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Abstract: Supramolecular hydrogels formed by self-assembly of low-molecular-weight amphiphiles
(hydrogelators) have attracted significant attention, as smart and soft materials. However, most of
the observed stimuli-responsive behaviour of these supramolecular hydrogels are limited to gel–sol
transitions. In this study, we present bola-amphiphilic glycosylated lipopeptide-type supramolecular
hydrogelators that exhibit reversible thermochromism along with a gel–sol transition. The bola-
amphiphiles have mono-, di-, tri- or tetra-phenylalanine (F) as a short peptide moiety. We investigate
and discuss the effects of the number of F residues on the gelation ability and the morphology of the
self-assembled nanostructures.

Keywords: self-assembly; peptide; supramolecular hydrogel; chromism

1. Introduction

Supramolecular hydrogels constructed through the self-assembly of low molecular-
weight amphiphiles (hydrogelator) via weak non-covalent interactions, such as hydrogen
bonding, hydrophobic interactions, π-π stacking, electrostatic interactions have attracted
significant attention, as smart and soft materials [1–13]. Many supramolecular hydrogels
capable of rapidly responding to external stimuli, such as chemical additives [14–21] and
biological molecules [22–33], have been reported. However, most of the observed stimuli-
responsive behaviour of these supramolecular hydrogels is limited to gel–sol transitions.
Supramolecular hydrogels that exhibit a colour change (i.e., chromism) in response to the
desired external stimuli are useful for developing practical sensing materials [34–40].

We developed supramolecular hydrogels that exhibit thermochromism along with
a gel–sol transition in which the hydrogel state was yellow and the solution state was
orange (Figure 1) [36,40]. The hydrogelators have an N-alkyl-2-anilino-3-chloromaleimide
(AAC) moiety as a chromophore, capable of acting as a probe to readout the self-assembly
state. Considering its solution state counterpart, the blue-shifted absorption band in the
hydrogel state indicates that the AAC moiety in the hydrogelators was stacked in an H-type
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aggregation mode [41,42]. Despite the usefulness of this system as a colorimetric assay, the
molecular design of hydrogelators was limited to the glycolipid-type bola-amphiphiles
with hydrophilic moiety (saccharide or carboxy group) at each end of the hydrophobic
core, including the AAC moiety and the hydrocarbon chain.
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Figure 1. Chemical structures of bola-amphiphilic glycolipid-type hydrogelators possessing an
N-alkyl-2-anilino-3-chloromaleimide (AAC) moiety (R1, R2 = α- or β-D-glucose (α/βGlc), α- or
β-D-galactose (α/βGal); (a) R1–AAC–C11–COOH [36], (b) R1–AAC–C6–R2 [40].

In this paper, we report the design, synthesis, and self-assembly properties of glycosy-
lated lipopeptide-type bola-amphiphiles to diversify the molecular design of our colour-
change hydrogelation system. The lipopeptides are a class of molecules with one or more
lipid chains attached to a short peptide. Recently, self-assembled peptide-based nanomateri-
als have attracted significant attention, as functional materials [43–49]. Short peptide-based
amphiphiles have been studied as hydrogelators due to their ability to assemble into a large
range of novel nanostructures and their rational design for various applications, such as
molecular sensors, tissue engineering, and drug-delivery systems [50–56]. The molecular
configurations and intramolecular interactions of short peptides can be controlled by the
amino acid sequence. Aromatic amino acids, such as phenylalanine (F), tyrosine (Y), and
tryptophan (W) are a popular type of building block with aromatic π-π interactions and
hydrophobic interaction. Hydrogelators containing diphenylalanine (F2) peptide, which is
the core motif of Alzheimer’s β-amyloid peptide or more extended aromatic sequences
have been investigated [57–59]. F2 peptide can self-assemble into a nanostructure that
is obtained by combining hydrogen bonding and π-π stacking interactions. Despite the
significant attention on F2-based hydrogels, a few examples of triphenylalanine (F3)- or
tetraphenylalanine (F4)-based hydrogels and self-assembled nanostructures have been
investigated [60–65]. Here, we evaluate the effects of the number of F residues on the
gelation ability and the morphology of the self-assembled nanostructures.

2. Results and Discussion
2.1. Molecular Design of Glycosylated Lipopeptide-type Bola-amphiphiles

We designed and synthesized the glycosylated lipopeptide-type bola-amphiphiles
with the general formula β-D-galactose (βGal)–AAC–C6–Fn (n = 1–4) (Figure 2, Scheme 1).
The saccharide structure and hydrocarbon chain length are essential factors for the self-
assembly property of glycolipid-type amphiphiles [36,40,66–72]. We fixed the saccharide
structure as βGal and hydrocarbon chain length as the C6 spacer based on the previous
study [40]. Thus, we evaluated the effect of the number of F residues on the self-assembly
properties of the prepared bola-amphiphiles.
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ever, even at sufficiently high concentration (about 10 wt%), βGal–AAC–C6–F1 remained 
in solution state (Figure 3a). This behaviour may be attributed to the higher water solubil-
ity compared to the other compounds. Furthermore, the sample of βGal–AAC–C6–F4, 
which showed the lowest solubility, was dispersed at 0.35 wt%. These results indicate that 
differences in the combination of intermolecular hydrogen bonding between amide 
groups and side-chain π-π stacking interactions, which were caused by the difference in 
the number of F residues, have a significant effect on the self-assembly properties. It was 
revealed that βGal–AAC–C6–F3 has the optimal assembly properties for gel formation. 
We obtained that the compound’s maximum absorption wavelength (λmax) in 200 mM 
HEPES–NaOH buffer (pH 8.0) shifted to shorter wavelength as the number of F increased 
(Table 1, Figure S1, ESI† for absorption spectra), suggesting the larger intermolecular in-
teraction of the molecule. The difference in the chemical structure is only the number of F 
unit, however, the abrupt change in the phase behaviour was observed. It is presumed 
that the differences in the aromatic π–π interactions derived from the side chain phenyl 
groups of F and the hydrogen bonding mode derived from the difference in the amide 
bonds greatly contribute to the self-assembly ability of the molecules. 
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Scheme 1. Synthesis of βGal–AAC–C6–Fn (n = 1–4).

2.2. Self-Assembly Properties of Glycosylated Lipopeptide-Type Bola-Amphiphiles

The gelation ability of the glycosylated lipopeptide-type bola-amphiphiles in 200 mM
HEPES–NaOH buffer (pH 8.0) was screened using the tube-inversion method (Table 1,
Figure 3). βGal–AAC–C6–F2 formed unstable partial hydrogel, and βGal–AAC–C6–F3
formed stable transparent hydrogel at their critical gelation concentrations (CGCs). How-
ever, even at sufficiently high concentration (about 10 wt%), βGal–AAC–C6–F1 remained
in solution state (Figure 3a). This behaviour may be attributed to the higher water solubility
compared to the other compounds. Furthermore, the sample of βGal–AAC–C6–F4, which
showed the lowest solubility, was dispersed at 0.35 wt%. These results indicate that differ-
ences in the combination of intermolecular hydrogen bonding between amide groups and
side-chain π-π stacking interactions, which were caused by the difference in the number of
F residues, have a significant effect on the self-assembly properties. It was revealed that
βGal–AAC–C6–F3 has the optimal assembly properties for gel formation. We obtained
that the compound’s maximum absorption wavelength (λmax) in 200 mM HEPES–NaOH
buffer (pH 8.0) shifted to shorter wavelength as the number of F increased (Table 1, Figure
S1, ESI† for absorption spectra), suggesting the larger intermolecular interaction of the
molecule. The difference in the chemical structure is only the number of F unit, however,
the abrupt change in the phase behaviour was observed. It is presumed that the differences
in the aromatic π–π interactions derived from the side chain phenyl groups of F and the
hydrogen bonding mode derived from the difference in the amide bonds greatly contribute
to the self-assembly ability of the molecules.
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Figure 3. Photographs of compounds at room temperature (around 23 ◦C); [βGal–AAC–C6–F1]
= 2.4 wt%, [βGal–AAC–C6–F2] = 2.4 wt% (CGC), [βGal–AAC–C6–F3] = 0.19 wt% (CGC), and
[βGal–AAC–C6–F4] = 0.35 wt% in 200 mM HEPES–NaOH buffer (pH 8.0).

Table 1. Gelation ability, critical gelation concentration (CGC), the gel-to-sol phase transition temper-
ature (Tgel) of hydrogels at CGC, and absorption maxima (λmax) at room temperature (around 23 ◦C)
of lipopeptide-type bola-amphiphiles. Conditions: 200 mM HEPES–NaOH buffer (pH 8.0).

Compound Gelation Ability CGC
[wt%]

CGC
[mM]

Tgel
[◦C]

λmax
[nm] 1

βGal–AAC–C6–F1 Solution — — — 416
βGal–AAC–C6–F2 Partial Gel 2.4 30 — 409
βGal–AAC–C6–F3 Transparent Gel 0.19 2.0 78 402
βGal–AAC–C6–F4 Dispersion — — — 397

1 [βGal–AAC–C6–F1] = 2.4 wt%, [βGal–AAC–C6–F2] = 2.4 wt% (CGC), [βGal–AAC–C6–F3] = 0.19 wt% (CGC),
and [βGal–AAC–C6–F4] = 0.35 wt%.

The above gelation process was thermally reversible, as shown in Figure 4a for βGal–
AAC–C6–F3 (Tgel: 78 ◦C at 0.19 wt% (CGC)), and a chromic change upon the sol–gel
transition was observed similarly to the existing system [39]. The UV–Vis absorption
spectral analysis confirmed the colour change. The absorption band arising from the
AAC moiety was bathochromically shifted from the absorption maximum being 402 nm
for the hydrogel state at 25 ◦C to 408 nm for the solution state at 85 ◦C (Figure 4b and
Figure S2, ESI† for temperature-dependent absorption spectral change). The differential
spectrum showed an increase in absorbance at 442 nm and a decrease of 370 nm. Con-
sidering its solution state counterpart, the blue-shifted absorption band in the hydrogel
state (∆λmax = 6 nm) indicates that the AAC moieties in the hydrogel are stacked in an
H-type aggregation mode. However, the visual colour change between the gel state and the
solution state of βGal–AAC–C6–F3 sample was scarce (Figure 4a) compared to previously
reported glycolipid-type hydrogels [35,39]. The cause of this phenomenon is unknown,
and we intend to investigate the cause in the future.
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Figure 4. (a) Photographs and schematics of a supramolecular hydrogel of βGal–AAC–C6–F3
exhibiting reversible thermal gel–sol transition and thermochromism and (b) UV–Vis absorption
spectral changes of the supramolecular hydrogel of βGal–AAC–C6–F3 upon heating (black line:
25 ◦C (gel state), red line: 85 ◦C (solution state), purple line: differential spectrum). Conditions:
[βGal–AAC–C6–F3] = 0.19 wt%, 200 mM HEPES–NaOH buffer (pH 8.0).
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2.3. Morphology of the Self-Assembled Glycosylated Lipopeptide-Type Bola-Amphiphiles

Insight into the morphology of the self-assembled structures was obtained by trans-
mission electron microscopy (TEM) on the βGal–AAC–C6–F2 and βGal–AAC–C6–F3
hydrogels, and βGal–AAC–C6–F4 dispersion. TEM images showed that βGal–AAC–C6–
F2 self-assembled into nanoribbons with an averaged width of several tens of nm and up
to ca. 100 nm and length of several micrometres (Figure 5a). On the other hand, βGal–
AAC–C6–F3 self-assembled into longer and thinner one-dimensional (1D) nanofibers with
an averaged width of ca. 25 nm, thereby facilitating the formation of a highly entangled
three-dimensional (3D) network (Figure 5b). These conventional TEM images are not cryo-
TEM and thus there is the potential influence of the sample preparation process (especially
during the drying process) on the observed morphologies. Nevertheless, we speculate that
the longer and thinner nanofibers of βGal–AAC–C6–F3, instead of the straight nanorib-
bons of βGal–AAC–C6–F2, should be responsible for the stable hydrogel formation of
βGal–AAC–C6–F3 even at a lower concentration. The detail in the molecular assembly
mode and the difference is under investigation. In contrast, the self-assembled structures
of βGal–AAC–C6–F4 dispersion (non-hydrogel) were non-networked aggregates of shorter
nanofibers (Figure 5c).

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 5 of 5 
 

 

2.3. Morphology of the Self-assembled Glycosylated Lipopeptide-Type Bola-Amphiphiles 
Insight into the morphology of the self-assembled structures was obtained by trans-

mission electron microscopy (TEM) on the βGal–AAC–C6–F2 and βGal–AAC–C6–F3 hy-
drogels, and βGal–AAC–C6–F4 dispersion. TEM images showed that βGal–AAC–C6–F2 
self-assembled into nanoribbons with an averaged width of several tens of nm and up to 
ca. 100 nm and length of several micrometres (Figure 5a). On the other hand, βGal–AAC–
C6–F3 self-assembled into longer and thinner one-dimensional (1D) nanofibers with an 
averaged width of ca. 25 nm, thereby facilitating the formation of a highly entangled three-
dimensional (3D) network (Figure 5b). These conventional TEM images are not cryo-TEM 
and thus there is the potential influence of the sample preparation process (especially dur-
ing the drying process) on the observed morphologies. Nevertheless, we speculate that 
the longer and thinner nanofibers of βGal–AAC–C6–F3, instead of the straight nanorib-
bons of βGal–AAC–C6–F2, should be responsible for the stable hydrogel formation of 
βGal–AAC–C6–F3 even at a lower concentration. The detail in the molecular assembly 
mode and the difference is under investigation. In contrast, the self-assembled structures 
of βGal–AAC–C6–F4 dispersion (non-hydrogel) were non-networked aggregates of 
shorter nanofibers (Figure 5c). 

 
Figure 5. Representative TEM images of (a) βGal–AAC–C6–F2, (b) βGal–AAC–C6–F3, and (c) βGal–AAC–C6–F4 samples 
after being transferred onto elastic carbon-coated grids and dried in vacuo. Conditions: [βGal–AAC–C6–F2] = 2.4 wt% 
(CGC), [βGal–AAC–C6–F3] = 0.19 wt% (CGC), and [βGal–AAC–C6–F4] = 0.35 wt%, 200 mM HEPES–NaOH buffer (pH 
8.0). 

3. Materials and Methods 
3.1. Generals 

Chemical reagents were purchased from Tokyo Chemical Industry Co., Ltd., FUJI-
FILM Wako Pure Chemical Corporation, Watanabe Chemical Industries, Ltd. and Bachem 
Holding AG., and used without further purification. Thin-layer chromatography (TLC) 
was performed on TLC silica gel 60F254 (Merck). Column chromatography was performed 
on silica gel 60N (Kanto Chemical Co., Inc., spherical neutral, 63 to 210 µm). 1H and 13C 
NMR spectra were recorded on a JEOL ECA500 spectrometer in CDCl3, CD3OD or dime-
thyl sulfoxide-d6 (DMSO-d6) with tetramethylsilane (TMS) or residual non-deuterated sol-
vents as the internal references. Multiplicities are abbreviated as follows: s = singlet, d = 
doublet, t = triplet, q = quartet, m = multiplet, dd = double doublet, and br = broad. LRMS 
(ESI-MS) analysis was conducted using a Bruker amaZon SL mass spectrometer. HRMS 
(ESI-FT-ICR-MS) analyses were conducted using a Bruker Solarix spectrometer. The ab-
sorption spectra were measured using a Jasco V-650 spectrometer equipped with an 
ETCS-761 temperature controller. FT-IR spectra were recorded on a JEOL FT/IR-4100 spec-
trometer using KBr pellets in the range of 4000 to 400 cm−1. 

3.2. Gelation Test 

Figure 5. Representative TEM images of (a) βGal–AAC–C6–F2, (b) βGal–AAC–C6–F3, and (c) βGal–AAC–C6–F4 samples
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3. Materials and Methods
3.1. Generals

Chemical reagents were purchased from Tokyo Chemical Industry Co., Ltd., FUJIFILM
Wako Pure Chemical Corporation, Watanabe Chemical Industries, Ltd. and Bachem
Holding AG., and used without further purification. Thin-layer chromatography (TLC)
was performed on TLC silica gel 60F254 (Merck). Column chromatography was performed
on silica gel 60N (Kanto Chemical Co., Inc., spherical neutral, 63 to 210 µm). 1H and
13C NMR spectra were recorded on a JEOL ECA500 spectrometer in CDCl3, CD3OD or
dimethyl sulfoxide-d6 (DMSO-d6) with tetramethylsilane (TMS) or residual non-deuterated
solvents as the internal references. Multiplicities are abbreviated as follows: s = singlet,
d = doublet, t = triplet, q = quartet, m = multiplet, dd = double doublet, and br = broad.
LRMS (ESI-MS) analysis was conducted using a Bruker amaZon SL mass spectrometer.
HRMS (ESI-FT-ICR-MS) analyses were conducted using a Bruker Solarix spectrometer.
The absorption spectra were measured using a Jasco V-650 spectrometer equipped with
an ETCS-761 temperature controller. FT-IR spectra were recorded on a JEOL FT/IR-4100
spectrometer using KBr pellets in the range of 4000 to 400 cm−1.

3.2. Gelation Test

The compounds (typically, 2.0 mg) were suspended in 200 mM HEPES–NaOH buffer
(pH 8.0) in a mighty vial. The suspensions were heated to form homogeneous solutions.
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Then, the hot solution was cooled to room temperature (around 23 ◦C) and incubated for
10 min. Gelation was confirmed by the gravitational flux with inversion of the vial. When
no fluid ran down the wall of the test tube upon inversion of the vial, we judged it to
be gel. Upon confirming the gel formation, the buffer was added to the samples, heated
to dissolution and cooled to room temperature. This process was repeated until the gel
formation could no longer be observed. The CGC was considered as the last concentration
at which a stable gel phase could be observed.

3.3. Measurement of the Gel–Sol Transition Temperature (Tgel)

The gel–sol phase transition behaviour of the βGal–AAC–C6–F3 hydrogel (0.19 wt%
(CGC) in 200 mM HEPES–NaOH buffer (pH 8.0)) was determined using the vial inversion
method. The inverted gel in the vial was placed in an oil bath, which was heated from
25 ◦C to 85 ◦C, at a rate of 1 ◦C/step. The vial was immersed at each temperature for 1 min
to equilibrate. The temperature, at which the sample completely dissolved, was defined as
the Tgel value of the gel.

3.4. Measurements of the Absorption Spectra of the Compounds

An aqueous suspension of the compounds in 200 mM HEPES–NaOH buffer (pH 8.0)
was heated to form a homogeneous solution. The hot solution was transferred into a quartz
cell (path length: 0.1 mm (assembled quartz cell, GL Sciences Inc., cat. no. AB10-UV-0.1 with
cell adaptor, GL Sciences Inc., cat. no. CAS-10-1) for βGal–AAC–C6–F1 and βGal–AAC–C6–
F2, or 1 mm for βGal–AAC–C6–F3 and βGal–AAC–C6–F4) and stored at room temperature
for 10 min. The absorption spectra were measured at room temperature. Conditions:
[βGal–AAC–C6–F1] = 2.4 wt%, [βGal–AAC–C6–F2] = 2.4 wt% (CGC), [βGal–AAC–C6–F3]
= 0.19 wt% (CGC), and [βGal–AAC–C6–F4] = 0.35 wt%, 200 mM HEPES–NaOH buffer
(pH 8.0).

3.5. Measurements of the Temperature-Dependent Absorption Spectral Changes of
βGal–AAC–C6–F3 Hydrogel

An aqueous suspension of βGal–AAC–C6–F3 (0.19 wt% (CGC) in 200 mM HEPES–
NaOH buffer (pH 8.0)) was heated to form a homogeneous solution. The hot solution
(400 mL) was transferred into a quartz cell (path length: 1 mm) and stored at room
temperature for 10 min to complete the gelation. The absorption spectra were measured
upon heating from 25 to 85 ◦C.

3.6. TEM Observation

Sample (ca. 10 µL) was dropped on a copper TEM grid covered by an elastic carbon-
support film (20 to 25 nm) with a filter paper underneath. Then, the excess solution
was blotted with the filter paper immediately. The TEM images were acquired using a
JEOL JEM-2100F (accelerating voltage: 200 kV) equipped with a CCD camera. Conditions:
[βGal–AAC–C6–F2] = 2.4 wt% (CGC), [βGal–AAC–C6–F3] = 0.19 wt% (CGC), and [βGal–
AAC–C6–F4] = 0.35 wt%, 200 mM HEPES–NaOH buffer (pH 8.0).

3.7. Synthesis

Compound 1 was synthesized according to previously reported methods [39]. H-FF-OH
was purchased from Bachem Holding AG. H-FFF-OH and H-FFFF-OH were synthesized by
standard liquid phase synthesis using N-α-(9-Fluorenylmethoxycarbonyl)-L-phenylalanine
(Fmoc-F-OH) and L-phenylalanine t-butyl ester hydrochloride (H-F-OBut•HCl) [73]. All
the amino acids and Fmoc protected peptides were conjugated via active ester method by
using 1-[1-(cyano-2-ethoxy-2-oxoethylideneaminooxy)-dimethylamino-morpholino]-uronium
hexafluorophosphate (COMU) in the presence of N,N-diisopropylethylamine (DIEA) in dry
N,N-dimethylformamide (DMF) under an N2 atmosphere. Fmoc deprotection was done
with 20% piperidine in DMF. t-Butyl ester deprotection was done with trifluoroacetic
acid:H2O = 95:5 (v/v).
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3.7.1. Synthesis of Compound 2

After cooling in an ice bath, N-hydroxysuccinimide (52 mg, 0.45 mmol, 1.5 eq.) and
water soluble carbodiimide hydrochloride (WSCI•HCl, 116 mg, 0.60 mmol, 2.0 eq.) were
added to a solution of 1 (160 mg, 0.30 mmol, 1.0 eq.) in dry DMF (6 mL), and the mixture
was stirred at room temperature overnight under an N2 atmosphere. The solvent was then
evaporated, and residue was purified by column chromatography (SiO2, CH2Cl2:MeOH
= 6:1 (v/v)). Then, the residue was further purified by reprecipitation with diethyl ether
(Et2O) for two times. The resulting product was dried under vacuum to give compound 2
(113 mg, 59%) as a yellow powder. 1H NMR (500 MHz, CD3OD): δ (ppm) = 1.31–1.37 (m,
3H), 1.43–1.49 (m, 3H), 1.58–1.64 (m, 3H), 1.69–1.75 (m, 3H), 2.62 (q, J = 7.1 Hz, 3H), 2.80 (q,
J = 6.6 Hz, 4H), 3.51 (t, 2H), 3.57 (dd, J1 = 3.4 Hz, J2 = 9.7 Hz, 1H), 3.67 (q, J = 5.7 Hz, 1H),
3.72–3.80 (m, 3H), 3.89 (d, J = 3.5 Hz, 1H), 4.89 (d, J = 7.4 Hz, 1H), and 7.09–7.13 (m, 4H).
13C NMR (125 MHz, CD3OD): δ (ppm) = 25.51, 26.48, 27.20, 29.15, 29.35, 31.45, 39.07, 62.41,
70.19, 72.22, 74,.75, 76.88, 92.05, 103.07, 117.64, 126.70, 132.29, 139.69, 157.19, 167.07, 169.76,
170.26, 171.90. LRMS (ESI-TOF, positive mode): Calcd. for [M(C27H32ClN3O12)+Na]+: m/z
= 648.2; Found: 648.2.

3.7.2. Synthesis of βGal–AAC–C6–F1

H-F-OH (5.8 mg, 0.035 mmol, 1.1 eq.) and DIEA (6.4 µL, 0.038 mmol, 1.2 eq.) were
added to a solution of 2 (20 mg, 0.032 mmol, 1.0 eq.) in dry DMF (2 mL), and the mixture
was stirred at room temperature overnight under an N2 atmosphere. The solvent was then
evaporated, and residue was purified by column chromatography (SiO2, CH2Cl2:MeOH =
2:1 (v/v)). Then, the residue was further purified by reprecipitation with Et2O for two times.
The resulting product was dried under vacuum to give βGal–AAC–C6–F1 (17 mg, 78%) as
a yellow powder. 1H NMR (500 MHz, CD3OD): δ (ppm) = 1.16–1.28 (m, 4H), 1.43–1.55 (m,
4H), 2.09–2.14 (m, 2H), 2.88–3.00 (m, 2H), 3.47 (t, J1 = 7.2 Hz, 2H), 3.57 (dd, J1 = 2.9 Hz, J2 =
9.8 Hz, 1H), 3.66–3.70 (m, 1H), 3.71–3.80 (m, 3H), 3.88 (d, J = 3.5 Hz, 1H), 4.52 (q, J = 4.7 Hz,
1H), 4.58 (s, 1H), 7.09–7.15 (m, 3H), 7.18–7.20 (m, 3H), and 7.33–7.24 (m, 3H). 13C NMR (125
MHz, DMSO-d6): δ (ppm) = 25.17, 26.05, 28.05, 32.77, 33.05, 35.20, 36.98, 37.84, 48.70, 53.71,
60.48, 68.21, 70.39, 73.57, 90.00, 101.26, 115.89, 125.61, 126.33, 128.14, 129.30, 138.16, 147.53,
151.05, 155.31, 165.55, 167.55, 172.12, 173.84. HRMS (ESI-FT-ICR, positive mode): Calcd. for
[M(C32H38ClN3O11)+H]+: m/z = 676.2268; Found: 676.2258. FT-IR (KBr pellet): v = 3422.1,
3029.6, 2937.1, 2861.8, 2359.5, 2344.1, 1771.3, 1712.5, 1654.6, 1607.4, 1508.1, 1442.5, 1409.7,
1231.3, 1151.3, 1074.2, 834.1, 743.4, 703.9 cm–1.

3.7.3. Synthesis of βGal–AAC–C6–F2

H-FF-OH (11 mg, 0.035 mmol, 1.1 eq.) and DIEA (6.4 µL, 0.038 mmol, 1.2 eq.) were
added to a solution of 2 (20 mg, 0.032 mmol, 1.0 eq.) in dry DMF (4 mL), and the mixture
was stirred at room temperature overnight under an N2 atmosphere. The solvent was then
evaporated, and residue was purified by column chromatography (SiO2, CH2Cl2:MeOH
= 3:1 to 2:1 to 1:1 to 0:1 (v/v)). Then, the residue was further purified by reprecipitation
with Et2O for two times. The resulting product was dried under vacuum to give βGal–
AAC–C6–F2 (22 mg, 84%) as a yellow powder. 1H NMR (500 MHz, CD3OD): δ (ppm) =
1.08 (q, J = 8.0 Hz, 2H), 1.16 (q, J = 7.1 Hz, 2H), 1.34–1.38 (m, 2H), 1.48 (q, J = 7.4 Hz, 2H),
2.06 (t, J = 6.9 Hz, 1H), 2.72 (dd, J1 = 5.3 Hz, J2 = 13.5 Hz, 2H), 3.01 (dd, J1 = 3.3 Hz, J2
= 14.0 Hz, 1H), 3.13–3.17 (m, 2H), 3.43–3.48 (m, 2H), 3.57 (dd, J1 = 3.2 Hz, J2 = 10.0 Hz,
1H), 3.67–3.69 (m, 1H), 3.72–3.80 (m, 3H), 3.89 (d, J = 3.4 Hz, 1H), 4.44 (t, J = 5.8 Hz, 1H),
4.57–4.60 (m, 3H), 7.09–7.14 (m, 5H), and 7.15–7.27 (m, 9H). 13C NMR (125 MHz, DMSO-d6):
δ (ppm) = 25.09, 25.24, 25.98, 27.97, 29.53, 33.05, 35.14, 36.92, 37.35, 48.30, 54.25, 84. 63, 93.18,
98.30, 101.26, 115.69, 125.51, 126.13, 127.94, 129.14, 129.39, 138.20, 141.81, 150.62, 151.05,
157.12, 167.39, 169.91, 170.97, 171.35, 172.82. HRMS (ESI-FT-ICR, positive mode): Calcd. for
[M(C41H47ClN4O12)+H]+: m/z = 823.2952; Found: 823.2958. FT-IR (KBr pellet): v = 3398.0,
3060.5, 3027.7, 2933.2, 2859.9, 2360.4, 2342.1, 1770.3, 1712.5, 1654.6, 1603.5, 1508.1, 1442.5,
1409.7, 1231.3, 1150.3, 1077.1, 832.1, 744.4, 701.0 cm–1.
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3.7.4. Synthesis of βGal–AAC–C6–F3

H-FFF-OH (16 mg, 0.035 mmol, 1.1 eq.) and DIEA (6.4 µL, 0.038 mmol, 1.2 eq.) were
added to a solution of 2 (20 mg, 0.032 mmol, 1.0 eq.) in dry DMF (3 mL), and the mixture
was stirred at 50 ◦C overnight under an N2 atmosphere. The solvent was then evaporated,
and residue was purified by column chromatography (SiO2, CH2Cl2:MeOH = 2:1 to 1:1
to 0:1 (v/v)). Then, the residue was further purified by reprecipitation with Et2O for two
times. The resulting product was dried under vacuum to give βGal–AAC–C6–F3 (18 mg,
58%) as a yellow powder. 1H NMR (500 MHz, CD3OD): δ (ppm) = 1.05–1.10 (m, 2H),
1.16 (q, J = 7.2 Hz, 2H), 1.32–1.39 (m, 2H), 1.48 (q, J = 7.1 Hz, 2H), 2.01 (t, J = 7.7 Hz, 2H),
2.79–2.85 (m, 1H), 2.99–3.05 (m, 2H), 3.12–3.16 (m, 2H), 3.18–3.21 (m, 1H), 3.43–3.49 (m, 3H),
3.57 (dd, J1 = 3.7 Hz, J2 = 10.0 Hz, 1H), 3.68 (t, J = 5.7 Hz, 1H), 3.72–3.80 (m, 3H), 3.89 (d, J =
4.0 Hz, 1H), 4.44–4.47 (m, 1H), 4.56–4.61 (m, 3H), 7.11–7.13 (m, 5H), and 7.15–7.27 (m, 14H).
HRMS (ESI-FT-ICR, positive mode): Calcd. for [M(C50H56ClN5O13)+H]+: m/z = 970.3636;
Found: 970.3606. FT-IR (KBr pellet): v = 3403.7, 3083.6, 3062.4, 3027.7, 2933.2, 2859.0, 2360.4,
2342.1, 1772.3, 1708.6, 1653.7, 1539.9, 1523.5, 1508.1, 1455.0, 1440.6, 1409.7, 1303.6, 1230.4,
1151.3, 1078.0, 817.7, 744.4, 699.1, 669.2 cm–1.

3.7.5. Synthesis of βGal–AAC–C6–F4

H-FFFF-OH (13 mg, 0.018 mmol, 1.1 eq.) and DIEA (4.0 µL, 0.024 mmol, 1.5 eq.)
were added to a solution of 2 (10 mg, 0.016 mmol, 1.0 eq.) in dry DMF (5 mL), and the
mixture was stirred at 50 ◦C overnight under an N2 atmosphere. The solvent was then
evaporated, and residue was purified by column chromatography (SiO2, CH2Cl2:MeOH
= 2:1 to 1:1 to 0:1 (v/v)). Then, the residue was further purified by reprecipitation with
Et2O for two times. The resulting product was dried under vacuum to give compound
βGal–AAC–C6–F4 (12 mg, 66%) as a yellow powder. 1H NMR (500 MHz, DMSO-d6): δ
(ppm) = 0.81–0.86 (m, 1H), 0.96–1.01 (m, 1H), 1.07 (q, J = 7.6 Hz, 2H), 1.20–1.27 (m, 4H),
1.39 (q, J = 6.0 Hz, 1H), 1.76 (s, 1H), 1.89 (q, J = 6.9 Hz, 1H), 2.47–2.51 (m, 2H), 2.55 (m, J =
6.6 Hz, 2H), 2.59 (m, J = 13.7 Hz, 1H), 2.69–2.76 (m, 2H), 2.81–2.85 (m,1H), 2.72 (dd, J1 = 5.2
Hz, J2 = 13.2 Hz, 2H), 3.01–3.07 (m, 4H), 3.46 (t, J = 4.9 Hz, 1H), 3.50–3.54 (m, 3H), 3.66 (t, J
= 3.4 Hz, 1H), 3.91 (d, J = 6.9 Hz, 1H), 4.34–4.39 (m, 2H), 4.43–4.48 (m, 2H), 4.69–4.71 (m,
1H), 4.76 (d, J = 8.0 Hz, 1H), 4.89 (d, J = 6.3 Hz, 1H), 5.18 (d, J = 5.1 Hz, 1H), 6.94–7.51 (m,
20H). 7.51 (d, J = 5.2. Hz, 1H), 7.81 (d, J = 6.9 Hz, 1H), 7.91 (d, J = 8.5 Hz, 1H), 8.36 (d, J =
6.9 Hz, 1H). HRMS (ESI-FT-ICR, positive mode): Calcd. for [M(C59H65ClN6O14)+H]+: m/z
= 1117.4320; Found: 1117.4341. FT-IR (KBr pellet): v = 3410.5, 3282.3, 3087.5, 3066.3, 3029.6,
2931.3, 2859.0, 2360.4, 2342.1, 1771.3, 1713.4, 1639.2, 1540.9, 1524.5, 1454.1, 1441.5, 1409.7,
1229.4, 1152.3, 1077.1, 832.1, 744.4, 699.1 cm–1.

4. Conclusions

In summary, we have successfully developed glycosylated lipopeptide-type
supramolecular hydrogelators exhibiting small but perceptible reversible thermochromism
along with the gel–sol transition. The gelation ability and the morphology of the self-
assembled nanostructures depend on the number of F residues. βGal–AAC–C6–F2 formed
unstable partial hydrogel (CGC = 2.4 wt%), and βGal–AAC–C6–F3 formed stable transpar-
ent hydrogel (CGC = 0.19 wt%). On the other hand, βGal–AAC–C6–F1 and βGal–AAC–
C6–F4 did not form a hydrogel. The morphology of the self-assembled nanostructures was
affected by the number of F residues and in the present molecular scaffold (i.e., βGal–AAC–
C6) with βGal as the saccharide structure and C6 alkyl chain as the spacer, F3 peptide was
optimal for hydrogel formation. Further research into potential bio-applications, such as
the development of sensing materials for peptidase, is in progress.
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