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Abstract
In the quest for deciphering disease-associated biomarkers, high-performing tools for multi-

plexed protein expression profiling of crude clinical samples will be crucial. Affinity proteo-

mics, mainly represented by antibody-based microarrays, have during recent years been

established as a proteomic tool providing unique opportunities for parallelized protein

expression profiling. But despite the progress, several main technical features and assay

procedures remains to be (fully) resolved. Among these issues, the handling of protein

microarray data, i.e. the biostatistics parts, is one of the key features to solve. In this study,

we have therefore further optimized, validated, and standardized our in-house designed

recombinant antibody microarray technology platform. To this end, we addressed the main

remaining technical issues (e.g. antibody quality, array production, sample labelling, and

selected assay conditions) and most importantly key biostatistics subjects (e.g. array data

pre-processing and biomarker panel condensation). This represents one of the first anti-

body array studies in which these key biostatistics subjects have been studied in detail.

Here, we thus present the next generation of the recombinant antibody microarray technol-

ogy platform designed for clinical immunoproteomics.

Introduction
High-performing tools for multiplexed protein expression profiling of minimal amounts of
crude clinical samples will be essential in the quest for deciphering disease-associated biomark-
ers for e.g. diagnosis and prognosis [1–3]. A useful technology platform should be able to
decode complex biological samples into detailed protein maps, as well as to filter and interpret
these big data sets in terms of candidate biomarkers. The latter should result in both a full list
of markers, reflecting the disease biology, and a condensed panel of biomarkers, displaying the
best discriminatory power for e.g. diagnosis. This will, however, place high demands on the
performance of the selected technology.
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During the last several years, affinity proteomics, represented mainly by antibody microar-
rays [4–7], have been developed and established as a key tool within proteomics, providing
opportunities for parallelized protein expression profiling, for review see [2, 8–10]. The plat-
forms have been successfully used for delineating low- to high-abundant serum, plasma, urine,
and/or tissue biomarkers associated with various forms of cancers and autoimmune disorders,
see e.g. [5, 6, 11, 12]. But despite the progress, a number of key technical features (e.g. quality
controls, specificity, functionality, and/or reproducibility) and key procedures (e.g. protein
array data handling, i.e. the biostatistics part) remains to be validated, standardized, and imple-
mented [8, 9]. In particular, the biostatistics of protein microarrays represents one of the key
central steps that has not yet been adequately addressed.

The process of designing, developing and applying high-performing antibody microarrays
for clinical proteomics is a complex process and requires a truly cross-disciplinary approach to
be adopted [9]. To this end, five key methodology areas must be addressed in a parallel manner,
including i) antibody design, ii) microarray design, iii) sample handling, iv) microarray assay,
and v) biostatistics. Adopting this strategy, we have during the last decade developed and estab-
lished a recombinant antibody microarray technology platform for clinical immunoproteomics
[9, 13, 14]. The latter means that we explore the immune system as an early and specific sensor
for disease by targeting mainly immunoregulatory proteins. In this study, we have further opti-
mized, validated, and standardized our in-house designed technology platform [4, 7, 11] by
addressing the main remaining technical features (e.g. antibody quality, array production, bio-
tinylation, and selected assay conditions) and most importantly the biostatistics part (e.g. array
data pre-processing and biomarker panel condensation) (see Fig 1). Here, we thus present the
next generation of our recombinant antibody microarray technology platform designed for
clinical immunoproteomics.

Material and Methods

Standard Operating Procedures
Standard operating procedure protocols (SOPs) were generated for each step, ranging from
sample handling to microarray data analysis, resulting in a standardized SOP for running the
recombinant scFv antibody microarray technology platform for clinical immunoproteomics.

Samples
We used three cohorts of de-identified crude serum samples (marked healthy or non-healthy/
diseased), denoted cohort 1 to 3, collected at Skåne University Hospital (Lund, Sweden). No
clinical information or patient identifiers were retained for samples (since this information was
neither needed nor used in this study). The work was approved by the regional ethics review
board in Lund, Sweden (LU378-02, LU608-00, LU-30-03, LU513-01). Written consent was
taken from participants. The samples were aliquoted and stored at -20°C until use. In serum
sample cohort 1, 50 samples were mixed to create a reference serum sample, while the others
were handled as individual samples, marked as either diseased (n = 151) or healthy (n = 57).
Serum sample cohort 2 was composed of 341 samples, marked as either diseased (n = 171) or
healthy (n = 170). Serum sample cohort 3 was composed of 1331 samples, marked as either dis-
eased (n = 443) or healthy (n = 888).

Quality control samples
Three types of standardized quality control (QC) serum samples, denoted QCref, QClabel and
QCnorm, were introduced. QCref is based on pooled human serum samples (SeraCare Life
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Sciences, Milford, MA, USA), which is biotinylated in one batch (see below) and stored as ali-
quots, and then processed in one subarray on each microarray slide. QCref is intended to be
used for evaluation of systematic technical variations and, if so required, for evaluation of the
performance of the selected microarray data normalization procedure. QClabel is based on the
same pooled human serum samples (SeraCare Life Sciences, Milford, MA, USA), but in con-
trast to QCref, it is biotinylated alongside the target samples of the study at hand. QClabel is
intended to be used as a control for the biotinylation step. QCnorm is prepared based on com-
bining aliquots of equal volume of serum samples from each study group (e.g. healthy and dis-
eased groups) from the study at hand. QCnorm is intended to be used as an alternative route for
microarray data normalization if so required.

Labeling of serum samples
The crude serum samples were labeled with EZ-link Sulfo-NHS-LC-Biotin (Pierce, Rockford,
IL, USA) using a recently optimized labeling protocol for serum proteomes [4, 7]. Briefly, the
samples were diluted 1:45 in PBS (~2mg protein/ml), and biotinylated at a molar ratio of bio-
tin:protein of 15:1. Unreacted biotin was removed by extensive dialysis against PBS (pH 7.4)
for 72 h at 4°C. The samples were aliquoted and stored at -20°C until further use.

Production and purification of antibodies
In total, 377 antibodies, comprising of i) two monoclonal antibodies against CA-19-9 (Nordic
BioSite, Stockholm, Sweden), and 375 human recombinant single-chain variable fragment
(scFv) antibodies, including 356 antibodies targeting mainly immunoregulatory proteins and
19 scFv antibodies targeting short amino acid motifs (4 to 6 amino acids long) [15] were
selected from a large phage display library [16] (Säll et al, manuscript submitted) (S1 Table).
The specificity, affinity (normally in the nM range), and on-chip functionality of these phage
display derived scFv antibodies were ensured by using i) stringent phage-display selection and
screening protocols (using different sample formats, ranging from pure proteins and mixtures
of pure proteins to crude samples) [16], ii) multiple clones (1 to 9) per protein, and iii) a molec-
ular design, adapted for microarray applications [14]. In addition, the specificity of several of

Fig 1. The key technological features involved in the design of our recombinant antibodymicroarray technology platform, outlining the
specific, individual features uniquely addressed in this study.

doi:10.1371/journal.pone.0159138.g001
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the antibodies have been validated using pure proteins, mixtures of pure proteins, as well as
well-characterized, standardized serum samples (with i) known levels of the targeted analytes,
ii) spiked with known level of specific protein(s) and/or iii) specific protein(s) depleted), and/
or orthogonal methods, such as mass spectrometry (affinity pull-down experiments), ELISA,
MesoScaleDiscovery assay, and cytometric bead assay, as well as using blocking experiments
(S1 Table) [4, 7, 11, 17–21]

All scFv antibodies were produced in E. coli and purified from either i) expression superna-
tants using affinity chromatography on Ni2+-NTA agarose (Qiagen, Hilden, Germany), or ii)
periplasmic space with the use of MagneHisTM protein purification system (Promega Corpora-
tion, Madison, WI, USA) and a KingFisher Flex robot (Thermo Fisher Scientific, Waltham,
MA, USA). The elution buffer (250 mM Imidazole) was exchanged for PBS through either
extensive dialysis (supernatants) or using Zeba 96-well desalt spin plates (Thermo Fisher Scien-
tific). The protein concentration was determined by measuring the absorbance at 280nm using
NanoDrop-1000 (Thermo Acientific, Wilmington, DE, USA). The degree of purity and integ-
rity of the scFv antibodies were evaluated by 10% SDS-PAGE (Invitrogen, Carlsbad, CA, USA).
All antibodies were stored at 4°C until use.

Production of antibody microarrays
Thirty μL scFv antibody was added per well to the 384-well printing source plate (black poly-
propylene, NUNC A/S, Roskilde, Denmark), containing 3 μL 1 μg/ml Alexa Fluor 555-Cadav-
erine (Thermo Fisher Scientific, Waltham, MA, USA). Fluorophore-labeled cadaverine was
used as a spotting control and, if so required, for assisting in the spot finding step during array
quantification. The antibodies were printed on black polymer MaxiSorp microarray slides
(NUNC), by spotting one drop (~330 pl) at each position, using a non-contact printer (SciFlex-
arrayer S11, Scienion, Berlin, Germany). Four different microarray layouts were used, denoted
array layout A to D, including a 94-plex antibody array (25x25 spots) (column x row), a
184-plex antibody array (32x22 spots), 195-plex antibody array (25x28 spots), and 351-plex
antibody array (36x34 spots).

In layout A, 25x25 subarrays were printed, composed of 94 scFv antibodies, one negative
control (PBS), and one positive control/reference marker (biotinylated BSA (b-BSA)). Ten
25x25 subarrays per slide were printed. Within each individual subarray, each scFv antibody
was printed in 5 subsequent replicates, while PBS was spotted in 5 subsequent replicates at six
locations spread across the subarray (i.e. in total 30 replicates). Further, b-BSA was printed as
five full rows (5x25 spots), and spread across the subarray, and used to control for any surface
defects. In total, nine slides were produced in three individual spot runs (three slides/day).
Based on inadequate printing quality, only 83 scFv antibodies were used in the subsequent data
analysis steps.

In layout B, 32x22 subarrays were printed, composed of 184 scFv antibodies, one negative
control, and one positive reference marker. Each subarray was divided in three identical seg-
ments where a row of b-BSA consisting of 32 replicate spots was printed at the beginning and
the end of each segment, i.e. four lines. Each scFv antibody was dispensed in triplicates, one in
each segment, to assure adequate reproducibility. The negative control was printed in eight
replicates per segment. Thirteen subarrays per slide were printed, and in total six slides were
generated. Due to printing issues, only the first five rows in each segment, corresponding to
121 antibodies, were used in the subsequent data analysis.

In layout C, 25x28 subarrays were printed, composed of 195 scFv antibodies, one negative
control, and one positive reference marker. The subarrays were divided and printed in three
identical segments as in layout B, but with the following changes; the negative control was
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printed in five replicates per segment and b-BSA was printed in 25 replicates. Fourteen subar-
rays per slide were printed. In total, sixteen slides were produced in two individual spot runs
(eight slides/day).

In layout D, 36x34 subarrays were printed, composed of 351 antibodies, one negative con-
trol, and one positive reference marker. The subarrays were divided and printed in three identi-
cal segments as in layout B, but with the following change; the negative control was printed in
nine replicates per segment, and b-BSA was printed in 36 replicates. Fourteen subarrays were
printed per slide.

Analysis of antibody microarrays
Briefly, the printed microarray slides were allowed to dry for 2h (cohort I) or 1 week (cohorts II
and III) at RT and were then mounted into a multi-well incubation chambers (NEXTERION1
IC-16) (Schott, Jena, Germany). Next, the slides were blocked with 1% (v/v) Tween-20 (Merck
Millipore) and 1% (w/v) fat-free milk powder (Semper, Sundbyberg, Sweden) in PBS (MT-PBS
solution) for 2h (cohort I) or 1h (cohorts II and III) at RT. Of note, the composition of the orig-
inal blocking solution (5% (v/v) fat-free milk in PBS) [22] was re-optimized (various combina-
tions of Tween-20 and fat-free milk was tested) in order to reduce non-specific background
binding and increase signal to noise ratios (data not shown). Subsequently, the slides were
washed four times with 150 μl 0.05% (v/v) Tween-20 in PBS (T-PBS solution), and then incu-
bated with 100 μl biotinylated serum sample, diluted 1:10 in MT-PBS solution (corresponding
to a total serum dilution of 1:450), for 2h at RT under gentle agitation using an orbital shaker.
Of note, the original sample incubation time (1h) [22) was re-optimized in order to increase
signal intensities and signal to noise ratios (data not shown). After another washing step, the
slides were incubated with 100 μl 1μg/ml Alexa 647-labelled streptavidin (SA647) (Invitrogen)
in MT-PBS for 1h at RT under agitation. Finally, the slides were washed in T-PBS, and dried
under a stream of nitrogen gas, and immediately scanned with a confocal microarray scanner
(ScanArray Express, PerkinElmer Life & Analytical Sciences) at 10 μm resolution, using fixed
scanner settings of 60% PMT gain and 90% laser power. The raw array data is available from
the communicating author upon request.

Data pre-processing
The ScanArray Express software v4.0 (PerkinElmer Life & Analytical Sciences) was used to
quantify spot signal intensities, using the fixed circle method. Signal intensities with local back-
ground subtraction were used for data analysis. In the case of antibodies, each data point repre-
sents the mean value of all three replicate spots, unless any replicate CV exceeded 15%, in
which case the worst performing replicate was eliminated and the average value of the two
remaining replicates was used instead. Log2 values of signal intensities were used for subse-
quent analysis. The mean value was determined for the positive and negative control spots,
using all data points.

In order to only include antibodies with a detectable signal, a limit of detection (LOD) cut-
off was implemented. The cut-off was defined as mean PBS intensity plus 2xSDPBS. Antibodies
that were found to have a mean signal intensity below LOD in> 70% of all analyzed samples
were removed from the raw data set.

To identify technical outlier samples in the raw data, a two-step procedure was imple-
mented. First, using the positive control (see above), the sample was excluded if the CV-value
was�20% for at least 3 of 4 rows (also a way of identifying segments within a subarray with
potential printing issues, see above). A visual inspection was conducted if 2 of 4 rows displayed
inadequate CV-values, potentially leading to the use of only 1 or 2 segments of the subarray
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(made up of 3 identical segments). Second, a principle component analysis (PCA) was per-
formed using the Qlucore Omics Explorer 3.1 software (Qlucore AB, Lund, Sweden) for visual
identification of potential outliers.

Standard data normalization
A two-step normalization strategy was used. In the first step, any differences between days
(rounds) of analysis were normalized using the “subtract by group mean” approach [23]. In
this approach, the mean value (�x) of each analyte (i) within each day of analysis was calculated
(= �xi), and subtracted from the respective individual values (xi), thus zero centering the data
(= xi��xi). In order to avoid negative and/or zero values in the data, the grand mean signal of
each antibody over all days of analysis was calculated using the raw data, and was added to
each respective data point. In the second step, any array-to-array differences were normalized
using a modified semi-global normalization method, as previously described [11, 24]. In this
approach, the standard deviation (SD) was first calculated for each antibody, and the twenty
percent of the antibodies (X) displaying the lowest SD-values in all the subarrays were identi-
fied and used to calculate a normalization factor for each subarray: The normalization factor Ni

was calculated by the formula Ni = Si/μ, where Si was the sum of the log2 transformed signal
intensities for the X analytes for each subarray and μ was the sum of the log2 transformed sig-
nal intensities for the X analytes averaged over all subarrays. Finally, the signal of each subarray
was divided by the normalization factor Ni.

Evaluation of normalization strategies
In total, nine different normalization strategies, including our currently adopted normalization
method, “subtract by group mean” strategy combined with “semi-global normalization” [11,
24], were tested and compared (Table 1). All approaches were also compared to un-normalized
log2 transformed raw data to investigate the overall impact of the normalization process on a
data set. At this stage, QCnorm was not explored as an alternative route for microarray data
normalization.

The different strategies included variance stabilization and normalization (VSN, vsn pack-
age) [25], LOESS (limma package) [26], quantile (preprocessCore package) [27] and ComBat
(sva package) [28] methods in R using Bioconductor packages [29] (Table 1). LOESS and VSN
normalizations were implemented globally (using all samples analyzed across all days of analy-
sis) as well as locally (using all samples within each single day of analysis). In the case of LOESS
normalization, the default parameters in limma package was used. When performing VSN nor-
malization, the quantile that was used for the resistant least trimmed sum of squares regression,

Table 1. List of normalization processes evaluated in this study.

Un-normalized log2 transformed data

Global VSN

Global LOESS

Local LOESS

Local VSN

Quantile

Subtract by group mean + Semi-global

ComBat + Semi-global

Global VSN + Combat

Global LOESS + Combat

doi:10.1371/journal.pone.0159138.t001

Recombinant Antibody Microarray

PLOS ONE | DOI:10.1371/journal.pone.0159138 July 14, 2016 6 / 25



for the estimation of parameters, was set to 0.5 to ensure the robustness of the procedure. For
quantile normalization, the default parameters in preprocessCore package was adopted. When
applying ComBat normalization, a parametric prior method was selected, with the batches cor-
responding to days of analysis. In addition to the above-mentioned methods, a modified semi-
global normalization method was used for linear scaling of data. Further, global LOESS and
global VSN were also tested in combination with ComBat in an attempt to adjust for day-to-
day variation. Finally, ComBat was also evaluated in combination with the semi-global normal-
ization approach to adjust for array-to-array variation. For comparative evaluation of the dif-
ferent approaches, several qualitative measures, such as normal quantile-quantile plots,
boxplots, density plots and meanSdPlots were utilized in R. Visualization of the samples by
principal component analysis (PCA) and two-group comparisons (t-tests) were conducted in
Qlucore Omics Explorer 3.1 software (Qlucore AB, Lund, Sweden).

In addition, supervised classification of samples was used when comparing different days of
analysis. To this end, the Random Forest (RF) function implemented in the randomForest R
package was also used to create a RF model with 1000 decision trees (ntree = 1000) [30, 31].

Evaluation of methods for deciphering condensed biomarker signatures
Four different methods for defining a condensed biomarker signature providing the best classi-
fication of two sample groups were evaluated, including i) selection based on p-values, ii) back-
ward elimination using support vector machine (SVM), iii) modified backward elimination
using SVM consensus approach (SVMc), and iv) RF [32].

First, the biomarkers were ranked based on their Wilcoxon p-values, and the markers with
the lowest p-values were selected.

In the case of backward elimination using an SVM (BE-SVM), an SVM with a linear kernel
and soft margin parameter C = 1, was used as the classifier in a backward elimination scheme.
Given a panel of all biomarkers available, a leave-one-out (LOO) cross-validation estimate of
the AUC was calculated. Next, a ranking of the included biomarkers was established using all
of the SVMs trained in the LOO cross-validation procedure [24]. The biomarker with the low-
est ranking was removed from the panel and the procedure restarted by obtaining a new LOO
cross-validation AUC estimate and a new ranking of the remaining biomarkers. This proce-
dure was terminated when only one biomarker was left in the panel. This backward elimination
scheme resulted in a plot of AUC (LOO cross-validation estimate) as a function of panel size
together with a final biomarker ranking list.

Next, we evaluated a modified version of backward elimination using an SVMc approach. A
potential problem with the above approach might be overtraining with respect to a given data
cohort, especially when sample sizes are small. Randomly correlated biomarkers might obtain
a high rank in the above procedure. To reduce the effect of such a potential overtraining, an
additional K-fold cross-validation loop was added in which one of the K:th parts was removed
from the data cohort before the initiation of the backward elimination scheme. The outermost
was iterated, leaving out K parts of the data, hence resulting in K final ranking lists, possibly
NxK lists if the outermost loop was randomly repeated N times. A consensus approach [24]
was then used to combine these lists into a final biomarker ranking list, now with fewer ran-
dom correlating biomarkers. In this study, we used K = 5 and N = 3, except for sample cohort
3, where N = 1 was used.

Both the above approaches are based on linear classifiers and might for some diagnostic
problems lack the necessary complexity to reach high accuracy. SVM classification models
could use non-linear kernels to allow for more complex classifiers, but with the cost of tuning
more parameters. Random Forest (RF) models [32] are thus an interesting alternative,
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providing both non-linear capabilities and built-in feature ranking methods, with very few tun-
ing parameters. Again to reduce overtraining with respect to specific data cohorts, an outer
(repeated) K-fold cross-validation loop is used to obtain a final ranking list. This feature selec-
tion follows the procedure outlined in the caret package [33].

All condensed biomarker signatures, obtained by the different rankings presented above,
were evaluated using a linear SVM. In those cases where the biomarker list was based on RF
models, an evaluation using a RF was also added. The reason for this was that if non-linear
effects was discovered by the RF ranking method, the use of a linear SVM during evaluation
was not optimal. Thus, it was natural to also evaluate a RF ranking list by RF models.

Results
In this study, we have further optimized, validated, and standardized our in-house designed
recombinant antibody microarray technology platform for clinical immunoproteomics. This
was accomplished by resolving the main technical features and assay procedures, and most
importantly the protein microarray biostatistics step as specified in Fig 1. Collectively, these
advances enabled us to formalize the entire platform and generate standard operating proce-
dures (SOPs) for all steps of the set-up.

Antibody quality control
We used recombinant scFv antibodies, selected from a large phage display library based on a
molecular design adapted for microarray applications, as content and evaluated the probe qual-
ity in terms of spotting concentration, on-chip functionality and specificity.

First, we optimized and standardized the spotting concentration for each individual anti-
body. Representative results for three antibody clones, two targeting a crude biotinylated
serum sample (Fig 2A) and one targeting a pure labelled protein (Fig 2B), are shown. Although
dispensing of more concentrated antibody reagents generated 130 μm sized spots fully satu-
rated with antibody probes (as viewed from the observed signal intensities), any antibody
excess appeared to result in adverse smearing and tailing effects rather than continuously grow-
ing spot sizes. These poor spot features would significantly impair the subsequent quantifica-
tion step. Further, the cut-off concentration for the observed effects appeared to be clone
dependent, indicating that the antibodies populated (adsorbed to) the surface in a clone depen-
dent manner. On the other hand, reducing the antibody spot concentration below the cut-off,
resulted in smaller and smaller spots, indicating that the spots grew from the spot center and
outwards. Hence, it is essential that the spotting concentration is optimized and standardized
for each individual antibody (50–300 μg/ml) for a given set-up (e.g. dependent on choice of
spotting buffer and solid support) in order to optimize the spot features (homogeneity) as well
as to enable a comparison across different studies over time.

Stringent phage-display selection and screening protocols were used to promote antibody
functionality and specificity (see Material and Methods). All the arrayed antibodies gave a
detectable dynamic signal intensity (although sample dependent) when targeting crude, bioti-
nylated serum samples (data not shown). Hence, the data indicated high on-chip functionality.

In order to further support the specificity claims, based on the selection criteria, orthogonal
methods and on-chip confirmations (see Material and Methods for details), the microarrays
were designed with a built-in specificity control step. To this end, we have included several
antibody clones (n = 1 to 9) directed against the same antigen, but targeting different epitopes
(the antibodies differ with respect to the amino acid sequence of their complementarity deter-
mining regions). Representative data for three to nine antibody clones directed against four dif-
ferent protein antigens, including apolipoprotein-A4, complement factor 3 (C3), Cystatin C
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and monocyte chemoattractant protein-1 (MCP-1), are shown in Fig 2C. In each case, the data
showed that the antibodies gave similar patterns with respect to up- vs. down-regulations when
comparing diseased vs. healthy controls. Although the observed fold changes per antibody
were moderate (a common feature for antibody arrays targeting moderate to low abundant tar-
gets), they were highly reproducible. Hence, the data further supported the on-chip specificity
and functionality of the arrayed antibodies through this built-in assay feature at large.

Microarray quality control
In order to address the microarray quality issue, we introduced three additional features,
including array design, reference marker, and printing marker. To match the multi-well

Fig 2. Evaluation of the antibody quality in terms of spotting concentration, on-chip functionality and specificity. (A) Two different scFvs
antibodies, denoted as scFv1 (against complement protein C5) and scFv2 (against Myomesin 2), were dispensed in quintuplicate at three different
concentrations, stock solution, 1:2 dilution and 1:4 dilution. The microarray was processed using a biotinylated serum sample. A scanner setting of
10 μm resolution, using 70% PMT gain and 90% laser power was used. (B) ScFv3 (anti-C1q) was spotted in 6 different concentrations, each in 12
replicate spots. The microarray was processed using pure antigen (5 nM pure Alexa 647-labeled C1q) and scanned at 10 μm resolution, using
60% PMT gain and 90% laser power. (C) Protein expression profiling of biotinylated serum sample. Several antibody clones directed towards the
same antigen but against different epitopes were used, targeting Apolipoprotein-A4 (Apo-A4, n = 3), Complement factor 3 (C3, n = 6), Cystatin C
(n = 4) and Monocyte Chemoattractant Protein-1 (MCP-1, n = 9). The observed signal intensities are given, in terms of fold change, in diseased vs.
healthy samples.

doi:10.1371/journal.pone.0159138.g002
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incubation gasket, we printed up to 14 identical subarrays per slide, as illustrated in Fig 3A.
Each subarray was further divided into three identical segments, separated by printed rows of
b-BSA. The use of b-BSA as reference marker (positive control) was critical for i) evaluating
technical quality control (intra- and inter-array variations), ii) detecting technical outlier arrays
due to local surface defects, and iii) defining the beginning and the end of each individual array
segments and individual subarrays. The mean CV for b-BSA was found to be 7%, based on in

Fig 3. Evaluation of microarray quality in terms of array design and printing markers. (A) Representative image of
a microarray slide with 14 identical subarrays. Each subarray (n = 14) is divided into 3 segments separated by dispensed
rows of reference marker replicate spots (n = 4). (B) Blank replicate spots (n = 5) detected in the marked area. No signal
intensity was obtained from the dispensed blank replicate spots after scanning the microarray using a wavelength of 633
nm, while positive spots at 543 nm (Cadaverine) confirmed that spotting had occurred.

doi:10.1371/journal.pone.0159138.g003
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total 1500 spots (corresponding to 3 slides/day for 2 days, 10 subarrays/slide, 25 replicate
spots/subarray). The fact that each subarray was designed into three identical segments meant
that one or even two segments could be deleted due to e.g. local surface defects, and data could
still be obtained (data not shown).

The microarray spotter has no built-in mean to control that each individual spot has been suc-
cessfully dispensed during the printing process. In order to bypass this limitation, we added low
concentrated Alexa Fluor 555-Cadaverine to the printing solution as a positive printing marker.
Thus, the observed lack of signal intensity at 633 nm for a given antibody could be explained by
either that no protein antigen was present in the sample and/or that the antibody was not printed
due to technical issues (Fig 3B). However, by adding Cadaverine, a signal or no signal at 543 nm
helped us resolve this key issue (Fig 3B). This will further improve the microarray quality control.

Sample quality control
We evaluated the reproducibility of our sample handling step, focusing on the biotinylation of
crude serum samples. To this end, the same batch of pooled human serum was biotinylated
and profiled on a 121-plexed antibody array layout (layout B) while varying i) the batch of bio-
tin, ii) the user, and/or iii) day of analysis (Table 2). The reproducibility was evaluated in terms
of CV of the observed signal intensities for the captured proteins, thus running the entire
microarray assay. The mean CV for inter-run and inter-batch was found to be 19.7% and
16.3% (see Table 2 for assay set-up definition). It should be noted that raw, un-normalized data
was used. Thus, the CV values also harbored array-to-array variability (estimated to be in the
range of 11 to 13%, see below). Hence, the reproducibility of the labeling step of crude serum
samples was found to be high.

Microarray assay quality control
The performance of the microarray assay was improved by further optimizing i) the choice of
blocking buffer (1% (v/v) Tween-20 and 1% (w/v) fat-free milk in PBS vs. 5% (v/v) fat-free
milk in PBS) (reducing non-specific background binding), and ii) the sample incubation time
(2h vs. 1h) (increasing signal intensities and signal to noise ratios) (see Material and Methods).
In addition, three types of QC samples, denoted QCref, QClabel and QCnorm, were introduced in
order to further standardize the set-up (see Material and Methods).

With these new settings in place, we evaluated the source and effect of systemic technical
variations on our microarray data. To this end, a 94-plex antibody microarray (83 spotted anti-
bodies passed QC) was used (layout A) to profile the same pooled human serum sample on 90
subarrays, processed on 9 slides, and analyzed over 3 days (3 slides/day) (Fig 4). Principle com-
ponent analysis (PCA) of un-normalized log2 transformed data revealed three distinct groups

Table 2. Sample labeling QC.

Mean CV (%) Raw data

Inter Run* 19.7

Inter Batch** 16.3

* Calculated for eight separate labelling rounds performed by two users on three different days. The samples

were processed on two slides, generating 16 subarrays in total, and the mean CV value for all antibodies is

calculated based on all arrays.

**Calculated for four separate labelling rounds, two rounds for each biotin batch, performed by two users.

The samples were processed on two slides, generating eight arrays in total, and the mean CV value for all

antibodies is calculated based on all arrays.

doi:10.1371/journal.pone.0159138.t002
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of samples associated with day of analysis (Fig 4A). Furthermore, adopting a random forest
classifier, also demonstrated a distinct dependence of the day of analysis (Fig 4B), with an out-
of-bag (OOB) estimate of error rate of 0%. Hence, the data showed that there was a systematic
technical variation associated with different days of analysis.

In an attempt to reduce this variation, we employed our current standard approach to neu-
tralize day-to-day variations, namely “subtract by group mean”. PCA analysis of the normal-
ized data, showed that the day-to-day dependence had been minimized (Fig 4C). In agreement,
the RF classifier showed an OOB estimate error rate of 62%, further supporting the notion that
the normalization had minimized the day-to-day variations (Fig 4D). In addition, one-way
analysis of variance (ANOVA) analysis confirmed that no statistically significant (q< 0.05)
proteins correlated with the days of analysis. The overall mean CV of the observed signal inten-
sities (captured proteins) was found to be 20% for raw, un-normalized data, but only 1.6% after
normalization (log2 transformed data) over all days of analysis (Fig 4E). Further, the mean
intra-day and intra-slide CV was found to be 13 and 11% for raw, un-normalized data, but
only 1.6 and 1.5% after normalization. Taken together, the data showed that the day-to-day
variations could be handled by data normalization.

Biostatistics–data pre-processing
We standardized and/or further evaluated the data pre-processing procedure. Prior to the key
step, array data normalization, the data was subjected to three actions. First, any background

Fig 4. Day-to-day variation before and after normalization. (A) Unsupervised PCA analysis of un-normalized log2 transformed raw data. The
samples were colored with respect to different rounds (days) of analysis. (B) Random Forest supervised classification differentiates between
different days of analysis. (C) Unsupervised PCA analysis of processed data. The data was normalized using the “subtract by group mean”
approach. (D) Random Forest classifier applied after normalization step. (E) Systemic technical variation, expressed in terms of CV, with respect to
mean (median) inter- and intra-day as well as mean intra-slide variations.

doi:10.1371/journal.pone.0159138.g004
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signals were subtracted from the measured signals in order to remove any non-biological con-
tributions. Second, the mean value of the replicate spots for each antibody was calculated, after
removing any outlier spots. Third, any antibodies below limit of detection, defined as mean
blank signal across all samples plus 2 standard deviations in>70% of the samples, were identi-
fied and excluded from the data set, as illustrated in Fig 5.

Next, the data normalization step was evaluated. To this end, a 195-plex antibody microar-
ray was used (layout C) to profile 224 serum samples (151 diseased and 57 controls) and 16
QCref serum. In total, 16 slides, with 14 subarrays each, were run during 2 days (8 slides/day).
In total, nine different normalization strategies were tested and compared to i) our currently
adopted normalization method, “subtract by group mean” strategy combined with “semi-
global normalization” as well as ii) un-normalized log2 transformed raw data (Table 1).

First, we compared the effect of Quantile, VSN (local/global), and LOESS (local/global) nor-
malization on the data set to raw un-normalized log2 transformed data by the means of inten-
sity distributions in density plots, boxplots, and meanSdPlots (S1–S3 Figs). The density- and
box-plot data showed that the array-to-array variations decreased in the order of
Quantile< LOESS< VSN< un-normalized log2 (S1 and S2 Figs). Further, both local VSN
and local LOESS normalization methods resulted in two more clearly separated sample distri-
butions associated with different days of analysis, indicating that these methods (when applied
locally) were unable to correct for day-to-day variation. In contrast, global VSN and global
LOESS normalized data indicated that the variation across samples were more homogeneously
distributed, outlining a better normalization (S1 and S2 Figs). In the case of Quantile, the
results showed that the data was strongly transformed, illustrated by the fact that the normal-
ized data displayed the same total intensity across all the arrays (S1 and S2 Figs). The mean-
SdPlots showed that the normalization methods reduced the variance-mean dependency from
~0.8 in un-normalized log2 transformed data to just above 0.5 (local LOESS and local VSN),
just below 0.5 (global LOESS and global VSN), or from 0.4 to 0.6 (Quantile) (S3 Fig). In

Fig 5. Limit of detection. Boxplots for 5 antibody intensities over all the analyzed samples. Each data point represents one
sample. A cut-off limit was established based on the mean negative control signal (PBS) across all the samples plus 2 standard
deviations. Each analyte, from which the mean signal intensities were found to be below the LOD in > 70% of samples was
removed from the data (e.g. FASN (3) and MAKT (2)). The red line corresponds to the cut-off limit.

doi:10.1371/journal.pone.0159138.g005
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particular global LOESS showed the most consistent mean-variance dependency. Hence, the
data suggested that global LOESS and global VSN resulted in the best normalization, but that
some additional array-to-array normalization would be required.

In order to address this additional normalization need, we proceeded and tested three addi-
tional methods, including (i) global VSN Combat normalization, (ii) global LOESS ComBat
normalization, and (iii) ComBat semi-global normalization, and compared the output with
that of our current adopted normalization method, i.e. subtract by group mean combined with
semi-global normalization. Again, un-normalized log2 transformed raw data was used as refer-
ence. To start with, the methods were evaluated by the means of intensity distributions in Q-Q
plots, density plots, boxplots, and meanSdPlots (Fig 6). When comparing the intensity distribu-
tion/variation of the samples, the results clearly showed that the array-to-array variation was
reduced by all normalization methods as compared to un-normalized data (Fig 6). The normal
Q-Q plots and density plots showed that global LOESS ComBat normalization resulted in the
most symmetric and bell-shaped distributions, i.e. closest to normal distribution. Similarly, the
meanSdPlots indicated that global LOESS ComBat displayed the most consistent mean-vari-
ance dependency (straightest line).

Next, we evaluated the normalization approaches with respect to sample PCA plots (Fig 7).
A clear dependence of day of analysis (two) was observed for un-normalized data (Fig 7A, sam-
ple mode). The day-to-day dependence was noticeably reduced by all four normalization meth-
ods (Fig 7B–7E, sample mode).

Along the same line, we then assessed the relative impact of the normalization approaches
on variables (scFv) using variable PCA plots (Fig 7, variable mode). A majority of variables dis-
played similar behavior in un-normalized data (Fig 7A). This characteristic behavior of vari-
ables was best retained using either ComBat semi-global (Fig 7C) or our currently adopted
normalization method (Fig 7B). However, the behavior was dramatically changed using the
other normalization methods (Fig 7D and 7E), and in particular global LOESS ComBat (Fig
7E).

To further examine the effect of the normalization on day-to-day variation, we performed a
two-group comparison (day 1 vs. day 2), based on either i) different samples (i.e. all samples

Fig 6. Evaluation of different normalization procedures.Normal Q-Q plots, boxplots, density plots and meanSdPlots were used as qualitative
measures in order to compare the log intensity distribution of samples output after normalization. (A)Un-normalized log2 data. (B) Subtract by group
mean + semi-global normalization. (C) ComBat + semi-global normalization. (D)Global VSN + Combat normalization. (E)Global LOESS + Combat
normalization.

doi:10.1371/journal.pone.0159138.g006
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but QCref) or ii) identical samples (i.e. technical replicates of the QCref samples), using t-test
(Table 3). When using different samples, the data showed that all normalization methods
appeared to eliminate the detectable day-to-day variations (Table 3). However, removing the
sample dependency and using only technical replicates of the sample (QCref), showed a refined
view. The number of statistically significant (q< 0.01) scFv decreased in the order of global
LOESS Combat (n = 26)< Global VSN Combat< ComBat semi-global< Subtract by group
mean plus semi-global< un-normalized (n = 158) (Table 3). Hence, all normalization methods
were found to significantly reduce the day-to-day variation, but in a method dependent
manner.

Next, we investigated the impact of the normalization methods on an application, by com-
paring the number of deregulated proteins when comparing healthy vs. diseased samples, in
terms of fold change (FC). A FC> 1 or FC> 1.1, with and without a cut-off value of q<0.05
was applied (Table 4). The results showed that the number of down- vs. up-regulated proteins

Fig 7. Evaluation of the effect of different normalization approaches on samples and variables in the data, shown in both sample mode
and variable mode. (A) Un-normalized log2 data. (B) Subtract by group mean + semi-global normalization. (C) ComBat + semi-global
normalization. (D)Global VSN + Combat normalization. (E)Global LOESS + Combat normalization

doi:10.1371/journal.pone.0159138.g007

Table 3. Evaluation of different normalization methods. To this end, microarray data was used to assess the No of statistically significant scFvs (ntotal =
195) when comparing day 1 vs. day 2, using a cut-off value of either q <0.05 or q <0.01 as well as q < 0.05 plus FC > 1.5.

Normalization method All subjects except QC-ref
samples, at q < 0.05

Only QC-ref samples, at
q < 0.05

Only QC-ref samples, at
q < 0.01

Only QC-ref samples, at q < 0.05
plus FC > 1.5

Un-normalized log2
transformed data

163 167 158 43

Subtract by group mean
+ semi-global

0 61 37 6

ComBat + semi-global 0 59 35 5

Global VSN + Combat 0 46 29 4

Global LOESS + Combat 0 47 26 6

doi:10.1371/journal.pone.0159138.t003
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(as expressed in terms of deregulated scFv antibodies) was much smaller in ComBat semi-
global and Subtract by group-mean plus semi-global, while the regulation was symmetrically
distributed in global VSN Combat and LOESS ComBat normalized data, irrespective of the
chosen cut-off. A similar trend was observed when comparing two subgroups within the dis-
eased samples only (S2 Table). To examine this feature in more detail, we determined the fre-
quency when all scFv antibodies against the same protein gave similar results with respect to
up- vs. down regulation (FC> 1), denoted number of complete matches per target protein
(Table 4). The number of complete matches per protein (ntotal = 47) was higher in both Com-
Bat semi-global and Subtract by group mean plus semi-global than in global VSN Combat and
LOESS ComBat normalized data sets. Again, the same behavior was observed when comparing
two subgroups with the diseased samples only (S2 Table). The data thus indicated on signifi-
cantly different effects of the normalization methods on the data, outlining a more preferred
behavior of ComBat semi-global and Subtract by group mean plus semi-global normalization.

Finally, focusing on the two best normalization methods, Subtract by group mean plus
semi-global normalization and ComBat semi-global, we used PCA to investigate the variability
between all samples (healthy, diseased, and QCref). Using Subtract by group mean plus semi-
global normalization as showcase, the data clearly showed that the day-to-day variation had
been reduced, as seen for both QCref day 1 vs. day 2 (Fig 8A–8C), and for diseased and healthy
samples day 1 vs. day 2 (Fig 8D–8F). In the latter plot, this became much clearer when the sam-
ples were mapped as healthy and diseased (Fig 8G–8I). Notably, similar results were observed
for Combat semi-global normalized data (S4 Fig). It should also be noted that the core biologi-
cal differences, with respect to the top 50 differentially expressed proteins (represented by anti-
body clones), between diseased and healthy samples were maintained after normalization
compared to un-normalized data (S3 Table). The data showed that 32 of 50 clones were
retained, although their q-values dropped (from 10−9–10−14 to 10−7–10−13) and their individual
order changed. Furthermore, 18 of 50 clones were replaced, but these new clones were included
irrespective of the two normalization methods adopted. Taken together, our data showed that
ComBat semi-global and Subtract by group mean plus semi-global normalization were the two
preferred normalization methods.

Biostatistics–condensed biomarker panels
Defining a condensed biomarker signature providing the best classification of two groups is
essential in array based discovery applications. To this end, we for the first time compared and

Table 4. Evaluation of different normalization processes. To this end, microarray data for diseased vs. healthy samples was used and compared with
respect to No. of down-regulated scFvs antibodies and No. of complete matches per target molecule, using a fold change (FC) filter of either FC > 1 or
FC > 1.1 and with and without a cut-off value of q <0.05.

Diseased vs. Healthy Subtract by group mean
+ semi-global norm

ComBat norm + semi-
global norm

Global VSN + Combat
norm

Global LOESS
+ Combat norm

No. of down-regulated scFvs at FC > 1 38 of 195 37 of 195 91 of 195 99 of 195

No. of down-regulated scFvs at FC > 1
and q <0.05

21 of 151 20 of 150 58 of 135 61 of 119

No. of down-regulated scFvs at FC > 1.1
and q <0.05

21 of 146 20 of 145 53 of 125 57 of 108

No. of complete matches* per target
molecule (ntotal = 47)

32 33 23 21

* Each protein analyte was targeted by 2–9 individual scFv clones. A complete match is defined as when all scFvs per target gave similar results with

respect to up- vs. down regulations, using a fold change (FC) filter of FC > 1.

doi:10.1371/journal.pone.0159138.t004
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evaluated four different approaches for biomarker panel condensation, including i) selection
based on Wilcoxon p-values, ii) backward elimination using SVM (BE-SVM), iii) modified
backward elimination using SVM (consensus approach) (SVMc), and iv) RF. Two independent
samples cohorts, cohort 2 and 3, randomly divided into a training set and a test set, were used
as sample sets. The samples were analyzed on 351-plex antibody arrays (layout D).

First, condensed biomarker signatures of a fixed length (N = 25) of the top-ranked biomark-
ers were defined using each of the methods (Table 5). The classification performance of the sig-
natures was then tested and described in terms of ROC AUC values. The signatures were
defined based on the training set, and evaluated on the separate test set, using a linear SVM or
RF. This entire procedure was repeated two times using a 3-fold cross validation scheme to
obtain more reliable test performances (S5 Fig). The results showed that condensed signatures
based on p-value ranking displayed the lowest AUC values, indicating that this approach was
less effective in capturing collective effects (i.e. orthogonal information) among the biomarkers,
in particular for cohort 2. In contrast, the BE-SVM and SVMc approaches generated the

Fig 8. Effect of the normalization on sample variability.Un-normalized log2 data was compared with subtract by group mean normalized data
as well as with subtract by group mean + Semi-global normalized data. The sample cohort included QCref samples as well as diseased and healthy
samples. (A to C) QCref samples analyzed on two days. (D to F) Diseased and healthy samples analyzed on different days (mapped for day 1 vs.
day 2). (G to I) Diseased vs. healthy samples analyzed on different days (mapped for diseased/healthy).

doi:10.1371/journal.pone.0159138.g008
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highest AUC values. Further, these two approaches generated similar results on both sample
cohorts, indicating that the potential overtraining associated with SVM was not significant in
the evaluated data sets. The RF method was able to find a high performing signature for cohort
2, but not for cohort 3. When comparing which biomarkers were included in the condensed
signatures, BE-SVM and SVMc generated very similar lists, with an overlap of 15 or 17 bio-
markers (Table 5). In contrast, the p-value ranking and SVM (both approaches) generated very
different lists, with only 3 or 4 biomarkers overlap (Table 5). Thus, the data again indicated
that the collaborative effects might be less well captured by the p-value ranking method. In this
context, it might be of interest to note that there was in average 6 biomarkers in the SVM signa-
tures that had Wilcoxon p-values> 0.1 (uncorrected p-values) (data not shown). The signature
overlap was, however, more similar between the p-value ranking and RF with 15 and 20 mark-
ers for cohort 2 and 3, respectively. Hence, the choice of method will be important for defining
the nature of the best performing classifier, i.e. the condensed biomarker signature.

Second, we re-ran the condensation methods, and defined the best performing condensed
biomarker signatures, but without fixing the signature length (Table 6). The signatures were
defined and tested on sample cohort 3 (the largest cohort). The sample cohort was split into
training (1/3 of all samples, to define the biomarker ranking list), validation (1/3, to define the
optimal signature length), and test (1/3, to test the defined signature) sets. The data showed
that the signatures varied in length, from 30 (p-value and SVM) to 45 (RF). Again, the results
showed that the p-value method resulted in the lowest ROC AUC value, and the two SVM
methods presented the best AUC values. In general, the ROC AUC values were retained or
improved going from a fixed biomarker signature length to the most optimal length, in

Table 5. Evaluation of four feature selectionmethods for defining a condensed biomarker signature for classification of two groups, using a 3-fold
cross validation scheme repeated twice. The length of the biomarker signature was set to 25. A linear SVM classifier was used to assess the performance
in all cases, except for RF (RF), where random forest was used both for the ranking and the final AUC calculation. AUC values are given together with stan-
dard deviations. The biomarker overlap was defined as the number of common biomarkers between two signatures.

Method Sample cohort 2 Sample cohort 3

Biomarker overlap Biomarker overlap

BE-SVM SVMc RF BE-SVM SVMc RF

ROC AUC ROC AUC

p-value 90.1 (2.3) 3 4 15 90.6 (1.3) 8 7 20

BE-SVM 95.9 (3.2) 17 6 93.5 (1.1) 15 9

SVMc 96.7 (2.1) 7 92.1 (0.5) 9

RF (SVM) 94.5 (1.3) 91.7 (0.8)

RF (RF) 95.1 (2.1) 90.9 (0.8)

doi:10.1371/journal.pone.0159138.t005

Table 6. Evaluation of four methods for defining a condensed biomarker signature for classification
of two groups. Once the biomarker signature of the optimal length was defined using the validation set, the
classifier was re-trained, using both the training and the validation set and finally tested on the test set. Sam-
ple cohort 3 was used.

Method Biomarker length ROC AUC

Validation set Test set

p-value 30 92.2 90.6

BE-SVM 30 93.6 92.7

SVMc 40 93.9 94.0

RF (SVM) 45 93.9 93.1

doi:10.1371/journal.pone.0159138.t006
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particular for RF. Hence, the choice of method will be essential for defining the nature and
length of the best performing classifier, i.e. the condensed biomarker signature.

Discussion
The number of high-performing antibody microarray set-ups at hand is still very low, which is
explained by the fact that systematic cross-disciplinary efforts, addressing all of the key meth-
odological areas involved in an array set-up (Table 1), must be pursued in such a developmen-
tal work [2, 8–10]. Here, we have presented the next generation of our recombinant antibody
microarray technology platform for clinical immunoproteomics. In this work, we have further
advanced our previous array platform version [4, 7, 22] by continuing our interdisciplinary
work and addressing a set of points, ranging from small technical refinements (e.g. re-opti-
mized blocking solution and sample incubation time) to key essential process improvements
(e.g. array data normalization and biomarker panel condensation) (Table 1). To the best of our
knowledge, this indeed represents one of the first studies in which pre-processing of antibody
microarray data (e.g. normalization) and condensation of biomarker panels have been studied
in great detail.

Among the technical array attributes, the specificity of the dispensed antibodies is a vital
feature [14]. The specificity of the antibodies used per se have been extensively addressed in
recent work by us [4, 7, 11, 16–21] (Säll et al, manuscript in prep.). But to incorporate a built-
in specificity control step in the microarray assay, we have included several antibody clones
directed against the same protein antigen, but targeting different epitopes. This is essential, as
some antibodies might lose their reactivity caused by i) epitope masking, e.g. caused by the bio-
tinylation of the sample [7], and complex formation, and/or ii) (partial) denaturation when
arrayed onto the solid support. Albeit our arrayed antibodies displayed high on-chip activity,
and that matching antibody clones displayed similar and highly reproducible reactivity pat-
terns, i) the observed fold changes differed somewhat between matching antibody clones (Fig
2C), and ii) some antibodies were found to be less reactive, at least when some samples were
profiled (e.g. Table 4). Thus, without such a built-in feature, the risk for including false-nega-
tive, and potentially false-positive signals is evident. In future work, the entire antibody pro-
duction process and subsequent quality control steps, such as mono-dispersity, will also be
addressed, which could improve the antibody reagent source and thereby the antibody array
platform even further.

Reproducibility is another central array attribute, which has been a main issue for many
antibody array-based set-ups [8]. Here, the reproducibility of the entire assay set-up including
microarray printing, microarray assay, and data pre-processing, expressed in terms of the
mean intra-day and intra-slide CV, was found to be 13 and 11% respectively for raw, un-nor-
malized data, but only 1.6 and 1.5% respectively after normalization. These values are highly
competitive, and required when aiming for clinical immunoproteomics targeting truly low-
abundant proteins (pg/ml range) [2, 8, 9].

The interplay between arrayed antibodies and the surface, modulated by the spotting buffer
[34], is essential for antibody functionality and spot features [7, 22, 35, 36]. Frequently, excess
of antibodies have been dispensed in order to make sure that the spots are fully saturated. Our
data implied that the spots grew from the center and outwards with increasing antibody con-
centration, and that the antibodies appeared to populate the spots in a clone dependent man-
ner. The spots stopped growing at a diameter of about 130 μm, even if the antibody
concentration was increased further, a feature that, at least in part, might be explained by the
properties of the solid support and/or spotting buffer. This means that adding even more sur-
plus of antibodies only resulted in loose multilayers of antibodies that were washed off in the
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subsequent washing step, causing adverse smearing and tailing effects. Consequently, the data
demonstrated that it was critical to optimize the spotting concentration for each antibody to
promote fully saturated spots with distinct, optimal features, directly impacting the subsequent
spot detection and quantification steps. Future work will be required to explore the importance
of the sample format, i.e. serum vs. urine vs. tissue extracts (and precise analyte concentration),
on the amount of spotted antibody.

A major effort was placed on addressing the data handling step, and in particular normaliza-
tion of the array data and identification of condensed biomarker panels. In fact, this is one of
the very first studies addressing these key steps in great detail. Although the choice of normali-
zation method is essential [37, 38], antibody (protein) microarray data normalization have, so
far, received very little attention, as judged by the number of published papers on the subject,
see e.g. [4, 39–41]. In fact, no standard protocol for protein microarray data handling at large,
including both pre-processing and subsequent data analysis, have yet been established [9].
Compared to large gene expression arrays, antibody microarrays are focused, containing more
relevant targets of which many could be expected to be deregulated [8, 42]. From an analytical
point of view, this difference in number of targets reduces the risk for false positive and false
negative findings as well as the extent of multiple testing correction needed, but makes the key
normalization step much more challenging. As for example, most normalization approaches,
such as LOESS and Quantile rely on the assumption that i) a majority of the analytes are not
differentially expressed, and ii) that there is a symmetry in the expression levels of the up- and
down-regulated analytes [43–45]. However, these two assumptions cannot readily be made for
focused antibody microarrays, such as ours [8, 9]. In agreement, our evaluation of normaliza-
tion methods also showed that the impact of the LOESS and Quantile approaches on the data
was too strong (unfavorable), making them a less attractive choice. Although the aim is to elim-
inate systematic technical variations, such as day-to-day variations and array-to-array varia-
tions, it is essential not to transform the data too much so that also subtle biological changes
are eliminated [38, 43].

In the data sets tested here, we identified both day-to-day and array-to-array variations that
should be handled via the normalization step. While all the tested normalization methods were
found to reduce at least some of the variations, the manner in which and to what extent this
was accomplished, differed considerably. Of the normalization methods tested, we found two
approaches, subtract by group mean plus semi-global (our currently adopted approach) and
ComBat semi-global, to perform the best. This means that these normalization procedures
were capable of handling both day-to-day and array-to-array variations, but with the smallest
transformation of the data set and (potentially) maintaining biological differences at large in
the data set. In future work, any of these methods could be applied, and the precise choice
would have to be determined data-set by data-set.

Deciphering condensed biomarker panels, going from several hundreds to about twenty
markers or less, providing the best discriminatory power for the question at hand, e.g. diagno-
sis, will be essential in the development of novel tests [8]. In the end, a condensed panel, com-
posed of a small number of biomarkers, with each biomarker providing unique, orthogonal
information, is desired.

Finding a condensed panel of biomarkers that performs optimally for a given diagnostic
problem can be viewed as a feature selection task in machine learning. Here, the diagnostic
problem is transformed into a classification problem using all available biomarkers as features.
The task is to find a reduced set of features that results in optimal (or near-optimal) classifica-
tion performance. Here we used the ROC AUC value as a performance measure. The p-value
ranking was found to generate biomarker panels displaying the worst AUC values, which could
be explained that the markers were selected based on p-values and not whether they provided
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orthogonal information. This means that many of the selected markers might have provided
similar information. Biomarkers selected based on p-values are therefore likely better to reflect
the disease and disease state rather than reflecting the best classifier.

Further, care has to be taken to avoid overtraining, here meaning the problem of determin-
ing a condensed biomarker panel too specialized on one cohort, thereby lacking the necessary
generalization to other cohorts of the same diagnostic problem. The overtraining problem is
typically present in situations with small sample sizes and a large number of features (biomark-
ers). The classification methods used in the feature selection process are selected to have as few
tunable parameters as possible, to avoid overtraining on method parameters. In this study, we
did not see any significant signs of overtraining which might be due to e.g. large sample sizes,
but in future data sets this might become essential. It should be noted that any further refine-
ment of a condensed signature should be validated using a novel independent sample cohort
(s). Taken together, the results showed that we have defined two excellent ways of defining con-
densed biomarker signatures, namely SVM and SVMc, the latter method having a built-in
function to avoid overtraining. Depending on the nature of the data set, RF might also be a via-
ble option, while the p-value ranking methods is less recommended.

Despite the current advances, some features could be subjected to even further optimiza-
tions. As for example, the range of specificities included on the array is critical for defining
the resolution at which each sample can be profiled. Here, we used up to 351-plex arrays,
but have in recent applications used 395-plex antibody arrays [46], and we have up to
900-plex antibody arrays in the pipeline (Wingren et al, unpublished observations). Other
issues to resolve could include, but are not limited to, orientated antibody immobilization
for improved functionality [47], assay automation, next generation of user friendly software
for big data analysis, standardized repositories for protein microarray data, and absolute
quantification.

Taken together, we have continued our interdisciplinary efforts, and presented the next gen-
eration of our recombinant antibody microarray technology platform for clinical immunopro-
teomics. This platform could pave the way for the next wave of clinical applications, with great
potential for biomarker discovery and clinical endeavors, such as diagnosis, prognosis, and
classification.

Supporting Information
S1 Fig. Evaluation of different normalization procedures. Density plots were used as qualita-
tive measures in order to compare the log intensity distribution of samples output with respect
to log2 transformed data, Local LOESS, Local VSN, Global LOESS, Global VSN and Quantile
normalizations.
(EPS)

S2 Fig. Evaluation of different normalization procedures. Boxplots were used as qualitative
measures in order to compare the log intensity distribution of samples output with respect to
log2 transformed data, Local LOESS, Local VSN, Global LOESS, Global VSN and Quantile nor-
malizations.
(EPS)

S3 Fig. Evaluation of different normalization procedures.MeanSdPlots were used as qualita-
tive measures in order to compare the log intensity distribution of samples output with respect
to log2 transformed data, Local LOESS, Local VSN, Global LOESS, Global VSN and Quantile
normalizations.
(EPS)
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S4 Fig. Effect of the Combat plus semi-global normalization on the sample variability. The
sample cohort included QCref samples as well as diseased and healthy samples. i) QCref samples
analyzed on two days. ii) Diseased vs. healthy samples analyzed on different days (mapped for
day). iii) Diseased vs. healthy samples analyzed on different days (mapped for diseased/
healthy).
(EPS)

S5 Fig. Schematic outline of how methods for defining a condensed biomarker signature
were evaluated. The data set, composed of two groups–healthy (H) and disease (D)—was ran-
domly divided in two three subsets. Condensed biomarker signatures of a fixed length (N = 25)
of the top-ranked biomarkers were defined using each of the feature selection methods (p-
value, BE-SVM, SVMc, and RF). The classification performance of the signatures was then
tested and described in terms of ROC AUC values. The signatures were defined based on the
training set, and evaluated on the independent test set, using a linear SVM or RF. This entire
procedure was repeated two times using a 3-fold cross validation scheme to obtain more reli-
able test performances
(EPS)

S1 Table. Antigens targeted on the antibody microarray. The specificity, affinity (normally
in the nM range), and on-chip functionality of all of these phage display derived scFv antibod-
ies were ensured by using i) stringent phage-display selection and screening protocols (using
different sample formats, ranging from pure proteins and mixtures of pure proteins to crude
samples) (16), ii) multiple clones (1 to 9) per protein, and iii) a molecular design, adapted for
microarray applications (14). In addition, the specificity of several selected antibodies (marked
with an �) have been further validated using pure proteins, mixtures of pure proteins, as well as
well-characterized, standardized serum samples (with known levels of the targeted analytes,
spiked with known level of specific protein(s) and/or specific protein(s) depleted), and/or
orthogonal methods, such as mass spectrometry (affinity pull-down experiments), ELISA,
MesoScaleDiscovery assay, and cytometric bead assay, as well as using blocking experiments
[4, 7, 11, 17–21].
(DOCX)

S2 Table. Evaluation of different normalization processes. To this end, microarray data for
diseased group 3 vs. group 1 samples was used and compared with respect to No. of down-reg-
ulated scFvs antibodies and No. of complete matches per target molecule, using a fold change
(FC) filter of FC> 1.
(DOCX)

S3 Table. Top 50 differentially expressed proteins (represented by their matching antibody
clone) for diseased vs healthy controls, before and after normalization.
(DOCX)

Acknowledgments
This study was supported by research grants from the Swedish Research Council (VR-NT)
(CW), VINNOVA (CAKB), and the Foundation of Strategic Research (Strategic Center for
Translational Cancer Research—CREATE Health (www.createhealth.lth.se) (CAKB). These
funders had no role in study design, data collection and analysis, decision to publish, or prepa-
ration of the manuscript. The funder (Immunovia) provided support in the form of reagents
and salaries for authors (LDM, MN, AH), but did not have any additional role in the study
design, data collection and analysis, and decision to publish, or preparation of the manuscript.

Recombinant Antibody Microarray

PLOS ONE | DOI:10.1371/journal.pone.0159138 July 14, 2016 22 / 25

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0159138.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0159138.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0159138.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0159138.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0159138.s008
http://www.createhealth.lth.se/


We would like to thank Dr. Aakash Chawade for valuable discussions about normalization
approaches.

Author Contributions
Conceived and designed the experiments: PD LDMMO CAKB CW. Performed the experi-
ments: PD LDMMN AH. Analyzed the data: PD LDMMO CW. Contributed reagents/materi-
als/analysis tools: PD MN AHMO. Wrote the paper: PD LDMMN AHMO CAKB CW.

References
1. PernemalmM, Lehtio J. Mass spectrometry-based plasma proteomics: state of the art and future out-

look. Expert Rev Proteomics. 2014; 11(4): 431–448. doi: 10.1586/14789450.2014.901157 PMID:
24661227

2. Sanchez-Carbayo M. Antibody microarrays as tools for biomarker discovery. Methods Mol Biol. 2011;
785: 159–182. doi: 10.1007/978-1-61779-286-1_11 PMID: 21901599

3. Zhang AH, Sun H, Yan GL, Han Y, Wang XJ. Serum proteomics in biomedical research: a systematic
review. Appl Biochem Biotechnol. 2013; 170(4): 774–786. doi: 10.1007/s12010-013-0238-7 PMID:
23609910

4. Ingvarsson J, Larsson A, Sjoholm AG, Truedsson L, Jansson B, Borrebaeck CA, et al. Design of recom-
binant antibody microarrays for serum protein profiling: targeting of complement proteins. J Proteome
Res. 2007; 6(9): 3527–3536. PMID: 17696517

5. Sanchez-Carbayo M, Socci ND, Lozano JJ, Haab BB, Cordon-Cardo C. Profiling bladder cancer using
targeted antibody arrays. Am J Pathol. 2006; 168(1): 93–103. PMID: 16400012

6. Schroder C, Jacob A, Tonack S, Radon TP, Sill M, Zucknick M, et al. Dual-color proteomic profiling of
complex samples with a microarray of 810 cancer-related antibodies. Mol Cell Proteomics. 2010; 9(6):
1271–1280. doi: 10.1074/mcp.M900419-MCP200 PMID: 20164060

7. Wingren C, Ingvarsson J, Dexlin L, Szul D, Borrebaeck CA. Design of recombinant antibody microar-
rays for complex proteome analysis: choice of sample labeling-tag and solid support. Proteomics.
2007; 7(17): 3055–3065. PMID: 17787036

8. Borrebaeck CA, Wingren C. Design of high-density antibody microarrays for disease proteomics: key
technological issues. J Proteomics. 2009; 72(6): 928–935. doi: 10.1016/j.jprot.2009.01.027 PMID:
19457338

9. Borrebaeck CA, Wingren C. Antibody array generation and use. Methods Mol Biol. 2014; 1131: 563–
571. doi: 10.1007/978-1-62703-992-5_36 PMID: 24515491

10. Hoheisel JD, Alhamdani MS, Schroder C. Affinity-based microarrays for proteomic analysis of cancer
tissues. Proteomics Clin Appl. 2013; 7(1–2): 8–15. doi: 10.1002/prca.201200114 PMID: 23341233

11. Carlsson A, Wuttge DM, Ingvarsson J, Bengtsson AA, Sturfelt G, Borrebaeck CA, et al. Serum protein
profiling of systemic lupus erythematosus and systemic sclerosis using recombinant antibody microar-
rays. Mol Cell Proteomics. 2011; 10(5): M110 005033.

12. Wingren C, Sandstrom A, Segersvard R, Carlsson A, Andersson R, Lohr M, et al. Identification of
serum biomarker signatures associated with pancreatic cancer. Cancer Res. 2012; 72(10): 2481–
2490. doi: 10.1158/0008-5472.CAN-11-2883 PMID: 22589272

13. Borrebaeck CA, Wingren C. Transferring proteomic discoveries into clinical practice. Expert Rev Prote-
omics. 2009; 6(1): 11–13. doi: 10.1586/14789450.6.1.11 PMID: 19210121

14. Borrebaeck CA, Wingren C. Recombinant antibodies for the generation of antibody arrays. Methods
Mol Biol. 2011; 785: 247–262. doi: 10.1007/978-1-61779-286-1_17 PMID: 21901605

15. Olsson N, Wallin S, James P, Borrebaeck CA, Wingren C. Epitope-specificity of recombinant antibodies
reveals promiscuous peptide-binding properties. Protein Sci. 2012; 21(12): 1897–1910. doi: 10.1002/
pro.2173 PMID: 23034898

16. Soderlind E, Strandberg L, Jirholt P, Kobayashi N, Alexeiva V, Aberg AM, et al. Recombining germline-
derived CDR sequences for creating diverse single-framework antibody libraries. Nat Biotechnol. 2000;
18(8): 852–856. PMID: 10932154

17. Dexlin-Mellby L, Sandstrom A, Centlow M, Nygren S, Hansson SR, Borrebaeck CA, et al. Tissue prote-
ome profiling of preeclamptic placenta using recombinant antibody microarrays. Proteomics Clin Appl.
2010; 4(10–11): 794–807. doi: 10.1002/prca.201000001 PMID: 21137023

Recombinant Antibody Microarray

PLOS ONE | DOI:10.1371/journal.pone.0159138 July 14, 2016 23 / 25

http://dx.doi.org/10.1586/14789450.2014.901157
http://www.ncbi.nlm.nih.gov/pubmed/24661227
http://dx.doi.org/10.1007/978-1-61779-286-1_11
http://www.ncbi.nlm.nih.gov/pubmed/21901599
http://dx.doi.org/10.1007/s12010-013-0238-7
http://www.ncbi.nlm.nih.gov/pubmed/23609910
http://www.ncbi.nlm.nih.gov/pubmed/17696517
http://www.ncbi.nlm.nih.gov/pubmed/16400012
http://dx.doi.org/10.1074/mcp.M900419-MCP200
http://www.ncbi.nlm.nih.gov/pubmed/20164060
http://www.ncbi.nlm.nih.gov/pubmed/17787036
http://dx.doi.org/10.1016/j.jprot.2009.01.027
http://www.ncbi.nlm.nih.gov/pubmed/19457338
http://dx.doi.org/10.1007/978-1-62703-992-5_36
http://www.ncbi.nlm.nih.gov/pubmed/24515491
http://dx.doi.org/10.1002/prca.201200114
http://www.ncbi.nlm.nih.gov/pubmed/23341233
http://dx.doi.org/10.1158/0008-5472.CAN-11-2883
http://www.ncbi.nlm.nih.gov/pubmed/22589272
http://dx.doi.org/10.1586/14789450.6.1.11
http://www.ncbi.nlm.nih.gov/pubmed/19210121
http://dx.doi.org/10.1007/978-1-61779-286-1_17
http://www.ncbi.nlm.nih.gov/pubmed/21901605
http://dx.doi.org/10.1002/pro.2173
http://dx.doi.org/10.1002/pro.2173
http://www.ncbi.nlm.nih.gov/pubmed/23034898
http://www.ncbi.nlm.nih.gov/pubmed/10932154
http://dx.doi.org/10.1002/prca.201000001
http://www.ncbi.nlm.nih.gov/pubmed/21137023


18. Gustavsson E, Ek S, Steen J, Kristensson M, Algenas C, Uhlen M, et al. Surrogate antigens as targets
for proteome-wide binder selection. N Biotechnol. 2011; 28(4): 302–311. doi: 10.1016/j.nbt.2010.12.
005 PMID: 21232647

19. Ingvarsson J, Wingren C, Carlsson A, Ellmark P, Wahren B, Engstrom G, et al. Detection of pancreatic
cancer using antibody microarray-based serum protein profiling. Proteomics. 2008; 8(11): 2211–2219.
doi: 10.1002/pmic.200701167 PMID: 18528842

20. Kristensson M, Olsson K, Carlson J, Wullt B, Sturfelt G, Borrebaeck CA, et al. Design of recombinant
antibody microarrays for urinary proteomics. Proteomics Clin Appl. 2012; 6(5–6): 291–296. doi: 10.
1002/prca.201100055 PMID: 22744810

21. Pauly F, Dexlin-Mellby L, Ek S, Ohlin M, Olsson N, Jirstrom K, et al. Protein expression profiling of for-
malin-fixed paraffin-embedded tissue using recombinant antibody microarrays. J Proteome Res. 2013;
12(12): 5943–5953. doi: 10.1021/pr4003245 PMID: 24063262

22. Gerdtsson AS, Dexlin-Mellby L, Delfani P, Berglund E, Borrebaeck CAK, Wingren C. Evaluation of
solid supports for slide- and well-based recombiant antibody microarrays. Microarrays. 2016; in press.

23. Wu YW,Wooldridge PJ. The impact of centering first-level predictors on individual and contextual
effects in multilevel data analysis. Nurs Res. 2005; 54(3): 212–216. PMID: 15897797

24. Carlsson A, Wingren C, Kristensson M, Rose C, Ferno M, Olsson H, et al. Molecular serum portraits in
patients with primary breast cancer predict the development of distant metastases. Proc Natl Acad Sci
U S A. 2011; 108(34): 14252–14257. doi: 10.1073/pnas.1103125108 PMID: 21844363

25. Huber W, von Heydebreck A, Sultmann H, Poustka A, Vingron M. Variance stabilization applied to
microarray data calibration and to the quantification of differential expression. Bioinformatics. 2002; 18
Suppl 1: S96–104. PMID: 12169536

26. Smyth GK. limma: Linear Models for Microarray Data. In: Gentleman R, Carey V, Huber W, Irizarry R,
Dudoit S, editors. Bioinformatics and Computational Biology Solutions Using R and Bioconductor. Sta-
tistics for Biology and Health: Springer New York; 2005. p. 397–420.

27. Bolstad B. preprocessCore: a collection of pre-processing functions. R package, version 1.20.0. 2010.

28. JohnsonWE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical
Bayes methods. Biostatistics. 2007; 8(1): 118–127. PMID: 16632515

29. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, et al. Bioconductor: open soft-
ware development for computational biology and bioinformatics. Genome Biol. 2004; 5(10): R80.
PMID: 15461798

30. Breiman L, Cutler A, Liaw A, Wiener M. randomForest: Breiman and Cutler’s random forests for classifi-
cation and regression. version 4.6–12. 2015.

31. Liaw A, Wiener M. Classification and Regression by randomForest. R News: The Newsletter of the R
Project. 2002; 2(3): 18–22.

32. Breiman L. Random Forests. Machine Learning. 2001; 45(1): 5–32.

33. Kuhn M. Building Predictive Models in R Using the caret Package. Journal of Statistical Software.
2008; 28(5): 5–32.

34. Bergeron S, Laforte V, Lo PS, Li H, Juncker D. Evaluating mixtures of 14 hygroscopic additives to
improve antibody microarray performance. Anal Bioanal Chem. 2015.

35. Angenendt P, Glokler J, Sobek J, Lehrach H, Cahill DJ. Next generation of protein microarray support
materials: evaluation for protein and antibody microarray applications. Journal of chromatography A.
2003; 1009(1–2): 97–104. PMID: 13677649

36. Seurynck-Servoss SL, Baird CL, Rodland KD, Zangar RC. Surface chemistries for antibody microar-
rays. Frontiers in bioscience: a journal and virtual library. 2007; 12: 3956–3964.

37. Choe S, Boutros M, Michelson A, Church G, Halfon M. Preferred analysis methods for Affymetrix Gene-
Chips revealed by a wholly defined control dataset. Genome Biology. 2005; 6(2): R16. PMID:
15693945

38. Rotter A, Hren M, Baebler Š, Blejec A, Gruden K. Finding Differentially Expressed Genes in Two-Chan-
nel DNAMicroarray Datasets: How to Increase Reliability of Data Preprocessing. OMICS: A Journal of
Integrative Biology. 2008; 12(3): 171–182. doi: 10.1089/omi.2008.0032 PMID: 18771401

39. Chiechi A, Mueller C, Boehm KM, Romano A, Benassi MS, Picci P, et al. Improved data normalization
methods for reverse phase protein microarray analysis of complex biological samples. Biotechniques.
2012; 0(0): 1–7.

40. Hamelinck D, Zhou H, Li L, Verweij C, Dillon D, Feng Z, et al. Optimized normalization for antibody
microarrays and application to serum-protein profiling. Mol Cell Proteomics. 2005; 4(6): 773–784.
PMID: 15793073

Recombinant Antibody Microarray

PLOS ONE | DOI:10.1371/journal.pone.0159138 July 14, 2016 24 / 25

http://dx.doi.org/10.1016/j.nbt.2010.12.005
http://dx.doi.org/10.1016/j.nbt.2010.12.005
http://www.ncbi.nlm.nih.gov/pubmed/21232647
http://dx.doi.org/10.1002/pmic.200701167
http://www.ncbi.nlm.nih.gov/pubmed/18528842
http://dx.doi.org/10.1002/prca.201100055
http://dx.doi.org/10.1002/prca.201100055
http://www.ncbi.nlm.nih.gov/pubmed/22744810
http://dx.doi.org/10.1021/pr4003245
http://www.ncbi.nlm.nih.gov/pubmed/24063262
http://www.ncbi.nlm.nih.gov/pubmed/15897797
http://dx.doi.org/10.1073/pnas.1103125108
http://www.ncbi.nlm.nih.gov/pubmed/21844363
http://www.ncbi.nlm.nih.gov/pubmed/12169536
http://www.ncbi.nlm.nih.gov/pubmed/16632515
http://www.ncbi.nlm.nih.gov/pubmed/15461798
http://www.ncbi.nlm.nih.gov/pubmed/13677649
http://www.ncbi.nlm.nih.gov/pubmed/15693945
http://dx.doi.org/10.1089/omi.2008.0032
http://www.ncbi.nlm.nih.gov/pubmed/18771401
http://www.ncbi.nlm.nih.gov/pubmed/15793073


41. Rimini R, Schwenk JM, Sundberg M, Sjoberg R, Klevebring D, Gry M, et al. Validation of serum protein
profiles by a dual antibody array approach. J Proteomics. 2009; 73(2): 252–266. doi: 10.1016/j.jprot.
2009.09.009 PMID: 19781670

42. Borrebaeck CA, Sturfelt G, Wingren C. Recombinant antibody microarray for profiling the serum prote-
ome of SLE. Methods Mol Biol. 2014; 1134: 67–78. doi: 10.1007/978-1-4939-0326-9_6 PMID:
24497355

43. Gohlmann H, Willem T. Gene Expression Studies Using Affymetrix Microarrays: Chapman \& Hall/
CRC; 2009. p. 37–38 and 76.

44. Risso D, Massa MS, Chiogna M, Romualdi C. A modified LOESS normalization applied to microRNA
arrays: a comparative evaluation. Bioinformatics. 2009; 25(20): 2685–2691. doi: 10.1093/
bioinformatics/btp443 PMID: 19628505

45. Yauk C, Williams A, Boucher S, Berndt L, Zhou G, Zheng J, et al. Novel design and controls for focused
DNAmicroarrays: applications in quality assurance/control and normalization for the Health Canada
ToxArrayTM. BMCGenomics. 2006; 7(1): 266.

46. Gerdtsson AS, Malats N, Sall A, Real FX, Porta M, Skoog P, et al. A Multicenter Trial Defining a Serum
Protein Signature Associated with Pancreatic Ductal Adenocarcinoma. Int J Proteomics. 2015; 2015:
587250. doi: 10.1155/2015/587250 PMID: 26587286

47. Petersson L, Stade LW, Brofelth M, Gartner S, Fors E, Sandgren M, et al. Molecular design of recombi-
nant scFv antibodies for site-specific photocoupling to beta-cyclodextrin in solution and onto solid sup-
port. Biochim Biophys Acta. 2014; 1844(12): 2164–2173. doi: 10.1016/j.bbapap.2014.08.010 PMID:
25172394

Recombinant Antibody Microarray

PLOS ONE | DOI:10.1371/journal.pone.0159138 July 14, 2016 25 / 25

http://dx.doi.org/10.1016/j.jprot.2009.09.009
http://dx.doi.org/10.1016/j.jprot.2009.09.009
http://www.ncbi.nlm.nih.gov/pubmed/19781670
http://dx.doi.org/10.1007/978-1-4939-0326-9_6
http://www.ncbi.nlm.nih.gov/pubmed/24497355
http://dx.doi.org/10.1093/bioinformatics/btp443
http://dx.doi.org/10.1093/bioinformatics/btp443
http://www.ncbi.nlm.nih.gov/pubmed/19628505
http://dx.doi.org/10.1155/2015/587250
http://www.ncbi.nlm.nih.gov/pubmed/26587286
http://dx.doi.org/10.1016/j.bbapap.2014.08.010
http://www.ncbi.nlm.nih.gov/pubmed/25172394

