as a transcription factor and 
retains its transcription activation domain, while the other 
partner retains its nuclear localization signal (NLS) as well 
as, sometimes, a DNA binding domain (Fig. 2b, IV). An 
example of this kind of fusion is ZFTA–RELA (Fig. 2c, IV). 
In fusion type V, the transcription activation and DNA bind-
ing domain as well as the NLS are retained within one fusion 
partner, while the other partner influences the regulation of 
the chimeric protein. This is also seen in MYB–PCDHGA1, 
where PCDHGA1 is responsible for the truncation of the 
negative regulation domain in MYB (Fig. 2b V, c V). For 
BCOR fusions the mechanism of the chimeric proteins is 
unknown.

Furthermore, many of these fusions make use of epige-
netic mechanisms to activate transcription of the alternative 
target genes to induce tumorigenesis. Hence, more research 
in epigenetic mechanisms could aid the overall understand-
ing of these tumors and the identification of potential thera-
peutic treatments. As these fusions partners themselves are 
often difficult to target, it is worth identifying targetable 
downstream factors.

ETV1 fusions

ETS variant transcription factor 1 (ETV1) belongs to the 
ETS family of transcription factors. This family regulates 
genes that are responsible for processes such as cell growth, 
angiogenesis, proliferation and differentiation [102]. Fur-
thermore, these transcription factors are known oncogenes 
in Ewing sarcoma, melanoma and prostate cancer [12, 88, 
89]. It is unclear what the exact oncogenic mechanism is of 
DGKB–ETV1 fusions in glioblastoma and PTPRZ1–ETV1 
in glioblastoma, pilocytic astrocytoma and anaplastic oli-
godendroglioma (Fig. 4b, Online Resource 9). However, as 
elevated expression levels of ETV1 are detected in multiple 
tumor types and can lead to increased invasiveness of tumor 
cells, this might also be the oncogenic mechanisms of these 
fusions [93, 146]. The promoters of PTPRZ1 and DGKB 
are highly active in the CNS and the DNA binding domain 
of ETV1 is retained in the fusion, possibly leading to an 
enhanced activation of ETV1 target genes [19]. As ETV1 
itself retains its NLS, DNA binding domain and its trans-
activation domain, it belongs to the type V transcriptional 
regulator fusions.

EWSR1 fusions

EWSR1 is an RNA binding protein that plays an important 
role in transcription initiation. The protein is vital for cell 
survival in the CNS and regulates genomic integrity and 
RNA maturation processes [146]. Translocations with dif-
ferent partners are seen in several cancers, mainly soft tis-
sue sarcomas. EWSR1 most often fuses with transcription 
factors. The new chimeric proteins alter pathways that are 
important for cell growth, differentiation, and proliferation, 
which ultimately leads to tumorigenesis [147]. In pediat-
ric CNS tumors five different EWSR1 fusions have been 
detected, such as EWSR1–PLAGL1 and EWSR1–CREB1 
(Online Resource 10). In all these fusions the transcrip-
tion activation domain of EWSR1 is retained as well as the 
DNA binding domain (zinc finger, leucine zipper) and the 
NLS of its partners, making the fusions part of the type 
IV transcription regulator fusions. Additionally, to these 
type IV fusions, there is one EWSR1–SMARCA5 fusion 
in a Ewing sarcoma/primitive neuroectodermal tumor [205, 
217]. Apart from its DNA binding domain (SANT) and its 
NLS, SMARCA5 also retains its helicase domain, which 
might implicate an epigenetic function in tumorigenesis 
for this fusion [24]. At the moment due to the difficulties 
in targeting transcription regulators, there are no targeted 
therapies available for EWSR1 fusions [187].

ZFTA fusions

ZFTA–RELA is the most recurrent fusion in ST-EPN. 
Around 70% of the ST-EPNs are driven by this fusion and 
EPNs with this fusion belong to the subtype ST-EPN–ZFTA. 
While ZFTA is a poorly characterized transcription factor, 
RELA (p65) is important in the canonical NFκB pathway. 
Initially, oncogenicity of the fusion was attributed to NFκB 
activation by RELA. However, due to identification of five 
additional fusion partners for ZFTA (MAML2–3, NCOA1–2 
and YAP1), the poorly characterized ZFTA seems to be the 
driving fusion partner (Online Resource 11) [105, 115, 
176, 226, 249, 255]. All these C-terminal partners are tran-
scription factors or co-activators like RELA. This leads 
to the hypothesis that the zinc finger domains as well as 
the NLS in ZFTA are important for the oncogenic action 
of the fusion, as is seen in type IV transcription regulator 
fusions. This zinc finger domain and its interactions might 
alter the trafficking, degradation or target specificity of the 
chimeric fusion partner and thereby altering the transcrip-
tion of their targets [176, 251]. Recent research has shown 
that the zinc finger domain in ZFTA is indeed essential for 
tumorigenesis [249]. More specifically, the zinc finger is 
responsible for nuclear translocation of the fusion protein, 
the binding to chromatin and the recruitment of chroma-
tin remodeling complexes. This way ZFTA binds its fusion 
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partners across the whole genome, modifies the chromatin 
state and facilitates transcriptional co-activators to promote 
expression of oncogenic genes [9, 115]. All ZFTA fusion 
partners retain their transcription activation domain, thus 
being able to enhance the activation of these oncogenic 
genes. In utero electroporations with ZFTA fusions in mice 
have confirmed that induction of the fusion alone is suf-
ficient to drive ependymomas in vivo [249]. These studies 
also show that drugs can potentially be directed to genes in 
the downstream signaling cascade of ZFTA-fusions. Further 
research is needed to see if ZFTA positive tumors can be 
therapeutically targeted in this way. Additionally, therapeu-
tics should be investigated that can cause a fast degradation 
of ZFTA (-fusions) [9, 115]. Recently, ZFTA fusions have 
also been discovered in tumors that although morphologi-
cally and genetically resemble ependymomas, do not cluster 
together with ST-EPN based on their DNA methylation pro-
file [226]. Hence, for now they are represented as a separate 
type called ependymoma-like tumors with mesenchymal dif-
ferentiation (ELTMDs). This data, together with the expres-
sion of ZFTA fusions in chondroid lipomas shows that ZFTA 
fusions might be oncogenic drivers in multiple diseases, also 
outside of the CNS [61, 226].

YAP1 fusions

YAP1 fusions are also mostly detected in ST-EPN, although 
less frequently than ZFTA–RELA. YAP1 is a regulator of 
the Hippo pathway and can fuse to mastermind-like pro-
teins MAMLD1 and MAML2 or a thus far uncharacterized 
protein called FAM118B (Online Resource 12). No other 
recurrent aberrations have been identified in addition to 
these fusions, making the fusion the likely oncogenic driver. 
Indeed, in vivo experiments have demonstrated that ectopic 
expression of the YAP1–MAMLD1 fusion in fetal mouse 
brain is sufficient to induce tumors [168]. YAP1 and the 
Hippo pathway are responsible for the limitation of organ 
growth and can promote tumorigenesis. Under normal con-
ditions YAP1 is retained in the cytosol until it is activated 
by the Hippo pathway and translocated to the nucleus, where 
YAP1 with its TEAD domain acts as a transcriptional activa-
tor. In fusions, YAP1 is retained in the nucleus and there-
fore has an oncogenic potential [151, 247]. The NLS in 
MAMLD1 is necessary for the retention of YAP1 and its 
transactivation domain in the nucleus. YAP1–FAM118B is 
also retained in the nucleus, although the exact mechanism 
here is unclear since the NLS of FAM118B fused to YAP1 
is not enough to drive ependymoma [168]. MAMLD1 thus 
might have an additional function that drives oncogenesis 
apart from the nuclear localization. A YAP1 fusion with 
MAML2 has been detected in meningiomas. Where the 

TEAD domain of YAP1 is also retained as well as the tran-
scriptional activation domain of MAML2, leading to the co-
activation of the Hippo pathway [206, 241]. As most of the 
YAP1 fusions make use of the NLS of the fusion partner, 
these fusions are part of the type IV transcription regulator 
fusions.

CIC fusions

Capicua transcriptional repressor (CIC) is a transcription 
factor and in pediatric brain tumors a fusion was initially 
reported between CIC and NUTM1 in CNS Ewing sarcoma 
family of tumors with CIC alterations (CNS EFT–CIC) 
[216]. Additionally, fusions between CIC and LEUTX have 
been detected in an anaplastic pleomorphic astrocytoma 
and a CNS embryonal tumor (Fig. 4b, Online Resource 13). 
Recently, a CIC fusion with DUX4 was detected in a sin-
gle case of primary epidural spinal sarcoma [50]. Although, 
this is a known fusion in Ewing sarcomas, it has never been 
detected in the CNS and in contrast to the CNS EFT–CIC 
tumors, the tumor was located in the spinal cord and not in 
the cerebrum. It remains to be investigated whether all CIC 
fusions belong to the same CNS entity or whether they may 
represent distinct entities or specific subtypes.

As also seen in CIC–NUTM1 and CIC–LEUTX fusion 
proteins, the chimeric CIC–DUX4 protein retains most of 
the functional regions of CIC, including the DNA-binding 
high-mobility group (HMG) box and the MAPK phospho-
rylation sites, while the partners retain their TEAD domain 
[50, 216]. This is seen in type IV transcription regulator 
fusions and might indicate that these domains are important 
for the oncogenic potential of the fusion. CIC is a transcrip-
tional repressor that prevents activation of genes downstream 
of RTK signaling. In oligodendrogliomas, mutations in this 
gene are correlated with a poor outcome. These mutations 
lead to a loss-of-function and thus the activation of down-
stream RTK signaling. It is hypothesized that in the CIC 
fusions the downstream signaling is also activated by the 
recruitment of chromatin modifiers such as histone acetyl 
transferases to the transcription activation domains of the 
fusion partners [65, 216].

MN1 fusions

MN1 proto-oncogene, transcriptional regulator (MN1) is 
a transcriptional coregulator that has rearrangements in 
meningioma and leukemia [78, 125]. The first MN1 fusions 
located in the CNS were described in an entity named cen-
tral nervous system high-grade neuroepithelial tumor with 
MN1 alterations (CNS HGNET–MN1) [216]. Recently, 73 
CNS HGNET–MN1 tumors have been analyzed [32]. Most 
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of these tumors have an oncogenic fusion between MN1 and 
BEND2 (Online Resource 14). However, the partner CXXC5 
is also commonly present and additionally an MN1–GTSE1 
fusion has been detected. In the MN1–BEND2 fusion, the 
transactivating domain of MN1 is retained as well as the 
BEN domains of BEND2. These BEN domains are thought 
to play a role in DNA binding, chromatin organization and 
neural transcriptional regulation [43, 196, 216]. The trans-
activation domain of MN1 is thought to recruit transcrip-
tion activators, although, the exact oncogenic mechanism 
is unknown [186]. For MN1–CXXC5 and MN1–GTSE1 no 
research has been done into the chimeric fusion structure 
and the oncogenic mechanism. It is known that CXXC5 
retains its NLS and DNA binding domain as also seen in 
BEND2, and GTSE1 retains its NLS, making MN1 fusions 
part of the type IV transcription regulator fusions. Recently, 
in the new 5th edition of WHO classification of CNS tumors, 
the HGNET–MN1 tumors have been renamed into astro-
blastoma, MN1 altered, as most of these tumors show an 
astroblastoma morphology [124, 137, 138]. It remains to 
be investigated whether tumors with MN1–BEND2 or 
MN1–CXXC5 fusions indeed all belong to this same entity 
or to what extent they may differ from each other molecu-
larly and/or clinically.

PATZ1 fusions

PATZ1 (POZ/BTB and AT hook containing zinc finger 1) is 
a transcription factor and is important in maintaining pluri-
potency and hindering differentiation in stem cells [166]. 
Additionally, at different expression levels of PATZ1, the 
protein can act as either a transcriptional repressor or acti-
vator influencing senescence and proliferation, respectively 
[140]. Two different PATZ1 partners, EWSR1 and MN1 
have been identified in several different pediatric CNS neo-
plasms (Online Resource 15). As described above, both 
EWSR1 and MN1 are implicated in other tumor entities as 
well and positively influence transcription regulation [10, 
125]. Although the MN1–PATZ1 tumors also contain MN1 
fusions, DNA methylation data of these tumors do not cluster 
together with the other above mentioned astroblastoma, MN1 
altered tumors [22]. While the exact oncogenic mechanism 
of the PATZ1 fusion proteins is still unknown, it is known 
that the transactivation domain of MN1/EWSR1 is retained 
as well as the zinc finger domain of PATZ1. PATZ1 fusions 
thus belong to type IV transcription regulator fusions. It is 
hypothesized that this leads to enhanced activation of genes 
near the DNA binding site from PATZ1, via the recruitment 
of the transcription activators to the transactivation domain. 
Additionally, PATZ1 might benefit from the elevated expres-
sion levels by using the promoter of EWSR1 and MN1 [5]. 

However, a PATZ1–MN1 fusion was also identified, indicat-
ing that the aberrant expression is not the only oncogenic 
mechanism [255].

BCOR fusions

BCL6 corepressor (BCOR) epigenetically silences differ-
ent genomic regions and is important in embryonal devel-
opment. Several aberrations in BCOR have been impli-
cated in different tumor types, including internal tandem 
duplications in CNS high-grade neuroepithelial tumors 
with BCOR alterations (CNS HGNET–BCOR) [216]. In 
the last years, two different fusions with BCOR have been 
identified in pediatric brain tumors (Online Resource 16). 
Interestingly, the two fusion partners are paralogues of 
each other. EP300–BCOR and BCOR–CREBBP have 
been described as potential oncogenic drivers in glio-
mas [181, 228]. EP300 and CREBBP are both histone 
acetyltransferases, which are important in proliferation, 
differentiation and may even have tumor suppressor func-
tions. For EP300–BCOR several different fusion sites have 
been identified. In two of the three known fusions, the 
transactivation domain is truncated, and the acetyltrans-
ferase domain is retained, in the third fusion all domains 
are retained [228]. In the BCOR–CREBBP fusion the 
acetyltransferase domain is lost, and it probably cre-
ates a premature stop codon in CREBBP. The reciprocal 
CREBPP–BCOR fusion was not detected [181]. Since the 
order of the partners within the chimeric protein is dif-
ferent and the retention of the domains varies between 
the different fusions, it is difficult to predict the fusions’ 
oncogenic mechanism.

MYB fusions

MYB alterations and fusions have been identified in 
p-LGG for the first time in 2010 [222]. This transcription 
factor plays a role in the proliferation and differentiation 
of hematopoietic and other progenitor cells. An oncogenic 
effect has already been described in both leukemia as well 
as solid tumors. Ten percent of p-LGG harbor MYB altera-
tions, with the most common alteration being a MYB–QKI 
fusion [15]. DNA methylation data of pediatric gliomas 
with a MYB or MYBL alteration cluster together as one 
entity [33], which is now classified as a new subtype of 
diffuse gliomas: diffuse astrocytoma—MYB altered [54, 
137, 138]. The mechanism behind the MYB–QKI fusion 
has been well studied and is proposed to be a tripartite 
mechanism: MYB is overexpressed, the regulatory domain 
of MYB is truncated and the tumor repressor function of 
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QKI is lost. There are two different fusion sites for the 
MYB protein in MYB–QKI, one in which the regulatory 
domain is truncated and one in which it is retained. Other 
fusion partners of MYB in pediatric gliomas have also 
been identified: ESR1, MAML2, MMP16 and PCDHGA1 
(Online Resource 17). However, not much is known about 
these fusions. The hypothesis is that these fusions have 
an oncogenic potential due to the truncation of the C-ter-
minal end of the MYB protein, meaning they belong to 
type V transcription regulator fusions, but there might also 
be other mechanisms involved. As seen in MYB–ESR1, 
where the negative regulation domain of MYB is retained 
as well as the ESR1 co-activator domain. Currently, there 
are no small molecular inhibitors for MYB and their devel-
opment is rather challenging. However, transcriptional 
targets of MYB fusion proteins could be targeted [15]. 
Further research is necessary to determine whether similar 
MYB target genes are activated by the different chimeric 
proteins.

Validation of fusion proteins as oncogenic 
drivers

Over the coming years, a variety of fusions will likely 
be detected by NGS, as this detection mode is becom-
ing standard care in diagnostics. Additionally, pan-cancer 
studies combining sequencing data from all over the world, 
can identify many new fusion genes in different tumor 
types. Moreover, for the fusions that have already been 
detected, there is still a lack of experimental evidence for 
the oncogenic potential. In vitro and in vivo, only a few of 
these fusions have been validated, some of which only in 
models that are not pediatric brain tumors but do give an 
indication of the oncogenic potential (Table 1). Only 30 of 
the 110 fusion proteins presented in this review have been 
validated in an in vitro or in vivo model.

Fusion genes in diagnostics

With the recent 5th edition of the WHO classification 
for tumors of the CNS, in which they advance the role of 
molecular diagnostics for CNS tumors, the detection of 
fusion genes has become an important diagnostic marker 
in pediatric CNS neoplasms [137]. Routinely, targeted 
assays were being used for diagnostic purposes to detect 
these fusions. Although these assays are cost-effective, 
they have clear limitations. As only specific fusions and 

breakpoints are included within these assays, alternative 
breakpoints, additional fusions or alternative fusion part-
ners are likely to remain undetected. Additionally, targeted 
assays are unable to discover completely novel oncogenic 
fusions [193]. More recently, RNA-sequencing (RNA-seq) 
is being implemented in the diagnostic setting to detect 
oncogenic gene fusions, using both fresh frozen and for-
malin fixed paraffin embedded material [18, 119]. RNA-
seq is a robust way to pick up expressed fusion RNAs, 
but calling oncogenic fusions remains challenging. First, 
there are currently no standardized methods with multiple 
different algorithms being used.

Second, next to true oncogenic fusions, fusion calling 
algorithms pick up a lot of false positives such as read-
throughs and non-malignant fusions. Determining the cut 
off in fusion calling algorithms is a manual task that can 
introduce a bias. The difficulty here is to detect all the 
real fusion drivers, while ignoring biological and algo-
rithm artefacts [26, 148]. Fusion panels can make detec-
tion of fusions less complex in RNA-seq by limiting the 
analysis to key genes associated with aberrations in pedi-
atric CNS neoplasms. These panels can aid the molecular 
characterization of the tumors as well as contribute to the 
therapeutic decision making [119]. While these panels can 
detect fusions with different breakpoints or partner genes 
and could thus be used for diagnostics, they are limited 
to the number of genes in the panel and will thus neglect 
completely novel fusions with two yet unknown partners. 
An alternative to distinguish real fusions from artefacts 
is inclusion of genomic data, such as whole genome or 
exome sequencing to pinpoint underlying structural vari-
ations. This multi-omics approach can aid the assessment 
of the potential pathogenicity of the fusion and the clinical 
decision making, especially for lowly expressed oncogenic 
fusions [18].

Discussion

Fusion proteins as oncogenic drivers are emerging in pedi-
atric CNS neoplasms. Since the implication of NGS more 
of these drivers have been described in case studies as well 
as in big multi-center sequencing studies. However, the vari-
ety of these fusions, the range of tumor entities in which 
they can occur, and their molecular mechanism are for a 
large part still unknown. Literature reveals that most fusions 
have an active kinase domain, and these kinase fusions are 
driven by a few main partner genes that are responsible for 
the oncogenicity of the fusion. We observed that there is 
a growth in detection of the variety of partners for these 
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Table 1  In vitro and/or in vivo validated oncogenic fusion proteins that drive pediatric CNS neoplasms

Fusion In vitro model References In vivo model References

FAM131B–BRAF Transforms NIH3T3 [39]
KIAA1459–BRAF Constitutive kinase activation in Cos-7 cells 

and transforms NIH3T3
[98] Transduced Wild-type and Tsc1 − / − NSCs 

injected into C57/Bl6 mice cerebellum
[104]

NFIA–RAF1 MAPK activation in HEK293 cells, transforms 
HeLa

[242]

QKI–RAF1 QKI–RAF1 expressing PMAs intracranially 
injected into cerebral cortex of NOD scid 
gamma mice

[86]

NIH3T3-expressing QKI–RAF1 injected into 
flanks of NSG mice

[86]

SRGAP3–RAF1 SRGAP3–RAF1 expressing PMAs intracrani-
ally injected into cerebral cortex of NOD 
scid gamma mice

[86]

NIH3T3-expressing SRGAP3–RAF1 injected 
into flanks of NSG mice

[86]

CCDC88A–ALK Transduced astrocytes orthotopically injected 
in brains of NOD/SCID/NSG mice

[74]

PPP1CB–ALK Transduced astrocytes orthotopically injected 
in brains of NOD/SCID/NSG mice

[74]

CD1 mice in utero electroporated [40]
KIF5B–ALK Transforms NIH3T3 [35]
EML4–ALK Transforms NIH3T3 [35] Transgenic mice for NSCLC [213]

Transgenic mice for NSCLC [183]
CEP95L–ROS1 Transforms NIH3T3, immortalized astrocytes 

and Ba/F3
[44]

GOPC–ROS Conditional GOPC–ROS transgenic mice [31]
KLC1–ROS1 Transforms NIH3T3 and GBM cells [157]
TPM3–NTRK1 Transduced TP53-null astrocytes transplanted 

into brain of immunodeficient mice
[240]

BTBD1–NRTK3 Transduced TP53-null astrocytes transplanted 
into brain of immunodeficient mice

[240]

ETV6–NTRK3 Transforms NIH3T3 [237] Transduced NIH3T3 subcutaneously injected 
in SCID mice

[237]

Transforms Ba/F3 [139] Transduced HMLER cells transplanted in 
athymic mice

[139]

FGFR1–TACC1 Transforms Rat1A cells [210] Transduced Ink4A;Arf − / − astrocytes subcu-
taneously injected in immunodeficient mice

[210]

FGFR2–INA Transforms NIH3T3 and PMA [87]
FGFR3–TACC3 Transforms Rat1A cells [210] Transduced Ink4A;Arf − / − astrocytes subcu-

taneously injected in immunodeficient mice
[210]

Glioma cells intracranially xenografted in 
immunodeficient mice

[174]

CLIP2–MET GBM cells with fusion transplanted in SCID 
mice

[19]

PTPRZ1–MET MAPK activation in HEK293T cells [19]
Transforms GBM cells [17]

TGF–MET Ntv-a; Cdkn2a − / − ; Pten fl/fl animals injected 
with RCAS–TFG–MET

[19]

EWSR1–SMARC5A Transforms NIH3T3 [217]
ZFTA–MAML2 CD1 mice in utero electroporated with plasmid 

mix containing pT2K–IRES–luc–ZFTA–
MAML2 and a pCAGGS plasmid with the 
Tol2 transposase

[249]
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main oncogenic partners and we expect that in the next years 
this variety will only further increase. In line with this, the 
amount and diversity of non-kinase fusion proteins has also 
advanced. Transcription regulators now comprise the second 
biggest group of fusion proteins. These fusions are mainly 
seen in tumor entities that have been recently discovered 
or reclassified. With the discovery of these transcriptional 
regulator fusions probably more brain tumor entities can be 
reclassified based on their molecular mechanism. Although, 
this review did not identify the prevalence of these differ-
ent fusions, the reclassification of the tumor entities based 
on the fusion that is present, as seen in many of the tran-
scription regulator fusions, shows that the fusions play an 
important part in these entities. Future research should focus 
on the mechanism behind these fusions to identify targeted 
therapeutic options for the distinct tumor entities.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00401- 022- 02405-8.

Acknowledgements MK was supported by KiKa Fast track grant. 
Figure 2a is created with Biorender. Figures 3 and 4 are created with 
https:// app. rawgr aphs. io. Online resources were generated with and 
adapted from ProteinPaint https:// pecan. stjude. org/ prote inpai nt/.

Author contributions MK had the idea for the manuscript. MR per-
formed the literature search and data analysis and wrote the manuscript. 
ZO and MR made the figures. ZO, JB and MK critically revised the 
manuscript.

Funding Open Access funding enabled and organized by Projekt 
DEAL.

Open Access This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, 

Table 1  (continued)

Fusion In vitro model References In vivo model References

ZFTA–MAML3 CD1 mice in utero electroporated with plasmid 
mix containing pT2K–IRES–luc–ZFTA–
MAML3 and a pCAGGS plasmid with the 
Tol2 transposase

[249]

ZFTA–RELA NSC from transgenic mice transplanted into 
CD1-nude mice

[175]

In utero electroporation of pBCAG–HA–
ZRFUS1, pbCAG–eGFP, pX330–438 
sgTp53, GLAST–PBase, pBCAG–Luc in the 
lateral ventricles

[9]

Transduced mouse NSCs ortotopically allo-
grafted

[115]

CD1 mice in utero electroporated with plasmid 
mix containing pT2K–IRES–luc–ZFTA–
RELA and a pCAGGS plasmid with the Tol2 
transposase

[249]

GFAP (G)/tv-a, Nestin (N)/tv-a (agouti), N/
tv-a;Ink4a-Arf-/-;Pten fl/fl,or BLBP (B)/
tv-a mice intracranially injected with RCAS 
ZFTA–RELA plasmid

[67]

YAP–FAM118B GFAP (G)/tv-a Cdkn2a wild type, G/tv-
a;Cdkn2a-null, or Nestin (N)/tv-a;Cdkn2a-
null mice intracranially injected with RCAS 
YAP–FAM118B plasmid

[218]

YAP1–MAMLD1 CD1 mice in utero electroporated [168]
CD1 mice in utero electroporated with plasmid 

mix containing pT2K–IRES–luc–YAP1–
MAMLD1 and a pCAGGS plasmid with the 
Tol2 transposase

[249]

GFAP (G)/tv-a Cdkn2a wild type, G/tv-
a;Cdkn2a-null, or Nestin (N)/tv-a;Cdkn2a-
null mice intracranially injected with RCAS 
YAP–MAMLD1 plasmid

[218]

MYB–QKI Transduced NIH3T3 subcutaneously injected 
in NSG mice

[15]

Transduced NIH3t3 intracranially injected in 
immunocompromised ICR–SCID mice

[15]
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