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Abstract
The quick and reliable detection and identification of a tastant in the mouth regulate nutrient uptake and toxin
expulsion. Consistent with the pivotal role of the gustatory system, taste category information (e.g., sweet, salty)
is represented during the earliest phase of the taste-evoked cortical response (Crouzet et al., 2015), and different
tastes are perceived and responded to within only a few hundred milliseconds, in rodents (Perez et al., 2013) and
humans (Bujas, 1935). Currently, it is unknown whether taste detection and discrimination are sequential or
parallel processes, i.e., whether you know what it is as soon as you taste it. To investigate the sequence of
processing steps involved in taste perceptual decisions, participants tasted sour, salty, bitter, and sweet solutions
and performed a taste-detection and a taste-discrimination task. We measured response times (RTs) and
64-channel scalp electrophysiological recordings and tested the link between the timing of behavioral decisions
and the timing of neural taste representations determined with multivariate pattern analyses. Irrespective of taste
and task, neural decoding onset and behavioral RTs were strongly related, demonstrating that differences
between taste judgments are reflected early during chemosensory encoding. Neural and behavioral detection
times were faster for the iso-hedonic salty and sour tastes than their discrimination time. No such latency
difference was observed for sweet and bitter, which differ hedonically. Together, these results indicate that the
human gustatory system detects a taste faster than it discriminates between tastes, yet hedonic computations
may run in parallel (Perez et al., 2013) and facilitate taste identification.
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Significance Statement

Perception and action reflects the culmination of multiple processing stages. In gustation, these stages and
their sequence are understudied. We show strong correspondences between neural decoding onset and
behavioral response times, demonstrating that differences between taste judgments are reflected early
during chemosensory encoding, rather than resulting from higher-level cognitive processing. Moreover, we
find that the processing sequence of detection and discrimination varies with taste contrast: detection
precedes discrimination for sour-salty while both processes occur without time lag for bitter-sweet, which
vary in hedonics. We suggest that hedonic features are processed in parallel to purely sensory computa-
tions with the potential to facilitate stimulus identification in taste perception, supporting the concept of a
flexible sequence of gustatory coding states.
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Introduction
The innate ability to discriminate between basic taste

categories (Cowart, 1981; Steiner et al., 2001) reflects the
ecological imperative of the mammalian sense of taste
and underlines its role in nutrient sensing and the avoid-
ance of harmful substances. Indeed, sweet taste indicates
the availability of carbohydrates, salty taste allows elec-
trolyte detection, umami taste serves protein recognition,
and sour and bitter tastes alert us to acids and potentially
harmful substances like alkaloids, respectively (Breslin,
2013).

Each taste category is detected by specific receptors,
mostly on the tongue (Roper and Chaudhari, 2017), and
taste-specific information is transduced to the brainstem,
eventually arriving at dissociable cortical representations
(Katz et al., 2002; Schoenfeld et al., 2004; Pavao et al.,
2014; Crouzet et al., 2015; Wallroth et al., 2018). Despite
detailed descriptions of peripheral and central sites of
gustatory information processing, the emergence of the
taste processing cascade, such as the detection of and
discrimination between tastes, is not yet understood.

Early investigations of human taste behavior demon-
strated that tastes can be detected within only 200 ms
(Lester and Halpern, 1979; Yamamoto and Kawamura,
1981), and that more complex taste judgments such as
identification and discrimination take 100–200 ms lon-
ger (for an overview, see Halpern, 1986). Interestingly,
Kuznicki and Turner (1986) hypothesized that taste dis-
crimination times are intimately linked with the time re-
quired to detect individual tastants (termed “time criterion
strategy”). Accordingly, during the discrimination of tastes
with different detection latencies, the faster taste serves
as a cue that triggers the response, which results in an
apparent speed-up of the discriminatory decision for the
slower taste. Contrarily, when tastes with similar detection
latencies are to be discriminated, the absence of such a
response cue slows the discriminatory decision consider-
ably as compared to their individual detection times
(Kuznicki and Turner, 1986).

Generally, differential timing between simple and more
complex evaluations (e.g., detection of a taste or judging
its intensity) has been largely attributed to central pro-
cessing, as neither correlations of the temporal properties
of the taste periphery nor chemical properties of the
tastants could account for the magnitude of the observed
differences (Halpern, 1986; Kelling and Halpern, 1986).
However, given that behavioral outputs reflect the culmi-

nation of several processing stages, prior work was un-
able to address whether the observed timing differences
between taste judgments, particularly taste detection and
identification, are a consequence of early central process-
ing associated with chemosensory encoding or later cen-
tral processing associated with higher-level cognition,
such as decision making. To this end, investigating the
occurrence of taste-related responses in ongoing neural
activity (e.g., via electrophysiological recordings) provides
an ideal tool to address whether attentional modulation
affects early sensory processing or higher-level cognition
such as memory, response selection, etc. (Luck and Hilly-
ard, 1999). So far, our mechanistic understanding of the
taste processing sequence is based on rodents, where
single neuron recordings in the gustatory cortex revealed
separable stages of taste-nonspecific action potential
bursts, which likely represent oral somatosensation, and
more complex, taste-specific responses (Katz et al., 2001;
Baez-Santiago et al., 2016), although these findings can-
not be readily transferred to humans given differences
between species and experimental protocols. Further
findings suggest that gustatory responses are not repre-
sented by stationary sensory codes but are subject to
contextual modulations such as attention and expectation
(Fontanini and Katz, 2006, 2009; Samuelsen et al., 2012).

In comparison with other sensory systems, the olfactory
sense may afford the most relatable insights, as major
perceptual computations conclude within a time frame
akin to the gustatory sense (cf. Crouzet et al., 2015; Jiang
et al., 2017), with a temporal advantage for detection over
discrimination performance of comparable magnitude
(�200 ms; cf. Halpern, 1986; Olofsson et al., 2013). In
olfaction, response-time data suggest a cascade with
distinct processing stages for detection, identification,
and edibility, which unfold in a causal, sequential manner,
while valence computations may also run, at least in part,
in parallel to identification (Olofsson et al., 2013). In con-
trast, detection and categorization of visual objects (such
as “bird” or “car”) may in fact occur simultaneously (Grill-
Spector and Kanwisher, 2005), although it has also been
suggested that detection and identification are not intrin-
sically linked but rather are contingent on a variety of task
factors (Mack et al., 2008).

Here, we investigated the processing sequence of two
distinct taste judgments: detection and discrimination.
Specifically, we tested whether temporal differences be-
tween taste detection and discrimination are already re-
flected at the early stages of sensory encoding or only
manifest during later stages related to higher-level cogni-
tive processing, using multivariate pattern analysis of gus-
tatory electroencephalography (EEG) and psychomotor
response times (RTs).

Materials and Methods
Participants

Twenty-one healthy and normal-weight individuals par-
ticipated in the experiment and received monetary com-
pensation or class credits. Exclusion criteria were heavy
smoking, pregnancy, impaired sense of taste, hearing aid,
and past or current neurologic or psychological disorders;
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the information was self-report based. One subject was
excluded from all analyses due to technical difficulties
during data collection. One participant completed only the
EEG part and did not participate in the rating procedure;
we kept this partial data set. Accordingly, data from 20
participants, 16 women, 18–34 years old (mean age
25.27 � 4.04 SD; mean BMI 21.82 � 2.66 SD), are reported
for the EEG and behavioral data, and data from 19 partici-
pants, 15 women, 18–34 years old (mean age 25.40 � 4.10
SD; mean BMI 21.97 � 2.64 SD), are reported for the ratings.
The study conformed to the revised version of the Declara-
tion of Helsinki and was approved by the ethics board of the
German Psychological Society. Participants provided writ-
ten informed consent before participation.

Materials
Four solutions with a clear taste were presented to

participants: 0.684 M sodium chloride (salty; local super-
market, REWE, Köln, �97% purity), 0.052 M citric acid
(sour; SAFC, CAS#77-92-9, Sigma-Aldrich, Inc.), 0.003 M
quinine monohydrate (bitter; CAS#207671-44-1, Sigma-
Aldrich, Inc.), and 0.075 M Splenda (sweet; Tate & Lyle�).
Solutions were prepared daily by dissolving the chemical
in distilled water.

Taste and rinse solutions were delivered with the
GU002 gustometer (Burghart Messtechnik GmbH), which
stores solutions in separate bottles that each supply a
syringe pump with a check valve (Iannilli et al., 2015).
From there, solutions are transported via separate, 5-m-
long Teflon tubes to a manifold outlet where they mount
together with compressed air to a spray nozzle that at-
omizes the liquids to an even spray. The spray nozzle is
positioned 1–1.5 cm above the slightly extended tongue
so that the spray covers a large area of the anterior,
slightly extended tongue’s surface. All tubes ran inside a
hose filled with water at 38°C until the manifold to keep
the solutions at a constant temperature and to minimize
any thermal sensations. During the experiment, the par-
ticipant comfortably leaned against a forehead rest, which
stabilized the head and held the spray nozzle in place. In
this position, liquids were applied to the slightly extended
tongue and not swallowed but collected in a bowl under-
neath the chin. The position was monitored online via
camera to monitor positioning of the tongue and move-
ments.

The gustometer was set to apply regular, distinct spray
pulses. During each pulse, 70 �l of liquid were dispensed
during 100 ms; this period was followed by a pause of 200
ms, which served to separate consecutive spray pulses.
Each taste stimulus consisted of three such pulses and
amounted to a bolus of 210 �l delivered over a period of
900 ms (flow rate: 233 �l/s). The timing and flow rate were
optimized to minimize mixing of individual spray pulses
and to elicit the experience of a continuous flow of liquid
to the tongue. The distinct spray pulses permit to embed
a tastant in the “flow” of control or water stimuli without
tactile cue. Notably, participants experience a tactile
“pulsing” only for a few seconds until the lingual somato-
sensory system is habituated. During the development of
this procedure, we determined the time required for lin-

gual habituation; we measured the time to the abolish-
ment of the lingual somatosensory steady-state response
and confirmed our findings with verbal reports of numbing
of the tongue. The steady-state response was abolished
within �10 s. As a result, we present water pulses for at
least 10 s at the beginning of each experimental block or
experiment (Tzieropoulos et al., 2013; Crouzet et al.,
2015). The time between the TTL pulses controlling the
syringe plungers, which push the liquids through the
tubes and the spray nozzle, until the aerosol reaches
the tongue’s surface, was measured by the supplier for
the experimental setting described here following a pre-
viously proposed conductivity measurement (Kelling and
Halpern, 1986). It revealed a time lag of 36 ms (SD � 2
ms), which the stimulus onset in the EEG data were
corrected for.

Design
Participants completed two forced choice RT tasks,

which alternated block-wise and each repeated four times
for a total of eight blocks (see Figure 1). In the “detection”
task, participants were asked to decide whether they
received a tastant (any of the four) or water, and to
respond with the appropriate button press as quickly as
possible. There were 160 tastant trials (40 per tastant) and
160 water trials, for a total of 320 detection trials. In the
“discrimination” task, participants were asked to decide
between two pairs of tastes. There were 160 discrimina-
tion trials in total (40 per tastant). The discrimination was
performed for two pairs: salty versus sour and sweet
versus bitter. The tastant pairs were selected based on
three criteria: (1) same type of taste receptors: salty and
sour taste are signaled via ion channels, and for sweet
and bitter via G protein-coupled receptors (GPCRs),
which convey information at different speeds (Pfaffmann,
1955); (2) similar behavioral response speed: taste de-
tection responses are faster for salty and sour than for
sweet and bitter (Yamamoto and Kawamura, 1981;
Kuznicki and Turner, 1986), which, according to the
time criterion hypothesis, would lead to the faster taste
serving as a response cue in a discrimination; (3) similar
cortical response latencies: similarly to reaction times,
salty and sour evoked earlier cortical responses than
sweet and bitter (Kobayakawa et al., 1999; Crouzet
et al., 2015).

At the beginning of each trial, a fixation dot was dis-
played along with two answer options, with the option on
the left corresponding to the leftmost button on the button
box, and the option on the right corresponding to the
rightmost button. The response mappings were pseudo-
randomized across trials and equiprobable. A fixation
cross replaced the fixation dot after 2–2.5 s to indicate
that the gustatory stimulus (taste or water) was being
administered, and that participants should respond with
the respective button press. After 3 s, a gray screen was
displayed until the next trial. The rinsing period between
trials was 15 s for discrimination, and was shortened to
10s in the detection task, due to the inclusion of water
trials. Rinsing started immediately after tastant presenta-
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tion and continued until the next tastant. After the eight
task blocks, participants completed a short evaluation
block, in which each tastant was presented once more
in pseudo-random order and participants were to rate
intensity and pleasantness on a horizontal 101-point
visual analog scale anchored with 0 (corresponding to
no sensation) and 100 (extremely intense) and with �50
(extremely unpleasant) and 50 (extremely pleasant), re-
spectively. The experiment lasted �120 min, including
breaks.

EEG data acquisition
Participants were seated in a sound-attenuated re-

cording booth (Studiobox GmbH) with the gustometer
positioned outside. The EEG was recorded with an
activCHamp amplifier system (Brain Products GmbH) at
a sampling rate of 500 Hz with analog 0.01-Hz high-
pass and 200-Hz low-pass filters using PyCorder (Brain
Vision LLC) with 64 Ag/AgCl active electrodes placed in
an elastic cap according to the extended 10/10 system.

EEG data preprocessing
The EEG data were processed offline using custom

MATLAB- and Python-based scripts with functions from
EEGLAB (Delorme and Makeig, 2004) and Autoreject (Jas
et al., 2017), respectively. Data were first down-sampled
to 200 Hz to improve the signal-to-noise ratio and com-
putation speed. Slow drifts were corrected with linear
de-trending and line noise (50 Hz) was removed with a set
of multi-tapers over sliding time windows. The continuous
data were then segmented into epochs spanning from
�0.5 to 3 s relative to stimulus onset and Autoreject was
applied to interpolate noisy channels within epochs. Next,
an extended Infomax independent component analysis
(ICA; Makeig et al., 1997) was computed to identify arti-
factual components with manual inspection guided by
ADJUST (Mognon et al., 2011), which uses temporal and
spatial characteristics of the independent components
(ICs) to detect outliers. ICs representing common artifacts

were subtracted from the data. The data were then re-
referenced to the average of all electrodes. Finally, we
applied zero-phase Hamming-windowed sinc finite im-
pulse response filters (cutoff: �6 dB, maximum passband
deviation: 0.2%, stopband attenuation: �53 dB) to isolate
the frequency spectrum below 6 � 2 Hz (order: 330) and
above 0.5 � 1 Hz (order: 660), and subsequently short-
ened the epochs to �.2 s to 1.5 s. The frequency cutoff
was based on recent findings showing that taste quality
information is encoded within the power and phase infor-
mation of the � and lower � frequency bands (roughly up
to 6 Hz; Hardikar et al., 2018; Wallroth et al., 2018; see
also Pavao et al., 2014). Trials were then normalized by
subtracting the average of each electrode’s baseline pe-
riod (�200 ms to stimulus onset) before decoding analy-
sis. No trials were excluded from the data.

Descriptive EEG analysis
To quantify the strength of the electrophysiological sig-

nal for each experimental condition, we computed the
global field power (GFP), a reference-free index of electric
field strength, per task and taste. The GFP is a measure of
variance (i.e., the average of the standard deviations of
the event-related potentials at each of the 64 electrodes)
and expresses how much electrical activity (averaged
across participants) occurs in response to an event (Fig.
2A). To illustrate the electric field distributions, we com-
puted topographical voltage maps for each taste and
task. Each map represents the grand-averaged, mean
voltage from 150 to 200 ms and 50 ms surrounding the
mean decoding onset time relative to water (Fig. 2B).
Difference maps were computed to remove the visual
evoked response elicited by the display of the fixation
cross.

Decoding analysis
To determine the time point at which information related

to detection and discrimination of tastes is represented at
the single-trial level, we performed a time-resolved multi-

tastant

button press

233 µL/s

2.-2.5 s 0.9 s 2.1 s 10-15 s

water

. +
water taste water taste

. +
sour salty sour salty

detection

discrimi-
nation

Figure 1. Schematic illustration of the experimental design during the detection and discrimination tasks. The first two rows portray
examples of visual cues displayed to participants during detection and discrimination trials. During each trial, a liquid tastant (black)
was embedded in a sequence of water pulses. Participants were to speededly respond by button press during both tasks.
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Figure 2. A, Signal strength quantified as the average GFP computed within-subjects as the standard deviation of the event-related
potentials over 64 electrodes for each of the tastants and water over detection trials (left) and discrimination trials (right). Salty and
sour tastants show a stronger signal than sweet and bitter tastants, but less strongly so for discrimination trials. Note that the onset
of the liquid stimulation (for all tastes and for water) coincided with the presentation of the fixation cross, resulting in a clear GFP
response for water as well. B, Topographical voltage maps for each taste and task represent the grand-averaged mean over a 50-ms
time window, early during processing (upper row) and surrounding the decoding onset (lower row) shown in Table 2 and Figure 3C
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variate pattern analysis on the amplitudes of all 64 elec-
trodes (MVPA; Kriegeskorte, 2011) embedded in a
temporal generalization method (King and Dehaene, 2014).
For each participant, the MVPA was implemented with mul-
tiple binary L2-regularized logistic regression classifiers (Fan
et al., 2008). To mimic the behavioral tasks, four classifiers
were trained to detect one of the tastants contrasted to
water (using trials from the detection task), and two classi-
fiers were trained to discriminate the two tastant pairs (salty-
sour and sweet-bitter, using trials from the discrimination
task). The procedure was implemented with a stratified
leave-one-trial-out cross-validation (i.e., on every iteration, a
trial of each taste is left out). Trials with incorrect behavioral
responses were excluded from decoding.

Using the temporal generalization method, a taste-
related activity pattern learned at one time point on the
population level of trials (reflecting an average) is gener-
alized backward and forward in time, given the time series
of a single trial. The resulting classification performance
reflects the correspondence between single and average
trial activity across time. Unlike the common MVPA
approach with pattern learning and testing performed
exclusively at identical time points, this generalization
approach is better suited to determine activity onsets at
the single-trial level by fully taking into account the trial-
to-trial variability of gustatory processing states (cf. Jones
et al., 2007). Hence, trial-level taste-related activation
patterns before or after the average taste response can
still be detected.

To determine the onset of the taste-signal at the single-
trial level, we used a searchlight approach in line with the
“maximum cluster area” statistic (i.e., a predefined num-
ber of neighboring time-points exceed a statistical thresh-
old; cf. Bullmore et al., 1999). Given that the sigmoid
function of the logistic regression naturally quantifies the
certainty with which a classifier makes its decision, we
defined a classification as accurate when the correct
choice was made with a certainty exceeding the 95%
confidence interval of the binomial threshold (a common
statistic in classification analysis because it adapts the
chance level to the sample size; cf. Combrisson and Jerbi,
2015). Because the decisional certainty is strongly affected
by the hyperparameter C (the regularization constant), with
negligible influence on the overall performance, we fixed the
parameter at C � 0.005, which essentially shrinks the stan-
dard deviation of the normal distribution of decision values
(as compared to the default of C � 1) for more robust onset
estimations. The cluster size is a free parameter which was
defined as 50 ms of a stable pattern average (x-direction)
and 100 ms of 95% successful generalization (y-direction).
This cluster-asymmetry reflects our prioritization of stable
estimates at the single-trial level over average pattern sta-

bility. The taste-signal onset was defined as the earliest
generalization timepoint in the first cluster of significant de-
coding performance.

Notably, this type of temporal clustering is more liberal
with respect to the adjustment for multiple null hypothesis
testing than the alternative permutation-based approach
(cf. Maris and Oostenveld, 2007). However, the latter
(stricter) procedure is better suited to identify whether or
not an effect is present, rather than when it first occurs.
Given previous findings that taste qualities can be suc-
cessfully decoded from EEG recordings (cf. Crouzet et al.,
2015; Hardikar et al., 2018; Wallroth et al., 2018), our chief
concern was to find an adjustment procedure which bal-
ances Type I and Type II error rates such that we would
identify the taste-signal onset as accurately as possible
(i.e., with a minimal number of false alarms but also as few
misses of the true signal). To summarize, our present
motivation was to explore exactly when a taste-signal
emerges at the single-trial level, rather than to investigate
whether a taste-signal occurs at all.

The classifier performance was summarized for grand-
average visualization as the area under the receiver oper-
ating characteristic curve (AUC), and for the statistical
analysis of the single-trial results the accuracy was de-
fined as the percentage of trials for which an onset was
determined successfully.

Statistical analysis
Statistical analyses were performed with R (R Core

Team, 2017). Ratings were analyzed using Student’s t
tests to compare the tastes within a pair, sour with salty
and sweet with bitter and the degree of pleasantness
(positive, neutral, or negative) was tested using one-
sample t tests against a null hypothesis of zero, with zero
corresponding to neutral on the rating scale. For each of
the dependent variables RT, accuracy, decoding onset,
and decoding accuracy and for each taste pair (sour-salty
or sweet-bitter), a two-way repeated measures ANOVA
with the factors TASK (detection, discrimination) and
TASTE were computed. Paired samples Student’s t tests
of the difference between discrimination and detection were
used to resolve TASTE v TASK interactions. One-sided Pear-
son correlations were computed of the difference values be-
tween detection and discrimination decoding onset and RTs to
verify the correspondence between neural and behavioral ef-
fects. The �-level was a priori set to 0.05; for violations of
sphericity Greenhouse–Geisser correction was applied to the
degrees of freedom. We report uncorrected degrees of free-
dom and the absolute values of Cohen’s d effect size estima-
tions.

continued
relative to water. Intensity (0–100; C) and pleasantness ratings (-50–50; D) for the two tastant pairs, salty-sour and sweet-bitter. The
colored squares show individual participant ratings, the gray lines between two squares indicate that these ratings were given by the
same participant. Semitransparent and colored boxplots entail the ratings of all participants (N � 19); the horizontal dashed line within
each box represents the median, the bottom and top of the box represent the first and third quartiles, respectively; whiskers show
1.5 times the interquartile range. The colors represent the taste. Significance is indicated above the plot area: ns p � 0.05; �p � 0.05;
���p � 0.001.
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Results
Ratings

Stimulus concentrations were chosen based on previ-
ous studies such that all tastants are clearly perceivable,
that tastants within a pair were similarly intense, and that
tastants were acceptable (Fig. 2C,D). Overall, all tastes
were moderately intense (mean intensity range, 52.35–
69.97; Fig. 2A). Bitter and sweet were iso-intense (t(18) �
0.03, p � 0.978, d � 0.01); yet sour was more intense than
salty (t(18) � �2.83, p � 0.022, d � 0.43). As expected,
salty and sour were neutral in pleasantness (t test against
zero; salty: t(18) � �0.67, p � 0.680, d � 0.22; sour: t(18) �
�0.92, p � 0.594, d � 0.30), and both were similarly
pleasant (t(18) � 0.41, p � 0.784, d � 0.05). Bitter and
sweet, on the other hand, varied strongly in pleasantness
(t(18) � �7.13, p � 0.001, d � 0.99) such that bitter was
clearly unpleasant (t(18) � �4.44, p � 0.001, d � 1.44) and
sweet was clearly pleasant (t(18) � 5.00, p � 0.001, d �
1.62), which was to be expected (Fig. 2D).

Behavioral data
In line with the study design, statistical analyses were

conducted separately for the taste pairs “sour-salty” and
“sweet-bitter.” RTs and accuracy are summarized in
Table 1 and shown in Figure 3B.

For the salty and sour contrast, detection RTs were
significantly faster than discrimination RTs (F(1,19) �
119.61, p � 0.001, �2 � 0.64), and RTs were similar for
both tastes (F(1,19) � 1.08, p � 0.310, �2 � 0.003). A task
� taste interaction was observed (F(1,19) � 18.70, p �
0.001, �2 � 0.03), and the comparison of the difference
between detection and discrimination revealed that the
effect was larger for salty than for sour (t(19) � 4.32, p �
0.001, d � 0.45). Accuracy was significantly higher in the
detection than in the discrimination task (F(1,19) � 38.24, p
� 0.001, �2 � 0.39) and also higher for sour than for salty
(F(1,19) � 6.91, p � 0.020, �2 � 0.05). Again, a task � taste
interaction was observed (F(1,19) � 6.26, p � 0.020, �2 �
0.06), and the comparison of the difference between de-
tection and discrimination revealed that the effect was
larger for salty than for sour (t(19) � �2.50, p � 0.022, d �
0.79).

For the sweet and bitter contrast, RTs were similar for
the detection and discrimination tasks (F(1,19) � 1.62, p �
0.219, �2 � 0.01), and RTs were faster for sweet than for
bitter (F(1,19) � 12.07, p � 0.003, �2 � 0.03). Accuracy was
significantly higher in the discrimination than in the detec-

tion task (F(1,19) � 7.10, p � 0.020, �2 � 0.09), and also
higher for sweet than for bitter (F(1,19) � 7.54, p � 0.010,
�2 � 0.04). A task � taste interaction was observed (F(1,19)

� 8.67, p � 0.008, �2 � 0.07) and a comparison of the
difference in accuracy between detection and discrimina-
tion revealed that the effect was larger for bitter than for
sweet (t(19) � �2.94, p � 0.008, d � 0.56).

Classifier
Statistical analyses were performed on within-subject

decoding results which are visualized as the grand-
average performance in Figure 3A. Decoding onset times
and the accuracy of the classifier, which was defined as
the percentage of trials for which an onset was deter-
mined (i.e., at some point in time the taste was correctly
identified for the predefined cluster period) are summa-
rized in Table 2 and shown in Figure 3C. The contrasts
separated the analyses for the taste pairs sour-salty and
sweet-bitter in line with the study design as before. Be-
cause two participants performed poorly during the be-
havioral discrimination of salty and sour, too few trials
remained for the decoder to learn their respective taste
patterns. Hence, the analyses involving salty and sour
tastes were computed on lower sample sizes (indicated
by the lower number of degrees of freedom).

For the salty and sour contrast, decoding onsets during
detection were significantly faster than during discrimina-
tion (F(1,17) � 44.75, p � 0.001, �2 � 0.53), and onset
times were similar for both tastes (F(1,17) � 0.16, p �
0.692, �2 � 0.001). Likewise, classifier accuracy was
significantly higher during detection than discrimination
(F(1,17) � 35.01, p � 0.001, �2 � 0.50), and similar for both
tastes (F(1,17) � 0.87, p � 0.365, �2 � 0.001).

For the sweet and bitter contrast, decoding onsets were
similar for both tasks (F(1,19) � 0.13, p � 0.723, �2 �
0.001) and for both tastes (F(1,19) � 0.04, p � 0.851, �2 �
0.00). Likewise, classifier accuracy did not differ among
the tasks (F(1,19) � 0.07, p � 0.794, �2 � 0.001) nor tastes
(F(1,19) � 0.03, p � 0.865, �2 � 0.00).

Neural-behavioral correspondence
To verify the correspondence between the task-specific

effects observed for decoding onsets and RTs, we calcu-
lated Pearson correlations of the taste- and subject-wise
difference values between detection and discrimination
latencies for decoding onsets and for RTs (Figure 3D). We
observed significant positive correlations for salty (r17 �
0.40, p � 0.045), sweet (r18 � 0.57, p � 0.004), bitter (r18

� 0.47, p � 0.017), but no significant correlation for sour
(r17 � 0.10, p � 0.343).

Discussion
In this study, we investigated the processing sequence

of simple and complex gustatory perceptual decisions,
using electrophysiological patterns and behavioral re-
sponses elicited by salty, sour, sweet, and bitter tastants.
Building on recent findings that taste category information
is available within the time period of the earliest evoked
response, we examined whether the detection and dis-
crimination of a taste are simultaneous or distinct pro-
cessing stages, and whether potential differences are

Table 1. Descriptive statistics of RTs and accuracies

Detection Discrimination

RT (ms)
Accuracy
(%) RT (ms)

Accuracy
(%)

Taste M SEM M SEM M SEM M SEM
Salty 609 24 96.1 1.1 1029 39 67.6 4.3
Sour 642 24 95.9 0.8 964 38 80.6 4.3
Bitter 905 51 81.9 3.2 938 45 93.3 1.7
Sweet 835 37 91.1 1.8 881 36 92.0 2.0
Water 906 38 95.6 1.0 - - - -

RT � reaction time.
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Figure 3. A, Average within-subject decoding generalization across time for each of the four tastes by task. Detection performance
is obtained for the classification of a tastant against water (detection task trials); discrimination performance is obtained for the
classification between two tastants (discrimination task trials). The diagonals of the matrices (identical training and testing time)
correspond to the common decoding approach. The x-axis displays training times which represents the stability of an average taste
pattern. The y-axis displays generalization or testing times which represents the emergence of the average pattern (x-axis) within
individual trials. Warm colors reflect average performance increases as compared to chance level (50%), cold colors reflect
decreases; black contour lines indicate statistical significance of the grand average as assessed via one-sided cluster-adjusted
binomial tests (p � 0.05). Salty and sour show earlier and better detection performance than sweet and bitter, whereas discrimination
performance is less pronounced than detection performance in either case. B, Behavioral data of the button press RTs of correct
responses and accuracy (average per participant, N � 20) color-coded for tasks (blue indicating detection trials, gray discrimination
trials). The horizontal line in each boxplot represents the median, the bottom and top of the box represent the first and third quartiles,
respectively; whiskers show 1.5 times the interquartile range, dots indicate outliers. Participants are faster and more accurate at
detecting salty and sour than they are at discriminating the two tastants. Sweet and bitter show no difference in RTs but higher
accuracy at discriminating the two as opposed to detection from water. C, Neural data of onset times of above-chance performance
(determined at the single-trial level; averaged per participant; N � 20 for sweet and bitter tastes, and N � 18 for salty and sour tastes)
and of the accuracy indicating the percentage of trials for which such an onset was determinable (boxplot parameters as in B). The
neural findings correspond closely to the behavioral data in that salty and sour are classified faster and more accurately in detection
trials. Sweet and bitter show no significant difference between the two tasks. D, Correlations of the difference values between the
average discrimination and detection neural onset times and button press RTs (each point in a graph represents one participant).
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represented early or late in the gustatory processing cas-
cade. For the first time, we demonstrate not only a close
correspondence between the earliest neural and behav-
ioral responses, but also provide evidence that temporal
differences between simple and complex taste-related
decisions are established early during chemosensory en-
coding, rather than later during higher-level cognition.
Interestingly, however, the latencies of detection and dis-
crimination were contingent on the specific taste compar-
ison, such that the temporal sequence varied with the
hedonic contrast, suggesting that gustatory features may
be processed partially in parallel.

For salty and sour, detection times were significantly
faster than discrimination times, with a �100-ms differ-
ence in their neural onsets, and a 300- to 400-ms differ-
ence between behavioral responses, suggesting that
gustatory features required for the mere detection and for
taste category discrimination are processed sequentially
so that the depth of processing increases with time. This
observation is consistent with previous RT studies which
showed that simple taste judgments such as taste detec-
tion are 100–200 ms faster than more complex judgments
such as taste discrimination (Yamamoto and Kawamura,
1981; Halpern, 1986), and specifically that the discrimina-
tion of salty and sour requires even more time (an addi-
tional 400–600 ms) as compared to their individual taste
detection (Kuznicki and Turner, 1986). The authors attrib-
uted this taste-specific increase in discrimination time to
the failure of the time criterion strategy, which suggests
that discrimination performance is controlled by the de-
tection latency of the faster of two tastes which can be
used as a response cue (essentially reducing the process-
ing depth required for actual identification). Accordingly,
the difference between taste detection and identification
would be underestimated regularly, given that the speed
at which a discrimination task is solved benefits from
differing detection latencies between tastes, whereas dis-
criminating tastes with similar detection latencies would
reflect actual discrimination times. However, probing this
hypothesis in gustation is not trivial because matching
detection times are typically only observed for the juxta-
position of salty and sour.

In contrast to previous work, we observed no neural
and only a minuscule behavioral difference in detection
latencies for bitter and sweet, so that the likely failure of
the time criterion strategy should have predicted an in-
crease in discrimination time. Crucially, however, we ob-
served similar processing times for the detection of sweet
and bitter and their discrimination, both at the neural and
behavioral level. The absence of any task dependency
when comparing sweet and bitter suggests that a differ-
ent mechanism, not available in the contrast of salty and
sour, diminished the time lag between taste detection and
discrimination. Thus, we argue that taste features that
facilitate the identification process were available already
early during taste processing, in line with the notion that
the gustatory processing cascade does not simply con-
stitute an invariant sequence of coding states (Fontanini
and Katz, 2006, 2009; Samuelsen et al., 2012).

One apparent difference between the two taste-dis-
crimination contrasts lies in the valence associated with the
individual tastants. Whereas salty and sour were virtu-
ally identical with respect to their neutral hedonic value,
sweet and bitter showed a marked difference, tending
toward the positive and negative extremes of the pleas-
antness scale, respectively. While previous reports
suggested that similar detection latencies caused the
increase in discrimination times (Kuznicki and Turner,
1986), perhaps it was hedonic similarity that reduced
stimulus distinctiveness instead. This would also be con-
sistent with the comparably high error rates in the salty-
sour discrimination and suggest that task difficulty
increased concomitantly with processing times. Similar
observations were made in olfaction, where discrimina-
tion of similar odors required additional processing time
(Abraham et al., 2004). Likewise, for the sweet-bitter dis-
crimination, valence may have served as the decisive
response cue for the discrimination task, essentially sub-
stituting the presumed role of individual detection latency,
and thereby compensating the need for additional pro-
cessing time and potential performance impairments.
Hence, the putative role of hedonics in taste identification
emphasizes that the gustatory processing cascade un-
likely unfolds in a purely serial manner but rather that taste
detection, identification, and palatability are processed in
parallel or with considerable overlap as it has been shown
in rodents (Perez et al., 2013).

Anatomic and physiologic evidence from primates sug-
gests that sensory and hedonic features of a taste event
are indeed processed largely in parallel (Sewards and
Sewards, 2002). In contrast, rodent studies revealed ad-
aptations in the earliest taste response of amygdalar neu-
rons to an aversive compared to a non-aversive taste,
which further resulted in increased functional connectiv-
ity, implying greater information flow between amygdala
and gustatory cortex (Grossman et al., 2008). Given ade-

continued
Color-coded dashed lines represent linear regression models; horizontal and vertical gray dashed lines indicate the points of no difference
between discrimination and detection latencies on the respective axis. The observed effects were significantly positively correlated for three of four
tastes, such that an early neural difference (or lack thereof) corresponded to the same behavioral effect.

Table 2. Descriptive statistics of decoding onset times and
accuracies

Detection Discrimination

Onset (ms)
Accuracy
(%) Onset (ms)

Accuracy
(%)

M SEM M SEM M SEM M SEM
Salty 136 12 92.2 1.2 304 18 66.8 5.1
Sour 147 11 95.4 1.1 285 25 61.7 4.7
Bitter 250 22 80.6 3.0 242 12 79.5 4.6
Sweet 245 17 80.8 3.1 242 15 80.0 4.7
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quate cross-talk within the gustatory network (cf. Katz
et al., 2002), and given a faster conclusion of hedonic over
chemosensory computations, the discrimination of any of
two tastes could benefit from divergent hedonic informa-
tion, thereby modifying the task to a recognition of taste
palatability rather than category (or, alternatively, facilitat-
ing sensory identification itself). Evolutionarily, humans
were likely to benefit from a taste system which com-
mands a flexible coding mechanism with the capability to
quickly incorporate hedonically relevant information. In
fact, because the ultimate purpose of tasting is to deter-
mine whether an organism should ingest or reject a sub-
stance, it is only plausible to assume that this evaluative
process relies considerably on hedonic evaluations,
which may take precedence over sensory categorization
or semantic retrieval. Therefore, the workings of the gus-
tatory system appear to be related to what has been
reported in the olfactory system (which largely coincides
in its function to determine approach and avoidance),
such that hedonic evaluations are processed in parallel to
identification (Olofsson et al., 2013), and often precede
odor naming (Lawless and Engen, 1977).

An alternative, although speculative, explanation of the
taste-contrast specificity may be found in different taste
transduction mechanisms starting in the peripheral gus-
tatory system. Bitter and sweet taste are mediated by
specialized, taste-specific GPCRs, which are expressed
in distinct Type II taste receptor cells (Chandrashekar
et al., 2006), and which converge on a common intracel-
lular signaling pathway culminating in ATP release (Roper
and Chaudhari, 2017). Interestingly, bitter compounds
typically activate numerous bitter taste receptors, possi-
bly to ensure detection of potentially toxic bitter-tasting
substances via redundant activation (Meyerhof et al.,
2010). Moreover, bitter and sweet are linked to specific
behaviors: avoidance and approach, respectively. Hence,
it is plausible to assume that the separation of sweet and
bitter transduction pathways, along with differential en-
coding of palatability (whether the taste is pleasant or
unpleasant), likely contribute to the superior discriminabil-
ity of these two tastes, enabling their discrimination as
soon as they are tasted.

Salty and sour, on the other hand, are mediated by
specific ion-channels expressed in neuron-like Type III
cells (Lewandowski et al., 2016). These are depolarized as
a result of intra-cellular acidification for sour and possibly
also for salty, and convey taste information via action
potentials (Roper and Chaudhari, 2017), which may, at
least in part, contribute to overall faster taste transduction
(and faster resulting behavioral responses) compared to
GPCR-mediated taste categories. Moreover, because
taste-induced activations overlap for salty and sour, par-
ticularly at higher concentrations (Lewandowski et al.,
2016), and because taste neurons are more broadly tuned
with increasing concentrations (Wu et al., 2015), the
downstream responses to these tastes may be somewhat
more ambiguous and required additional processing to
disentangle the sensory inputs, thereby increasing the
processing time for the salty-sour discrimination. Of
course, differences in the distribution of quality-specific

receptor cells may have contributed to the present find-
ings as well.

In conclusion, our results show a close correspondence
between the patterns of taste-related psychomotor and
the earliest electrophysiological responses, suggesting
that behavioral effects are established early in the gusta-
tory processing cascade during stages associated with
chemosensory encoding rather than higher-level cogni-
tion such as decision making (Wallroth et al., 2018). While
detection and discrimination of gustatory stimuli likely
occur sequentially, hedonic computations which run in
parallel to the purely sensory computations may facilitate
taste identification. Hence, the gustatory processing cas-
cade (including the perceptual stages or “milestones” of
detection and discrimination) appears to be a variable
sequence of sensory coding states contingent on the
specific tastes and potentially other contextual factors.
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