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Lower-grade gliomas (LGG), characterized by heterogeneity and invasiveness, originate from the central
nervous system. Although studies focusing on molecular subtyping and molecular characteristics have
provided novel insights into improving the diagnosis and therapy of LGG, there is an urgent need to iden-
tify new molecular subtypes and biomarkers that are promising to improve patient survival outcomes.
Here, we proposed a joint similarity network fusion (Joint-SNF) method to integrate different omics data
types to construct a fused network using the Joint and Individual Variation Explained (JIVE) technique
under the SNF framework. Focusing on the joint network structure, a spectral clustering method was
employed to obtain subtypes of patients. Simulation studies show that the proposed Joint-SNF method
outperforms the original SNF approach under various simulation scenarios. We further applied the
method to a Chinese LGG data set including mRNA expression, DNA methylation and microRNA
(miRNA). Three molecular subtypes were identified and showed statistically significant differences in
patient survival outcomes. The five-year mortality rates of the three subtypes are 80.8%, 32.1%, and
34.4%, respectively. After adjusting for clinically relevant covariates, the death risk of patients in
Cluster 1 was 5.06 times higher than patients in other clusters. The fused network attained by the pro-
posed Joint-SNF method enhances strong similarities, thus greatly improves subtyping performance com-
pared to the original SNF method. The findings in the real application may provide important clues for
improving patient survival outcomes and for precision treatment for Chinese LGG patients. An R package
to implement the method can be accessed in Github at https://github.com/Sameerer/Joint-SNF.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Lower-grade gliomas (LGG), including diffuse low-grade and
intermediate-grade gliomas (World Health Organization grades II
and III) are the most common infiltrative neoplasms that occur in
adult cerebral hemispheres [1]. Most patients exhibit high postop-
erative recurrence risk [2], and may further deteriorate into
glioblastomas (grade IV, GBM). Historically, histologic classifica-
tions and tumor grades of LGG have been used to assist therapeutic
interventions. However, patients with the same grade often have
distinct molecular characteristics and prognosis [3]. With the rapid
development of molecular biology research on LGG, identification
of molecular subtypes and biomarkers have been explored to guide
clinical decision-making [4,5]. The identification of a group of
genetic lesions including isocitrate dehydrogenase 1/2 (IDH1/2)
mutation and codeletion of chromosome 1p and 19q (1p/19q)
[6,7] has been a major progress in recent years. Based on these
two genetic alterations, cumulative evidence shows that LGG can
be classified into three subtypes with different clinical outcomes
[8]. Patients with IDH mutation (IDH-mut) have longer survival
than those with IDH wild-type (IDH-WT) [9]. Nonetheless, the cur-
rent biomarkers still cannot adequately predict the overall survival
for all LGG patients. For example, IDH-WT may occur in WHO
grades II gliomas or in recurrent gliomas [10]. Moreover, due to
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substantial heterogeneity between LGG, the elaboration of optimal
therapeutic strategies at the individual level is still a great chal-
lenge [11]. Thus, there is a pressing need to develop reliable
approaches to identify patients with high risk of deterioration
and find new molecular targets for developing effective treatment
strategies.

Recent technological advances allow us to understand the onset
and progression of tumors and identify the risk factors, molecular
basis and prognostic biomarkers underlying invasive tumors
[12,13]. Similar to other subtyping studies, multi-omics data inte-
gration remains the preferred approach to obtain the accurate sub-
type of LGG patients. Multi-omics data integration enables the
joint analysis of multiple data types to provide a comprehensive
understanding of the biological system and offer insights into the
crucial associations between different omics data types [14]. It
has been a well-established strategy for identifying molecular sub-
types and elucidating pathogenesis in cancer [15]. However, multi-
omics integration faces several major challenges, such as the curse
of dimensionality and the modeling of interactions between the
different types of omics data [16,17]. Methods that can address
the potential challenges in multi-omics integration can be largely
classified as multivariate, concatenation-based and
transformation-based methods [18]. Multivariate methods such
as partial least squares or canonical correlation analysis, treat dif-
ferent omics data individually to discover associations between
them. Concatenation-based integration combines omics data into
a single matrix which is then used as input for low rank-based
approximation or latent factor analysis in a low-dimensional space.
Focusing on the shared information and integrative dimension
reduction of multi-omics data, Lock et al. [19] proposed the Joint
and Individual Variation Explained (JIVE) method, a typical exam-
ple of the concatenation-based method. It uses a decomposition
method and segregates the combined omics data matrix into three
terms, a low-rank joint variation matrix between data sets, a low-
rank individual specific matrix and the residual noise. The method
can separate synergistic activities common to all data types from
individual ones specific to a particular data type. This method
was applied to gene expression and miRNA of GBM tumor samples
from the TCGA database, showing better characterization of tumor
types and better understanding of the biological interactions
between different data types.

The transformation-based approaches integrate omics data
after transforming each omics data type into an intermediate and
common form (e.g. graph or kernel matrix). They have the advan-
tage of capturing individual omics characteristics in the transfor-
mation step and are robust to different data measurement scales
[20]. One of the popular methods is the Similarity Network Fusion
(SNF) algorithm [21] which creates an individual sample similarity
matrix for each data type and then fuses these into a single similar-
ity network using a message passing theory, making the combined
networks more coherent during each iteration. Like any
transformation-based methods, no feature selection step is
required [22]. However, due to the limitation of measurement
technology and inherent natural variation, unavoidable noise fea-
tures can dilute clustering signals, leading to potential spurious
associations between samples [23].

Collectively, the two methods are largely complementary and
individually, and they have their own merits in certain aspects.
To fully utilize the strength of the two methods and achieve better
subtyping performance, in this work, we proposed a Joint-SNF
method which employs SNF to obtain the fused sample similarity
matrix by integrating the joint structure extracted by the JIVE
method. The fused network matrix enhances strong similarities
and weakens spurious associations between samples while reduc-
ing the noise. We performed simulation studies to compare the
performances of the proposed Joint-SNF method with the original
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SNF method. We further applied the Joint-SNF method to integrate
mRNA, DNA methylation and miRNA expression data obtained
from the CGGA database, aiming to discover molecular subtypes
of Chinese LGG patients with different prognoses. For the identified
subtype with the worst prognosis, in-depth bioinformatics analysis
was conducted to uncover key pathways and biomarkers that
could explain the underlying molecular mechanism. Our method
offers a promising new strategy to the toolbox of cancer subtyping
with multi-omics data integration.

2. Materials and methods

2.1. Study cohort

The data in this study included clinical data and three types of
omics data, downloaded from the Chinese Glioma Genome Atlas
database [24] (CGGA, https://www.cgga.org.cn). CGGA, an open-
access database, was launched by a team from Beijing Tiantan
Hospital, Capital Medical University in 2012 and opened in 2019.
LGG patients (WHO grade II and III) with survival time (from initial
diagnoses to death, or to the last follow up) and survival status
were included for further analysis. All three types of omics data
including gene-level mRNA expression data (mRNA-array_301),
gene-level DNA methylation data (methyl_159) and gene-level
miRNA expression data (microRNA_198) were available for 86
LGG patients.

2.2. Statistical method

2.2.1. Joint similarity network fusion (Joint-SNF)
Joint-SNF method uses SNF to integrate the joint structure

extracted by JIVE method to obtain the fusion matrix. The fused
network enhances strong similarities and weakens spurious associ-
ations between samples while reducing the noise. The realization
of Joint-SNF method relies on the following two important
algorithms.

Suppose there are k data types and each is measured on pi fea-
tures over n samples and is represented by a data matrix
Xiði ¼ 1; � � � ; kÞ with dimension pi � n. The k data matrices are
merged to form a single data matrix X, i.e.,

X ¼
X1

..

.

Xk

2
664

3
775

p�n

; p ¼ p1 þ p2 þ � � � þ pk

To eliminate baseline differences caused by different data
dimensions and scales, each data type is centered by row-wise sub-
traction of its means, then scaled by applying Frobenius norm, i.e.,

Xscaled
i ¼ Xi

kXik.

(1) Extraction of joint structures by JIVE.
JIVE is a method of integrating multiple datasets via a general

decomposition of variation. The decomposition is composed of
three parts: a low-rank approximation capturing the joint variation
of different data types, low-rank approximations reflecting individ-
ual variation of each data type and the residual noise [19].

Each appropriately scaled matrix X can be decomposed into
three terms: joint structure matrix Ji associated with Xi, individual
structure matrix Ai of Xi and the error matrix Ei. This gives the fac-
torized model,

Xi ¼ Ji þ Ai þ Ei

The model assumes that JiA
T
i ¼ 0p�pi for i ¼ 1; � � � ; k, that is, the

joint and individual terms are uncorrelated. Low-rank constraints
are imposed on both the joint and individual structure matrix
(i.e., rank (Ji) = r < rank ðXiÞ, rank (Ai) = ri < rank ðXiÞ). The rank (r)
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of the joint structure Ji associated with Xi is assumed to be the
same for different data types. The rank r and ri are estimated via
a permutation testing approach. Then, the matrices Ji and Ai can
be obtained using singular value decomposition (SVD). The specific
procedure is summarized in Algorithm 1.

Algorithm 1: JIVE decomposition

Require: a scaled matrix X
Output:
Lists of the joint and individual structure matrices
Details:
1. A singular value decomposition is performed for each data.

Using the singular values (R) and the right singular values
(V), the reduced data set is RV0.

2. Set J = {J1, . . ., Jk} by a rank r singular value decomposition of
a scaled matrix X. Save the right singular values (V).

3. Set Ai ¼ Ai
Q

k–iðI � ViV
0
iÞ by a rank ri singular value

decomposition of XIndividual = ðX� JÞðI � VV 0Þ if orthogonality
is enforced between individual structures. This is the first
iteration.

4. Ai is obtained by a rank ri singular value decomposition of
XIndividual = ðX� JÞðI � VV 0ÞQk–iðI � ViV

0
iÞ if the orthogonality

constraint is imposed between individual structures. Save
the right singular values (Vi).

5. Repeat steps 2–4 until the Frobenius norm of the difference
between the current and previous iteration in both J and A
is less than some threshold.

6. Return results (J, A, and the ranks used in the
decomposition).
Since the joint structure matrix Ji associated with Xi captures the
common structures shared between different data types, it contains
common information that can potentially enhances the subtyping
performance. Thus, they are used as the input matrix into SNF
method for subsequent subtyping.

(2) Similarity Network Fusion (SNF).
SNF is a similarity-based method to integrate multi-omics data

by constructing and fusing sample-sample similarity networks of
patients [21]. Suppose we have n samples and r joint structures.
A patient similarity network is denoted as a graph G = (V, E). The
nodes V are patients and weighted edges E form an n� n similarity
matrix W i; jð Þ measuring the similarity between patients xi and xj.
W i; jð Þ is computed by a scaled exponential similarity kernel as
follows,

W i; jð Þ ¼ exp �q2ðxi; xjÞ
lei;j

� �

where q xi; xj
� �

denotes the Euclidean distance between patients xi
and xj, l is a hyperparameter that can be empirically set,

ei;j ¼ mean q xi ;Nið Þð Þþmean q xj ;Njð Þð Þþq xi ;xjð Þ
3 which is used for removing the

scaling problem, and mean q xi;Nið Þð Þ is the average value of the dis-
tances between xi and each of its neighbors.

After constructing sample-sample similarity matrices from
multiple data sources, we then fuse these similarity matrices into
one similarity network. Procedure of fusion is summarized in Algo-
rithm 2. Given matrix W, a normalized kernel matrix P carrying the
full information about the similarity to all others for each patient
and a local kernel matrix S encoding the similarity of each patient
to its nearest neighbors are obtained. Then, Pv and Sv for the vth
joint structure (v ¼ 1;2; � � � ; rÞ can be obtained. A message-
passing process is then used to iteratively update similarity net-
works to realize the fusion of networks.
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Algorithm 2: Similarity network fusion

Input: a similarity matrix W with W i; jð Þ
Output: the final fused network Pfinal

1. if j–i then

normalize the weight matrix P i; jð Þ ¼ W i;jð Þ
2
P

k–i
W i;kð Þ

else
P i; jð Þ ¼ 1=2

end if
if j 2 Ni then

S i; jð Þ ¼ W i;jð ÞP
k2Ni

W i;kð Þ, where Ni is a set of neighbors for patient

xi
else
S i; jð Þ ¼ 0

end if
2:obtainPv and Sv for the vth joint structure (v ¼ 1;2; � � � ; rÞ.
3. Iteratively update similarity network

Pv ¼ Sv �
P

k–v
P kð Þ

r�1

� �
� S vð Þ
� �T

4.Pfinal ¼
Pr

v¼1
Pv

r

return Pfinal

This fusion process converges to a single similarity network that
summarizes the similarity between samples across all omics data
types sharing the common structures. Pfinal represents the final
fused network. The network obtained by the Joint-SNF method is
used for further spectral clustering analysis which can capture the
global structure of a graph [25].

3. Simulation study

We carried out simulation study to demonstrate the perfor-
mance of the Joint-SNF method by comparing it with the original
SNF method. The simulation design follows the following princi-
ples: (i) Each data type has an independent clustering structure,
as well as overlapping parts with other omics data types; (ii) The
overall clustering structure can be obtained only by integrating
information from all omics data types; and (iii) All data types are
contaminated with Gaussian noises.

3.1. Simulation settings

The generation of simulated datasets is similar to those
reported elsewhere [26,27]. Here, we considered 200 samples
including three types of omics data with 1000 features each. These
200 samples were pre-defined as four subtypes, each with 50 sam-
ples. To equip the simulated data matrix with a preset clustering
structure, three types of omics data matrices were constructed
by setting Xs

i ¼ means þ ei, where ei Nð0;r2Þ represents random
noises; s 2 1;2;3f g is the data type index; means ¼ f0; 1; 2or 3g
is the mean expression level of the features in data type s. The four
mean groups represent four subtypes among the samples. Specifi-
cally, samples 1–50, 51–150, and 151–200 in X1 with
mean1 2 0; 1; 3f g; samples 1–50/101–150, 51–100, and 151–200
in X2 with mean2 2 f0; 2; 3g; samples 1–100, 101–150, and 151–
200 in X3 with mean3 2 f2; 1; 3g. We also varied the noise level
to make the clustering more challenging by generating three data-
sets named SimData1 (r2 ¼ 8), SimData2 (r2 ¼ 12) and SimData3
(r2 ¼ 16). It is expected that high variance (hence high noise level)
will make it more difficult to separate the four clusters. To evaluate
the performance of each method at different proportions of signal



Table 2
Baseline characteristics of 86 LGG patients.

Item Classification n (%)/mean ± SD

Age, years 38.56 ± 11.60
Gender Female 40(46.5)

Male 46(53.5)
WHO grade II 52(60.5)

III 34(39.5)
Sample type Primary 81(94.2)

Recurrent 5(5.8)
Survival outcome Dead 42(48.8)

Alive 44(51.2)
IDH_mutation_status Mutant 59(68.6)

Wildtype 26(30.2)
NA 1(1.2)
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features, three different signal levels of low, moderate and high
signal (5%, 10% and 15%) were considered for each simulated data-
set. Each simulation scenario was repeated 1000 times.

3.2. Simulation results

The standardized mutual information (NMI) was considered as
a criterion to evaluate the performance. The larger the NMI value,
the closer the relationship between the clustering structure and
the real label. Shown in Table 1 are the averaged NMI values out
of the 1000 simulation runs together with the standard error.
The method of using SNF to integrate both joint and individual
structure is referred to as JIVE-SNF. Additionally, we have made
comparisons with other popular multi-omics integrative clustering
methods such as Cancer Integration via Multikernel Learning
(CIMLR) [28] and integrative non-negative matrix factorization
(IntNMF) [29]. Overall, the Joint-SNF method shows superior per-
formance over the other methods in different simulation scenarios
in terms of NMI measures. In particular, when the noise level and
the percentage of signal features were high, the NMI of Joint-SNF,
JIVE-SNF, SNF, IntNMF and CIMLR are 0.650, 0.339, 0.325, 0.328
and 0.381, respectively, showing great advantage of Joint-SNF over
other methods in recovering the true clustering structures. As
expected, the NMI obtained by most methods (except JIVE-SNF)
increases with increasing signal features at the same noise level.
4. Real data applications

In this study, we used the data of 86 LGG patients from the
CGGA database, aged from 17 to 65 years old, with an average
age of 38.5 years. Their baseline characteristics were presented in
Table 2. A total of 52 patients (60.5%) of histopathologically con-
firmed grade II and 34 patients (39.5%) of histopathologically con-
firmed grade III were included. In addition, the gender composition
of the patients was about 46.5% for female and 53.5% for male. The
majority of patients were primary and only 5 patients were recur-
rent. By the last follow-up, 44 patients survived and 42 patients
died, the survival time ranged from 90 to 5159 days.

We applied Joint-SNF to a total of 86 Chinese LGG patients using
three data types including mRNA expression (19,416 mRNAs),
miRNA expression (827 miRNAs) and DNA methylation (14,476
genes). Fig. 1 shows the flowchart of the LGG subtyping analysis
using the Joint-SNF method. Specifically, the first step is to extract
the joint structures among mRNA, miRNA and DNA methylation
data with a low rank approximation, then fuse these structures
to construct a network to boost similarities and weaken spurious
associations between samples for further spectral clustering.
Finally, the molecular subtypes of LGG patients can be obtained
based on the fused network using the SNF algorithm.

4.1. Subtyping of LGG using Joint-SNF

Applying Joint-SNF, we obtained three subtypes. We further
conducted Kaplan-Meier survival analysis to test whether the sur-
Table 1
The averaged NMI on simulated dataset with the standard errors given in the parenthesis

Method SimData1(r2 ¼ 8) SimData2(r2 ¼ 12)

Low Moderate High Low Mo

Joint-SNF 0.597 (0.059) 0.660 (0.056) 0.670 (0.059) 0.484 (0.053) 0.6
JIVE-SNF 0.364 (0.094) 0.346 (0.076) 0.360 (0.067) 0.307 (0.087) 0.3
SNF 0.265 (0.032) 0.356 (0.033) 0.466 (0.054) 0.196 (0.034) 0.3
IntNMF 0.294 (0.031) 0.351 (0.036) 0.414 (0.049) 0.251 (0.030) 0.3
CIMLR 0.293 (0.042) 0.449 (0.058) 0.668 (0.052) 0.170 (0.036) 0.3
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vival risks among different subtypes identified by Joint-SNF were
clinically significant. The log-rank test was performed. The
Kaplan–Meier curves constructed by Joint-SNF and SNF are shown
in Fig. 2. Clearly, compared to the result of SNF, survival curves of
different types obtained by Joint-SNF do not overlap, revealing sig-
nificant difference. Combining with the p-value result and the pre-
vious report [1], we divided Chinese LGG patients into three
subtypes. The survival rate of patients with different subtypes is
significantly different (v2 = 32.8, P = 7.48E-08).

We further explored prognostic value of the subtypes in LGG
patients identified by Joint-SNF. Fig. 2A demonstrates the overall
survival of different subtypes. A total of 26 patients (30.2%) in Clus-
ter 1 had a 5-year mortality rate of 80.8%, 28 patients (32.6%) in
Cluster 2 with a 5-year mortality rate of 32.1%, and 32 patients
(37.2%) in Cluster 3 with a 5-year mortality rate of 34.4%. In addi-
tion, clinical characteristics are different among different clusters.
The results in Table 3 show that compared with the other two clus-
ters, patients in Cluster 1 with the worst prognosis tend to be more
older, and most patients are histopathologically confirmed grade
III.
4.2. Comparison of Joint-SNF with SNF in subtyping

We compared the subtyping results of Joint-SNF and SNF on
LGG to evaluate the differences among the identified subtypes.
The p-value result showed that Joint-SNF performed better in iden-
tifying clusters significantly associated with patient survival for a
fixed number of clusters (see Table 4).

Considering the small sample size in the LGG dataset, we fur-
ther conducted stability analysis to check the robustness of the
subtyping performance with Joint-SNF and SNF following the work
by [30,31]. Specifically, we randomly sampled 75% of the LGG
patients and performed subtyping using Joint-SNF and SNF assum-
ing different number of clusters (e.g., 3, 4 and 5) and repeated this
process 20 times. For each sample split, we conducted a log-rank
test to test the difference of the survival curves under the assumed
number of clusters. The distribution of the log-rank test p-values
obtained by the two methods is displayed in Fig. 3. Overall, Joint-
SNF performs better than SNF, though the difference is subtle when
.

SimData3(r2 ¼ 16)

derate High Low Moderate High

41 (0.058) 0.656 (0.056) 0.372 (0.069) 0.598 (0.057) 0.650 (0.057)
46 (0.093) 0.339 (0.072) 0.235 (0.080) 0.358 (0.098) 0.339 (0.080)
08 (0.031) 0.362 (0.034) 0.131 (0.035) 0.277 (0.031) 0.325 (0.031)
10 (0.028) 0.339 (0.023) 0.205 (0.039) 0.285 (0.037) 0.328 (0.031)
53 (0.044) 0.452 (0.062) 0.091 (0.043) 0.303 (0.042) 0.381 (0.038)



Fig. 1. Schematic representation of the Joint-SNF method used for LGG subtyping.

Fig. 2. Kaplan-Meier curves showing overall survival for the three subtypes of LGG obtained by Joint-SNF (A) and SNF (B).

Table 3
Clinical and pathological characteristics of different subtypes.

Characteristic Cluster 1(n = 26) Cluster 2 (n = 28) Cluster 3(n = 32)

Age, years 42.65 ± 14.61 37.61 ± 8.75 36.06 ± 10.42
Female, n (%) 12(46.1) 14(50.0) 14(43.8)
WHO grade, n (%)
Grade II 1(3.8) 26(92.9) 25(78.1)
Grade III 25(96.2) 2(7.1) 7(21.9)
Death event, n (%) 20 (76.9) 6 (21.4) 16 (50.0)

Table 4
Comparison of log-rank test p-value of Joint-SNF and SNF across different numbers of
subtypes.

Method p-value under different numbers of clusters

3 4 5

Joint-SNF 7.48E-08 6.28E-07 3.10E-07
SNF 1.17E-07 6.37E-07 4.29E-04
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Fig. 3. Boxplots of the -log10(p-value) obtained with the log-rank test for the
difference of the survival curves assuming different numbers of clusters using Joint-
SNF and SNF over 20 random sample splits.

Table 5
The mean p-value of the log-rank test over 20 random sample splits.

Method mean p-value of the log-rank test

3 4 5

Joint-SNF 8.61E-05 1.83E-04 6.71E-04
SNF 1.68E-04 1.64E-03 1.11E-02
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the number of clusters is 3. The mean p-values over the 20 repeti-
tions are summarized in Table 5. The results show that the mean
performance of Joint-SNF is better than SNF, in the sense that the
survival curves obtained by Joint-SNF can be better differentiated.
This stability analysis shows the robustness of Joint-SNF in subtyp-
ing the 86 LGG patients.

4.3. Association of prognosis with the identified molecular subtypes

Controlling clinic pathological variables such as age, gender and
grade, we performed Cox regression analysis to assess the associa-
tion between the three subtypes and LGG survival outcomes. As
depicted in Table 6, patients in Cluster 1 were 5.06 times higher
in risk of death than patients in Cluster 2.

4.4. Biological implications between the identified molecular subtypes

To elucidate the differential manifestations of different molecu-
lar subtypes, we performed pathway activity analysis using PRO-
GENy. Kruskal–Wallis test was used to assess biological
pathways that show different activities between subtypes. The
threshold was set as Padj < 0:05.
Table 6
Cox regression results of 86 LGG patients.

Item Coefficient (SE) Wald

Subtypes
Cluster1* 1.622(0.626) 2.591
Cluster3 0.885(0.488) 1.814
Age 0.347(0.325) 1.067
Gender 0.020(0.320) 0.064
WHO grade 0.603(0.487) 1.240

Note: *Showing statistical significance at the 0.05 significance level. Cluster 2 was used as
patients were divided into two groups with 36 years old as the cutoff value (� 36 vs.<
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As shown in Fig. 4, five pathway activities showed significant
differences between the three clusters (p < 0.05), with Cluster 1
showing the highest activity in EGFR, VEGF, MAPK, p53 pathways
and the lowest Androgen activity. Various signaling pathways are
linked to the pathogenesis of different cancers and are considered
as potential hallmarks for cancer targeted therapy. Inhibition of
certain disease-related signaling pathways may be a promising
strategy in cancer prevention or treatment. Thus, the inhibition
of EGFR, VEGF, MAPK and p53 pathway activities might lead to
improved prognosis of Cluster 1 patients.

4.5. Co-expression network construction and core module
identification

We carried out weighted gene co-expression network analysis
(WGCNA) to identify gene modules associated with prognosis of
LGG patients focusing on the mRNA expression data. A total of
top 5000 genes (according to median absolute deviation) were
screened to construct the mRNA co-expression network using the
R package WGCNA [32]. Briefly, the adjacency matrix was con-
verted into a topological overlap matrix (TOM) when setting power
of b to 6 (R2 = 0.86). Then, we used a dynamic shear tree algorithm
to identify gene modules and further merged the relevant modules
following a height cutoff of 0.25. Finally, the core modules that
may be highly correlated with prognosis in patients were selected
for subsequent analyses by associating module eigengenes which
summarize the expression of each module with clinical traits.

Fifteen co-expression modules were identified (see Fig. 5A), not
including the grey module. A heat map showing the module-trait
relationship was used to assess the relationship between each
co-expression module with the LGG subtype traits (Cluster 1, Clus-
ter 2, Cluster 3) and other clinical features (WHO grade, Gender,
Age, Overall survival). As shown in Fig. 5B, the yellow module
was strongly correlated with Cluster 1 (r = 0.74, P = 7E-16) and
overall survival (r = -0.52, P = 3E-07). Given that the study goal is
to find new therapeutic targets and prolong survival time of
patients with extremely poor prognosis, we selected the yellow
module for subsequent analysis.

4.6. Functional annotation and enrichment analysis of the core module

To identify the potential biological processes and pathways for
478 genes in the yellow module, Gene Ontology [33] (GO) and
Kyoto Encyclopedia of Genes and Genomes [34] (KEGG) analysis
were carried out using the R package clusterProfiler [35], to obtain
the relevant biological function categories and signaling pathways.
The cutoff criterion is set to p-value < 0.05 and q-value < 0.01. As
presented in Fig. 6A, these genes were mainly enriched for the fol-
lowing GO terms: nuclear division, organelle fission, chromosome
segregation and negative regulation of cell cycle process. In addi-
tion, KEGG analysis revealed that these genes were enriched in
11 pathways including cell cycle, p53 signaling pathway, small cell
lung cancer and oocyte meiosis (Fig. 6B).
Z P HR (95% CI)

0.009 5.062(1.484,17.260)
0.070 2.423(0.931,6.306)
0.286 1.415(0.747,2.679)
0.949 1.020(0.545,1.911)
0.215 1.829(0.704,4.748)

the reference group for subtype comparison. When considering the influence of age,
36).



Fig. 4. Boxplots of the pathway activity for 5 pathways in different subtypes.

Fig. 5. (A) Dendrogram representing hierarchical clustering of identified co-expressed modules. (B) Heatmap visualizing the correlation between Eigengene of modules and
clinical traits of LGG. Each row represents a color module, and each column represents a clinical feature. Each cell is filled with the correlation and p-value.

Fig. 6. GO biological process enrichment analysis (A) and KEGG enrichment analysis (B) for 478 genes in yellow module. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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4.7. Hub gene identification

Candidate genes were defined as genes correlated with module
eigengenes (cor. gene ModuleMembership > 0.9) and clinical traits
3488
(cor. gene TraitSignificance > 0.3). As such, we screened 28 candi-
date genes from the yellow module according to the criteria. The
expression heatmap of candidate genes in different subtypes was
presented in Fig. 7A. It can be seen that the expression levels of



Fig. 7. (A) Heatmap reflecting the expression level of candidate genes in the three subtypes. Each row corresponds to a gene feature and each column corresponds to a
patient. Red and blue colors indicate relatively high and low gene expressions. The three colored bars on the top indicate subtype cluster 1, 2 and 3 from left to right. (B)
Network diagram of the interactions between hub genes (red) and candidate genes (blue). (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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candidate genes vary in different subtypes. More specifically, the
expression of candidate genes was higher in Cluster 1 which has
the worst prognosis.

To identify hub genes, CytoHubba plugin in the Cytoscape soft-
ware was employed to measure the Maximal Clique Centrality
(MCC) score of candidate genes. MCC has been considered as a
powerful indicator for identifying central nodes in co-expression
networks [36]. The top 10 highly connected genes were used as
the hub genes for further analysis, namely NCAPH, CENPM, CDC45L,
TK1, FAM64A, UBE2C, BIRC5, KIAA0101, OIP5, HAUS8. The interaction
between hub genes and candidate genes was visualized by using
the Cytoscape software. Shown in Fig. 7B, we can see that candi-
date genes are less connected to all other candidate genes and
more connected to the hub genes, indicating the importance of
the hub genes in regulating other genes.

4.8. Evaluation of the prognostic value of hub genes

To verify the prognostic value of the 10 hub genes, all patients
were divided into two groups based on the median expression
value of hub genes, with patients higher than or equal to the med-
ian value assigned to the high-level group and patients lower than
the median value assigned to the low-level group. We performed
survival analysis to evaluate the statistical significance of survival
outcomes between two groups using R package survival and surv-
miner. Kaplan-Meier analysis showed that 9 of the 10 hub genes
(FAM64A, OIP5, NCAPH, KIAA0101, UBE2C, TK1, CDC45L, BIRC5,
CENPM) were significantly correlated with prognosis (P < 0:05).
The relationship between all 9 hub genes and the prognosis of
LGG patients was such that the higher expression of the gene,
the poor the prognosis (see Fig. 8).
5. Discussion

In this study, we proposed a new method called Joint-SNF to
integrate multi-omics data to identify molecular subtypes. The
Joint-SNF method is a disease subtyping method making use of
the correlation and complementary information between different
omics data types. The fused network obtained by the Joint-SNF
method enhances strong similarities and weakens some spurious
associations between samples while reducing the noise. This
method separates signals common to all data types from individual
ones and avoids the negative impact of irrelevant omics data on
3489
cancer subtyping. By extracting the joint structure between omics
data types, the original data can be effectively reduced in dimen-
sionality without losing key information. Both simulation studies
and LGG subtyping application have demonstrated that Joint-SNF
achieves efficient and accurate subtyping compared to the original
SNF method based on original features.

Three LGG subtypes (Cluster 1, 2 and 3) identified by Joint-SNF
differed significantly in survival outcome. We observed that Clus-
ter 1 with 26 subjects had the worst survival rate with a high 5-
year mortality rate of 80.8%, compared to the other two clusters
with a 5-year mortality rate of 32.1% and 34.4%. Furthermore, after
adjusting for the effects of covariates, patients in Cluster 1 were
5.062 times higher in mortality compared to patients in Cluster 2.

Focusing on subtypes, we further investigated some unique
manifestations of different subtypes through bioinformatics analy-
sis and explored their clinical value, especially whether they could
help improve the survival time of patients with poor prognosis. We
obtained gene modules that affect the prognosis of LGG patients
through WGCNA analysis, of which the yellow module had the
highest correlation with prognosis. This indicates that the critical
genes in the yellow module may serve as potential biomarkers
affecting the progression of Chinese LGG patients. We further ana-
lyzed a total of 478 genes with co-expression trends identified in
the yellow module. GO functional annotation analysis of these
genes showed that they were mainly enriched in nuclear division,
organelle division, chromosome separation and negative regula-
tion of cell cycle process. The above biological process are involved
in regulating the growth and proliferation of cancer cells and are
associated with the recurrence of LGG [37,38]. These genes were
subjected to the KEGG pathway enrichment analysis which
showed that they were associated with various cancer pathways,
such as the p53 signaling pathway, the small cell lung cancer
and the cell cycle pathway. The cell cycle and p53 signaling path-
way have been reported to play a crucial role in the development of
LGG [39].

To identify critical genes in the yellow module, we first
obtained candidate genes based on the association among genes
and the association between the gene set and the clinical subtypes.
The results showed that the expression levels of candidate genes
were different in different groups, with high expression levels in
Cluster 1, showing the importance of these genes with poor prog-
nosis in Cluster 1. We further screened 10 hub genes according to
the MCC score to further investigate their prognostic value. We



Fig. 8. Plots showing prognostic survival curves of the 9 hub genes sorted in ascending order by p-value.
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analyzed the survival of LGG patients with high and low expression
of these genes and found that 9 of 10 hub genes were associated
with prognosis.

Four of these 9 genes have been reported to be related to glio-
mas. UBE2C, a member of the E2 ubiquitin-conjugating enzyme
family, plays a key role in cell cycle control, cell signal transduction
and cell differentiation. Additionally, the previous study has shown
that UBE2C is overexpressed in LGG and its overexpression can lead
to poor prognosis [40]. This is consistent with the results of our
study, the high expression level of UBE2C is associated with poor
prognosis. BIRC5, also known as survivin, is an immune-related
gene belonging to the apoptotic gene family. It has been reported
that BIRC5 may be a potential biomarker and therapeutic target
for LGG [41]. Overall, the UBE2C and BIRC5might be promising can-
didate biomarkers for improving prognostic outcomes of Chinese
LGG patients, although further biological validations are needed.
KIAA0101 encodes a conserved protein which plays an essential
role in the regulation of various biological processes [42]. Recently,
Liu et al. [43] reported that KIAA0101 is overexpressed in gliomas,
and its expression level was positively correlated with the grade of
gliomas. Opa Interacting Protein 5 (OIP5) is a cancer-testis specific
gene participated in various tumor biological processes [44].
Recent research has shown that it is upregulated in glioblastoma
patients and correlated with poor prognosis [45].

Non-SMC condensin I complex subunit H (NCAPH) encodes a
member of the Barr gene family and a regulatory subunit of the
condensin complex. In addition, NCAPH was reported to promote
tumor formation, proliferation and metastasis [46,47]. Centromere
protein M (CENPM) is a component of the CENPA-NAC
3490
(nucleosome-associated) complex, which plays a central role in
the assembly of kinetochore proteins, mitotic progression, and
chromosome segregation [48]. It has been reported as a novel bio-
marker of hepatocellular carcinoma [49], melanoma [50] and blad-
der cancer [51]. FAM64A (also known as RCS1, PIMREG) plays
important biological functions in various cells by accelerating the
cell cycle and is abnormally expressed in many tumor tissues
[52]. Current studies have found that FAM64A was remarkably
highly expressed in tumor tissues and cells of patients with Lung
Adenocarcinoma [53], and pancreatic cancer [54]. Thymidine
kinase l (TK1) has been found to be closely related to cancer prolif-
eration [55]. Cell division cycle 45-like (CDC45L) has a critical role
in the initiation and elongation steps of DNA replication [56], and it
is regarded as a promising proliferation marker in tumor cell biol-
ogy [57]. Although these genes have not been directly reported in
gliomas studies, their basic biological functions and carcinogenic
properties have been elucidated. This also suggests that they have
the potential to affect the occurrence and development of LGG.
Moreover, our results demonstrate that the high expression of
these genes leads to poor prognosis of patients. Further studies
to elucidate their specific mechanisms in LGG are needed.

Our proposed Joint-SNF method provides a new strategy for
integrated analysis of multi-omics data and has been successfully
applied to LGG patients subtyping. The fused network obtained
by Joint-SNF enhances strong similarities and weakens spurious
associations between samples while reducing the noise. In addi-
tion, this method separates signals common to all data from indi-
vidual ones and effectively reduces the dimension of original
data without losing key information. Overall, our findings may pro-
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vide novel insights into the subtype of LGG patients and provide
important clues for improving patient survival outcomes and for
the option of individualized treatment.
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