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Introduction
Sodium-glucose cotransporter 2 inhibitors 
(SGLT2i) are a class of antidiabetic medications, 
including canagliflozin, dapagliflozin and empa-
gliflozin, that act by blocking the re-uptake of glu-
cose in the proximal renal tubule, thus inducing 
glycosuria and improving glycaemic control. 
Their beneficial impact on cardiovascular events 
such as stroke and heart failure, and their benefits 
in reducing the progression of chronic kidney 

disease are well reported in the literature.1 
However, there is limited literature describing the 
impact of SGLT2i on prevalent neurological dis-
orders such as epilepsy, dementia and Parkinson’s 
disease (PD).

This is an important relationship to explore for 
several reasons. Neurological disorders often lead 
to a significantly worse quality of life, for exam-
ple, stroke causes lifelong physical, functional and 
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cognitive disability.2 Moreover, dementia was 
recently found to be the fifth leading cause of 
deaths globally. Its prevalence is increasing at an 
alarming rate due to an ageing population, which 
will result in profound medical, social and eco-
nomic consequences if preventive measures are 
not enacted.3 Unfortunately, we have still not 
found a treatment for dementia that is strongly 
disease-modifying on its own, although a combi-
nation of treatments has been found to have a  
significant effect.4 Therefore, it is pivotal to inves-
tigate whether we can utilise the pleiotropic 
effects of other medications available on the mar-
ket, for the prevention and management of neu-
rological disorders.

Both animal and clinical studies have established 
a link between type 2 diabetes mellitus (T2DM) 
and neurological disorders, with T2DM being a 
major risk factor for stroke and Alzheimer’s dis-
ease (AD).5 Intriguingly, pancreatic islet amyloid 
polypeptide has been found to co-localise with 
amyloid-beta plaques in the brain, and the former 
promotes the oligomerisation of the latter.5 This 
suggests one potential mechanism linking T2DM 
and AD, with the corollary that targeting T2DM 
might mitigate the neurodegeneration seen in 
AD.

SGLT2 receptors are a viable target for the man-
agement of neurological disorders, given their 
abundance throughout the central nervous sys-
tem, and influence on neuron membrane poten-
tial through the modulation of sodium transport.6 
Moreover, these receptors are specifically 
expressed in the blood–brain barrier (BBB) and 
activated by post-ischaemic cerebral hyperglycae-
mia, which in turn exacerbates neuronal dam-
age.7 In an animal model of stroke, the SGLT2 
inhibitor phlorizin can reverse this central hyper-
glycaemia and reduce cerebral oedema.8 The 
ability of SGLT2i to cross the BBB, due to their 
lipid solubility, further supports the therapeutic 
potential of SGLT2i for neurological disorders.

The glycosuria and reduction in plasma glucose 
induced by SGLT2i leads to a shift in substrate 
utilisation from carbohydrates to fatty acid oxida-
tion, consequently leading to ketogenesis. This 
may have neurological benefits, which is reflected 
in the efficacy of a ketogenic diet in the manage-
ment of refractory epilepsy,9 the improvement of 
cognitive function in AD patients taking a 

ketogenic medication10 and the significant 
improvement of motor and non-motor symptoms 
in PD observed with a ketogenic diet.11 The neu-
roprotective effects of ketogenesis are thought to 
be due to its ability to bypass defects in mitochon-
drial respiratory complexes and overall reduce 
oxidative damage in neurons.12 This lends further 
support for exploring the neurological benefits of 
SGLT2i, possibly through the augmentation of 
ketogenesis.

Given these premises, the aim of this scoping 
review is to evaluate and summarise all available 
literature on the impact of SGLT2i on neurologi-
cal disorders.

Methods
This review was conducted and reported in 
accordance with the PRISMA extension for scop-
ing reviews (a completed checklist can be found 
in Supplemental Appendix 1).13 Comprehensive 
literature searches of MEDLINE, EMBASE, 
Scopus, Web of Science, APA PsycINFO and 
ClinicalTrials.gov were performed to include 
studies from inception to 20 March 2021. A 
MeSH search and free-text search were carried 
out using keywords relating to SGLT2i and neu-
rological disorders. The commonly used SGLT2i 
are shown in Table 1. The full search strategy can 
be found in Supplemental Appendix 2.

Additional studies were identified by scanning the 
references of included studies and other narrative 
reviews. The inclusion criteria were as follows: (a) 
any research study, such as systematic reviews, 
meta-analyses, randomised controlled trials, case 
series, case reports, case–control studies, cohort 
studies, animal studies, in vitro studies, simula-
tion/docking studies; (b) any research study that 
explored the impact of SGLT2i on any neurologi-
cal disorder or their respective biochemical tar-
gets. Studies were excluded if (a) the data 
specifically relating to the neurological disorder 
could not be reliably extracted from a pooled 
dataset, or (b) not an original research article, 
such as narrative reviews and letters to the editor. 
No limitation filters were applied to the study 
type, language or publication date, to include a 
range of different studies.

Two authors (T.T. and J.S.Y.H.) independently 
screened and assessed all titles, abstracts and full 
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texts. Corresponding authors were contacted for 
full texts or missing data. Full texts of articles 
meeting the inclusion criteria were examined and 
relevant studies were analysed for data extraction. 
Any disagreements between the two authors were 
resolved through discussion and consensus 
reached.

Data extraction was undertaken independently by 
two researchers (T.T. and J.S.Y.H.) using a data 
extraction template, which can be found in 
Supplemental Appendix 3. The results of each 
study were summarised into one sentence, includ-
ing important statistics that were reported. 
Studies were then categorised and analysed by 
neurological disorder.

Ethical approval by the institutional review board 
was not required as only published data were 
included and there was no funding source for this 
study.

Results
The primary search resulted in 1391 potentially 
relevant studies following the removal of dupli-
cates. Four additional studies were identified 
through review of reference lists and other narra-
tive reviews. Ultimately, 160 studies were 
included in this scoping review (Figure 1). These 
studies were categorised according to the neuro-
logical disorder: stroke, cognitive impairment, 
epilepsy and movement disorders.

Cognitive impairment
Our systematic search identified 19 studies 
exploring the impact of SGLT2i on cognitive 

impairment, and 11 studies were performed in 
animal models of diabetic cognitive impairment 
and AD (full references in the Supplementary 
Material). Streptozotocin or a high-fat diet was 
used to induce diabetes mellitus in rodents, as the 
impaired insulin signalling leads to a combination 
of defects in autonomic function and neuroin-
flammatory pathways, which ultimately results in 
impaired cognition.14 Mutations in the amyloid 
precursor protein and presenilin-1 genes were used 
to create transgenic animal models of AD.

In all 11 studies, the rodent models predictably 
demonstrated diminished performance on mem-
ory tests such as the Morris Water Maze and 
novel object recognition test. Different SGLT2i 
were studied: canagliflozin,15 luseogliflozin,16 
dapagliflozin,17 empagliflozin18,19 and phlorizin, a 
non-selective SGLT1/2 inhibitor.20 All SGLT2i-
treated disease models showed significant 
improvement in memory tests.

Three studies focused on the mechanisms under-
lying the relationship between SGLT2I and cogni-
tion. First, Wang et  al. demonstrated a 50% 
reduction in reactive oxygen species (ROS) in dia-
betic rats treated with luseogliflozin over a 
4-month period. The proposed explanation for this 
reduction was an improvement in mitochondrial 
function.16 Second, SGLT2i-treated models dem-
onstrated a histological improvement in the neuro-
vascular restructuring that is normally observed in 
cognitive decline. Specifically, SGLT2i reduced 
leakage of the BBB, reduced microglia burden and 
prevented myelin remodelling.18 In parallel, 
increased brain-derived neurotrophic factor and 
synaptogenesis were observed in SGLT2i-treated 
models.17 These changes were macroscopically 

Table 1. FDA- and EMA-approved sodium-glucose cotransporter 2 inhibitors (SGLT2i).

Generic name Canagliflozin Dapagliflozin Empagliflozin

Brand name Invokana Farxiga Jardiance

Available doses (mg) 100, 300 5, 10 10, 25

Administration Once a day before first 
meal

Once a day Once a day

SGLT2 to SGLT1 selectivity 250:1 1200:1 2500:1

AChE inhibition Ki (µM) 0.13 25.02 0.18

AChE, acetylcholinesterase; EMA, European Medicines Agency; FDA, The US Food and Drug Administration; Ki, inhibitor 
constant.
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manifested by reduced cortical thinning, haemor-
rhages and senile plaques.19 Third, SGLT2i-treated 
mice showed significantly lower acetylcholinester-
ase (AChE) levels compared with placebo-treated 
mice. This increased the availability of acetylcho-
line and led to improvement in cognitive tasks.15 
The systematic review conducted by Panchal 
et al.21 summarised these findings while highlight-
ing that SGLT2i can increase monoamine levels to 
an extent comparable to galantamine therapy via 
reduction in AChE levels.

Among the 19 studies, 5 were bioinformatic stud-
ies investigating the docking of SGLT2i with 
molecules involved in the pathophysiology of AD, 
such as AChE. For example, Shaikh et al.22 found 

that the docking energy between dapagliflozin 
and SGLT2, and between dapagliflozin and the 
CAS domain of AChE, were similar, which sug-
gested that dapagliflozin may be a dual inhibitor 
of SGLT2 and AChE. Similarly, canagliflozin 
was found to have significant interactions with 
the S203 and H447 amino acid moieties of 
AChE.23 Overall, all SGLT2 inhibitors formed 
stable complexes with AChE in these five docking 
studies. Alafnan24 expanded upon these findings 
by revealing strong bonds between SGLT2i and 
other molecular targets implicated in the amyloi-
dogenic and phosphorylation pathways of AD.

Of the 19 studies, two involved human partici-
pants.25,26 Perna et  al. presented a randomised 

Figure 1. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow diagram for 
search strategy.
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controlled trial of 39 elderly subjects with met-
formin-controlled T2DM and a mean age of 77. 
The addition of SGLT2i was compared with 
incretin regarding cognitive function over a 
12-month period. There were no significant 
changes in cognition in either group, as meas-
ured by tests of working memory and attention. 
However, this study was limited by its small sam-
ple size, and the duration of follow-up might 
have been too short to detect any change in 
cognition.26

Conversely, the cohort study by Wium-Andersen 
et al.25 found that the use of SGLT2i was signifi-
cantly associated with a lower risk of dementia in 
11,619 patients with T2DM [odds ratio (OR), 
0.58; 95% confidence interval (CI): 0.42–0.81]. 
While this was consistent with the animal studies 
suggesting a beneficial impact of SGLT2i on 
cognitive impairment, it is important to note that 
this is a retrospective observational study, which 
limits our ability to draw inferences about 
causation.25

In contrast to all the previous studies, one of the 
19 studies suggests that SGLT2 inhibition could 
have unfavourable effects on cognition. This 
study compared mice with and without a muta-
tion in the SGLT2 gene and found that the muta-
tion results in downregulation of amyloid-beta 
precursor-like protein, which is an important pro-
tein in synaptogenesis and central insulin homeo-
stasis. The downregulation of this protein then 
led to memory impairment.27

Epilepsy
Four studies addressed epilepsy,6,28–30 of which 
three were performed in animals,6,29,30 while the 
remaining human study was a case report.28 In a 
study on 48 rats, Erdogan et al.6 used pentylene-
tetrazol (PTZ) to induce seizures. Compared 
with vehicle and control arms, the administration 
of dapagliflozin significantly lowered spike wave 
percentage on intracranial electroencephalogram 
(EEG) monitoring. In addition, the severity of 
seizures was significantly reduced and the time to 
first myoclonic jerk was significantly shortened. 
The postulated explanations for better seizure 
control with this SGLT2i were that the inhibition 
of sodium and glucose into neurons results in 
reduced neuronal depolarisation and reduced 
glucose utilisation in the brain, therefore increas-
ing seizure threshold due to reduced neuron 

excitability and limited metabolic resources for 
cellular respiration.6

The case report by Blunck et  al.28 described a 
42-year-old lady with super-refractory status epi-
lepticus, which required propofol and midazolam 
infusions. The ketogenic diet alone failed to pro-
duce sustained ketosis for 2 weeks, prompting  
the initiation of dapagliflozin. Within 1 week of 
SGLT2i initiation, the patient entered a consist-
ent state of ketosis for the first time in 65 days, 
enabling them to be weaned off the propofol infu-
sion. However, it was difficult to determine 
whether the observed result was due to the sole 
effect of SGLT2i or its addition enabling the 
ketogenic diet to take effect.28 Nevertheless, the 
case provided a support that SGLT2i can aug-
ment ketogenesis, which has been demonstrated 
to help in the treatment of refractory status epi-
lepticus in previous studies.9

A contrary argument for the use of SGLT2i for 
epilepsy was presented by Melo et al. in two simi-
lar animal studies that investigated the effect of 
phlorizin on pilocarpine-induced status epilepti-
cus in male Wistar rats.29,30 In these studies, 
SGLT2i led to an increased severity of limbic  
seizures, quoting a significant 90% of animals  
in the phlorizin group having severe Racine’s 
scales scores, compared with 70% in vehicle. 
Furthermore, phlorizin significantly increased 
Fluoro-Jade C–positive cells in the hippocampus 
24-h after status epilepticus, which was indicative 
of an extensive neurodegenerative process. The 
investigators argued that SGLT2 inhibition com-
promised neuronal survival due to less glucose 
entry into the cells with reduced adenosine 
triphosphate (ATP) generation. The compro-
mised ATP production was believed to trigger 
cell death molecular cascades resulting in neuro-
degeneration.29,30 The conflicting results of 
Erdogan et al. and Melo et al. could be explained 
by the differences in the effects of phlorizin and 
dapagliflozin, since phlorizin inhibits SGLT2 as 
well as SGLT1, whereas dapagliflozin inhibits 
only SGLT2.6

Movement disorders
Three animal studies and one docking study 
explored the impact of SGLT2i on diseases such 
as PD and Huntington’s Disease (HD). Anandhan 
et al.31 found that the administration of phlorizin 
reduced the toxicity of paraquat in rat 
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dopaminergic mesencephalic cell line N27 and 
marginally reduced cell death progression. This 
protective effect occurred through the joint acti-
vation of AMPK and reduced activation of the 
pentose phosphate pathway, leading to attenu-
ated ROS production.31 Expanding this to animal 
studies, Arab et al.32 demonstrated that dapagli-
flozin attenuated neuronal injury and motor dys-
function in rotenone-induced rat model of PD, 
without inducing hypoglycaemia. In this study, 
dapagliflozin alleviated ROS production, boosted 
glial cell line–derived neurotrophic factor and 
suppressed cytokines, overall preserving the 
dopaminergic neurons and reducing accumula-
tion of alpha synuclein.32

Another emerging target for the management of 
PD is the A2A adenosine receptor (A2AAR), 
which commonly populates the basal ganglia.33 
Their antagonists have been proven to decrease 
off-time and troublesome dyskinesia while offer-
ing neuroprotection.34 Ayoub et  al.35 examined 
this target in their docking study, revealing a sta-
ble complex formation between A2AAR and 
SGLT2i. Therefore, SGLT2i may be an effective 
antagonist against the A2AAR, although it may 
be intriguing to compare its docking energy to 
known antagonists such as istradefylline.36

Only one study looked at the potential of SGLT2i 
in HD.37 El-Sahar et al. recreated a rat model of 
HD by using a high single dose of 3-nitropropi-
onic acid (3-NP) to cause acute striatal injury. 
This injury led to impairment in memory and 
locomotor functions, accompanied by reductions 
in acetylcholine and GABA, along with elevations 
in glutamate, aspartate and AChE activity. 
However, pre-treatment of 3-NP rats with dapa-
gliflozin favourably reversed the behavioural and 
neurotransmitter levels significantly, providing 
evidence that dapagliflozin may have an inhibitive 
role against AChE. While 3-NP induced apopto-
sis, glycolysis and inflammation, it also induced 
an anti-autophagy response. However, pre-treat-
ment with dapagliflozin induced autophagy 
through beclin-1 and LC3 expression, thus con-
tributing to the striatal cell survival and subse-
quent observed behavioural improvement.37

Stroke
A total of 134 articles reported stroke outcomes, 
which included 11 animal studies, three case 

reports, 58 cohort studies, 18 randomised con-
trolled trials and 44 systematic reviews with meta-
analysis (full references in the Supplementary 
Material). The randomised controlled trials, 
CANVAS Program, DECLARE-TIMI 58, 
CREDENCE, EMPA-REG OUTCOME, 
VERTIS CV and UTOPIA, compared the effect 
of SGLT2i versus placebo on cardiovascular out-
comes in patients with T2DM, which are summa-
rised in Table 2. Canagliflozin, dapagliflozin and 
empagliflozin had no significant effect on fatal or 
non-fatal stroke and ischaemic stroke.38 The 
VERTIS CV trial compared ertugliflozin with pla-
cebo in 8246 patients and confirmed that ertugli-
flozin was not significantly associated with fatal or 
non-fatal stroke [hazard ratio (HR), 1.06; 95% 
CI: 0.82–1.37].39 In the UTOPIA study, there 
were no significant differences in stroke events or 
progression of carotid intima-media thickness 
between those on tofogliflozin and those on other 
non-SGLT2i antidiabetic medications.40

Of the 58 observational cohort studies, seven 
included patients on canagliflozin, 15 on dapagli-
flozin, 11 on empagliflozin and one each on 
tofogliflozin and ipragliflozin, while 23 did not 
specify the type of SGLT2i. Results from these 
studies are summarised in Table 2. In general, the 
effect of SGLT2i on stroke, compared with other 
glucose-lowering medications, has been mixed. 
One study showed higher risk of ischaemic stroke 
with SGLT2i than metformin,41 but lower risk of 
stroke compared with sulfonylurea.42 Comparing 
SGLT2i to dipeptidyl peptidadase-4 inhibitors 
(DPP4i), five studies showed a significant lower 
risk with SGLT2i (HR: 0.46–0.86).43 Compared 
with glucagon-like peptide 1 receptor agonists 
(GLP-1RA), three studies found no significant 
differences in ischaemic or haemorrhagic 
stroke.44–46 Insulin use was associated with signifi-
cantly higher risk of stroke compared with 
SGLT2i.47 Comparing SGLT2i to all other glu-
cose-lowering drugs, a similar number of studies 
found significant lower risks of stroke or no sig-
nificant differences with SGLT2i.47–49

When canagliflozin was compared with non-
SGLT2i (DPP4i, GLP-1RA and sulfonylurea), 
no significant difference in stroke outcome was 
observed.44 On 1-year follow-up in adults aged 
⩾65 years, 0.22% of patients on canagliflozin 
developed cerebral infarction, 0.07% had tran-
sient ischaemic attack (TIA) and 0.07% showed 
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cerebrovascular stenosis.50 Compared with other 
antidiabetic medications, dapagliflozin had a sim-
ilar risk of stroke in patients with T2DM and car-
diovascular disease (CVD) or at high risk of 
CVD.49 Dapagliflozin had a reduced risk of stroke 
compared with DPP4i in one study,51 while a 
similar but statistically insignificant trend were 
reported by two other studies.49,52 There were no 
significant differences in the risk of stroke between 
dapagliflozin and empagliflozin in a study of 
12,681 patients with T2DM who were newly 
started on SGLT2i (HR: 1.15, 95% CI: 
0.80–1.65).53

There were 44 previous systematic reviews and 
meta-analyses comparing SGLT2i with placebo 
or other glucose-lowering medications for stroke 
outcomes. Of the 37 systematic reviews that com-
pared SGLT2i with placebo, 33 found no signifi-
cant differences in risk of stroke. While three 
reviews showed a lower risk of stroke with 
SGLT2i,54–56 one meta-analysis of 16 studies 
reported a higher risk of stroke associated with 
SGLT2i.57 Similarly, nine meta-analyses of 
SGLT2i versus DPP4 inhibitors, GLP-1RA, met-
formin and standard care showed no significant 
differences. One meta-analysis of 14 studies 
found a lower risk of stroke in those taking 
SGLT2i compared with other glucose-lowering 
medications.58

SGLT2i may have potential neuroprotective 
effects during cerebral ischaemia. Twelve in vivo 
and in vitro studies investigated the underlying 
mechanism of the effect on SGLT2i on stroke. 
Treatment with empagliflozin after bilateral 
carotid artery occlusion (BCAO)-induced ischae-
mia and reperfusion in rats reduced the infarct size 
and enhanced neurobehavioral functions in a 
dose-dependent manner.59 EGT1442, a selective 
SGLT2i, dose-dependently reduced HbA1c and 
blood glucose concentration, and prolonged sur-
vival of the stroke-prone spontaneously hyperten-
sive rats.60 Intraperitoneal administration of 
phlorizin suppressed post-ischaemic hyperglycae-
mia, and intracerebroventricular or intraperito-
neal administration of phlorizin significantly 
reduced pyknotic neuronal cell death and BCAO-
induced spasticity on gait analysis.61 When the 
function of SGLT in ischaemia induced by middle 
cerebral artery occlusion (MCAO) was evaluated 
in mice, Vemula et al.62 found a time-dependent 
increase in [14C]-methyl d-glucopyranoside 
(AMG), a specific, non-metabolised substrate of 

SGLT in mice exposed to focal ischaemia, which 
was reduced by phlorizin in a dose-dependent 
manner. This was similar to the observation of 
suppressed exacerbation by intracerebroventricu-
lar injection of glucose with the use of phlorizin.8

The neuroprotective effects of SGLT2i are postu-
lated to be due to its role in post-ischaemic hyper-
glycaemia, enhancement of hypoxia-inducible 
factor-1 (HIF-1α) and vascular endothelial 
growth factor (VEGF) pathway, as well as its 
effect on Aβ aggregation. Post-ischaemic hyper-
glycaemia develops 6 h after MCAO, and con-
comitant hydrogen peroxide and glucose injection 
worsened hydrogen peroxide–induced cell 
death.63 Phlorizin increased neuronal survival 6 h 
after MCAO, but not immediately after MCAO, 
and suppressed cell death induced by hydrogen 
peroxide/glucose but not hydrogen peroxide 
alone. This suggests that SGLT may induce cell 
death through post-ischaemic hyperglycaemia, 
blocked by SGLT inhibitors. Sodium influx 
through cerebral SGLT also led to concentration-
dependent decline in neuronal survival, amelio-
rated by phlorizin.64 Empagliflozin is known to 
reduce neuronal caspase-3 expression, involved 
in apoptosis, in addition to upregulating HIF-
1αα and VEGF post-ischaemic/reperfusion, and 
enhance recovery through angiogenesis and other 
neurotrophic effects.59 Furthermore, pre-treat-
ment with dapagliflozin resulted in decreased Aβ 
aggregation and BBB breakdown in male Wistar 
rats with cardiac ischaemic/reperfusion injury.65

Discussion
Taken together, our scoping review demonstrates 
the wide array of potentially beneficial pleiotropic 
effects of SGLT2i on cognitive disorders, epi-
lepsy, movement disorders and stroke. These 
effects were reflected in behavioural outcomes, as 
assessed by cognitive and locomotor tasks, as well 
as biochemical and histopathological outcomes, 
as assessed by neurotransmitter levels and the 
structure of neurovascular units. Although most 
clinical studies addressed stroke, the literature 
remains inconclusive.

There are several interlinked themes that have 
emerged regarding the mechanism of how 
SGLT2i may benefit neurological disorders 
(Figure 2). First, SGLT2i play an important role 
in mitigating common risk factors for these disor-
ders at the organism level, such as persistent 
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hyperglycaemia, insulin resistance, high triglycer-
ide levels, visceral fat and hypertension.66 SGLT2i 
lower blood pressure possibly through the osmotic 
and diuretic effects and reduction in sodium 
reabsorption by the kidneys. Hypertension is a 
well-known risk factor for stroke and dementia as 
it leads to endothelial dysfunction, atherosclerosis 
and small vessel disease, and reduced blood pres-
sure is associated with lower risk of stroke and 
TIA.67 A reduction in circulating plasma volume 
through natriuresis and diuresis and associated 
haemoconcentration is proposed to explain the 
improvement in heart failure outcomes associated 
with SGLT2i,68 which may reduce the hypoper-
fusion associated with heart failure, improving 
cerebral blood flow, and reducing the risk of 
stroke. These risk factors are relevant not only to 
stroke, but also to neurodegenerative disorders, 
where metabolic dysfunctions such as insulin 
resistance, impaired insulin-like growth factor-1 
signalling, impaired beta-cell function and altered 
leptin and ghrelin levels are evident.69

Second, the anti-inflammatory and anti-apoptotic 
effects of SGLT2i counteract the neuroinflam-
mation observed in numerous disorders. For 
example, there is mounting evidence for a recip-
rocal relationship between local inflammation 
and the senile plaques and neurofibrillary tangles 

in AD, mediated by microglia and astrocytes.70 
Oxidative stress, lipid homeostasis dysfunction 
and other contributors to inflammation also dis-
play a reciprocal relationship with endoplasmic 
reticulum stress, leading to chronic overaction of 
the unfolded protein response: a fundamental 
process in the protein misfolding and apoptotic 
neuronal cell death observed in neurodegenera-
tive disorders.71 Similarly, mitochondrial dys-
function has been found in the substantia nigra of 
PD patients, leading to the formation of ROS, fur-
ther propelling the inflammatory cascades seen in 
this disorder.72 Moreover, inflammatory cytokines 
potentiate free radical species, altering glutamater-
gic neurotransmission and ultimately resulting in 
the neuronal excitotoxicity seen in epilepsy.73 In 
addition to limiting excitotoxicity, SGLT2i also 
enhanced synaptogenesis and angiogenesis, con-
tributing to neuroplasticity:16 a mechanism essen-
tial in neurorehabilitation. At the cellular level, 
SGLT2i improves vascular function by inducing 
endothelium-independent vasorelaxation, reduc-
ing vascular adhesion molecule expression and 
macrophage vessel wall infiltration, thus reducing 
atherogenesis.74 SGLT2i is also shown to reduce 
vascular inflammation through AMP-activated 
protein kinase-dependent and independent mech-
anisms in animal studies, and reduces arterial stiff-
ness via anti-inflammatory mechanisms, which 
may contribute to the reduction in stroke.75 
Overall, the anti-inflammatory and antioxidant 
effects of SGLT2i lend further support for their 
potential in a range of neurological disorders.

The third theme is the ketogenic effects of 
SGLT2i; ketogenesis is significantly augmented 
by SGLT2i and is an effect that is often noted in 
previous literature.28 The therapeutic use of the 
ketogenic diet in neurological disorders is well 
established, especially for paediatric epilepsy syn-
dromes such as West syndrome.76 Ketosis has 
shown improvement in the cognitive function of 
patients with AD,10 and in animal models of trau-
matic brain injury through limiting cerebral 
oedema and contusion volume while increasing 
tissue sparing.77 On a molecular level, these effects 
are thought to be mediated by enhanced mito-
chondrial respiration through peroxisome prolif-
erator–activated receptors (PPARs) and AMPK 
activation.77 SGLT2i also reduce advanced glyca-
tion end products (AGEs) and their receptor 
(RAGE) interactions, which are products of non-
enzymatic glycation of macromolecules associated 

Figure 2. Various mechanisms via which SGLT2i 
may exert their beneficial effects on neurological 
disorders.
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with hyperglycaemia in diabetes, aging and inflam-
mation. They increase inflammation and oxida-
tive stress, causing extracellular damage in organs 
such as kidneys, leading to diabetic nephropathy, 
and diabetic vascular complications including 
stroke.78 Empagliflozin is shown to inhibit oxida-
tive, inflammatory and fibrotic reactions in the 
kidney partially via the suppression of the AGE–
RAGE axis, but the impact on stroke needs fur-
ther study.79

The pleiotropic effects of SGLT2i are not with-
out risks, and SGLT2i are associated with 
adverse events that may have neurological conse-
quences. Canagliflozin, dapagliflozin and empa-
gliflozin are consistently associated with increased 
genital tract infection compared with placebo 
and other antiglycaemic agents.80 Only dapagli-
flozin was associated with increased urinary tract 
infection, while both canagliflozin and dapagli-
flozin were associated with diabetes ketoacidosis 
(DKA).80 Cerebral oedema is the most severe 
neurological complication associated with DKA, 
causing chronic central nervous system morbid-
ity in 10–25% of affected children, such as poor 
delayed memory recall and divided attention at 6 
months.81 SGLT2i, although less likely to cause 
hypoglycaemia than insulin, are associated with 
increased hypoglycaemia when used in combina-
tion with metformin and sulfonylureas.80 
Neurological sequelae of hypoglycaemia range 
from full recovery to persistent vegetative state, 
and manifestations include confusion, seizures, 
focal neurological deficits and coma.82 Therefore, 
although generally safe, the neurological adverse 
events of SGLT2i cannot be overlooked.

Given the favourable effects of SGLT2i demon-
strated in animal studies, their ability to cross the 
BBB and their action on multiple receptors in 
docking studies, this group of antidiabetic drugs 
should be an essential part of future neurological 
trials. At the time of writing, a randomised con-
trolled trial is ongoing (NCT03801642), invest-
ing the effect on dapagliflozin in patients with 
AD, which will be an important basis for the fur-
ther trials on the impact of SGLT2i on neurologi-
cal disorders.

Strengths and limitations
A key strength of this review stems from its nov-
elty; this is the first scoping review to investigate 

the potential of SGLT2i in neurological disorders 
through a systematic search and analysis of 160 
studies. Furthermore, our review collates the data 
from pre-clinical and clinical studies alike, and 
analyses the various mechanisms postulated in 
these studies. The consistency of benefits found in 
the range of studies included strengthens the argu-
ment that SGLT2i may exhibit neuroprotective 
potential. However, it is important to note the pau-
city of human studies. This may be because cur-
rent clinical trials are specifically powered for 
diabetic, renal or cardiovascular outcomes of 
SGLT2i. Consequently, clinical analysis was based 
on stroke data extracted from cardiovascular out-
come trials, or individual case reports, which can-
not be regarded as a source of evidence-based 
conclusions. Due to the lack of evidence from clin-
ical trials and large cohort studies, quantitative 
analysis was not possible in this systematic review.

Second, clinical trials were heterogeneous with 
respect to the interventions, comparators and 
populations investigated. Several studies used a 
combination of drugs alongside SGLT2i, either 
placebo or other antidiabetic medications were 
used as comparators, and the population of inter-
est varied from healthy participants to individuals 
affected by diabetes or chronic kidney disease. 
Those who had comorbidities may have worse 
neurological outcomes from the start and subse-
quently experience the greatest benefit from 
SGLT2i, presenting a ceiling effect. This hetero-
geneity in included studies made it challenging to 
delineate the most accurate effect of SGLT2i on 
neurological outcomes.

Third, most studies looked at pre-treatment with 
SGLT2i, rather than the use of SGLT2i after the 
neurological event. It can, therefore, be inferred 
that while SGLT2i may be helpful in primary pre-
vention, their utility in secondary or tertiary pre-
vention is less certain. On the contrary, some 
studies suggest that the post-stroke use of SGLT2i 
can enhance neuronal synaptic plasticity and limit 
cerebral oedema.8,63 Future studies can further 
clarify whether SGLT2i are indeed useful in sec-
ondary and tertiary prevention.

In this review, we focused on SGLT2 inhibition 
by SGLT2-selective inhibitors, but SLGT1 inhi-
bition may have an additional role in the neuro-
logical effects of SGLT inhibition. The brain 
expression of SGLT1 is higher than SGLT2, and 
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SGLT1 is mainly found in the pyramidal cells of 
the cortex, Purkinje cerebellum cells, hippocam-
pus pyramidal and granular cells and hypothala-
mus.83 Phlorizin is a non-selective SGLT 
inhibitor, which is found to reverse post-ischae-
mic cerebral hyperglycaemia and cerebral oedema 
in stroke.8 Conversely, phlorizin is also associated 
with increased severity of neurodegenerative pro-
cess post-seizures, possibly due to less glucose 
entry into the cells with reduced ATP generation, 
triggering cell death molecular cascades resulting 
in neurodegeneration.29 The effects of SGLT1 
versus SGLT2 inhibition in neuroprotection 
require further investigation and delineation, 
which is of increasing clinical relevance due to the 
availability of SGLT1/2 dual inhibitors, such as 
sotagliflozin, on the market.84

Conclusion
SGLT2 inhibitors exhibit promising potential for 
the management of neurological diseases, ranging 
from acute stroke to chronic problems such as 
AD, epilepsy and PD. The beneficial effects are 
related to their anti-inflammatory, antioxidant 
and ketogenic effects on a microscopic scale, 
which is reflected in improved neurovascular 
structure and cognitive outcomes on a macro-
scopic scale. Given the increasing prevalence of 
neurological diseases in the context of an aging 
population, there is a dire need to consider repur-
posing existing medications on the market. 
Although animal studies and docking studies 
demonstrate that these antidiabetic medications 
can have beneficial effects in neurological dis-
eases, it is important to further explore their 
potential in human populations through future 
research.
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