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Abstract: In this study, zinc oxide nanoparticles were synthesized through a simple co-precipitation
method starting from zinc acetate dihydrate and sodium hydroxide as reactants. The as-obtained ZnO
nanoparticles were morphologically and structurally characterized by Fourier transform infrared
spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission
electron microscopy (TEM), photocatalytic activity, and by determining the antimicrobial activity
against Gram-negative and Gram-positive bacteria. The XRD pattern of the zinc oxide nanoparticles
showed the wurtzite hexagonal structure, and its purity highlighted that the crystallinity correlated
with the presence of a single product, zinc oxide. The ZnO nanoparticles have an average crystallite
size of 19 ± 11 nm, which is in accordance with the microscopic data. ZnO nanoparticles were
tested against methyl orange, used as a model pollutant, and it was found that they exhibit strong
photocatalytic activity against this dye. The antibacterial activity of ZnO nanoparticles was tested
against Gram-negative and Gram-positive strains (Escherichia coli, Staphylococcus aureus, and Candida
albicans). The strongest activity was found against Gram-positive bacteria (S. aureus).

Keywords: ZnO; photocatalyst; antibacterial activity; water purification

1. Introduction

Water is the most valued and important resource in the world and the lack of it
has become a serious problem. Industrialization, urbanization, and climate change have
created an urgent demand for the clean water that is so essential to human health. Lack of
water can cause diseases such as typhoid fever, dysentery, cholera, and diarrhea, resulting
in many deaths worldwide. Countless freshwater sources in the world are contaminated
because of industrial activities and human negligence and they need to be purified [1,2].

Water purification involves removing undesirable chemicals, biological contaminants,
or even suspended solids from water systems to produce clean, safe water for human
consumption and other purposes. There are traditional methods that include processes
such as filtration, sedimentation, distillation, and chlorination, but these have limitations
and can be resistant to antibiotics. Researchers are trying to overcome these limitations by
developing alternative methods [3].
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Of all the diverse materials used in different purification methods, the nanomaterial
that has attracted the most attention as an antibacterial agent is zinc oxide. The literature
provides a multitude of synthesis methods for zinc oxide, such as thermal decomposi-
tion [4], spray pyrolysis [5], solvothermal reaction [6], forced hydrolysis [7], the sol-gel
method or CVD [8], the hydrothermal method [9], and co-precipitation [10]. In addition,
all the synthesis methods for ZnO presented above, microwave synthesis is considered
a green chemistry approach, having processing advantages and being environmentally
friendly [11,12]. ZnO is a multifunctional material with many areas of application such as
optical devices [13], auto-cleaning paints [14], sunscreens [15], cosmetics [16], and photo-
catalysts [17,18]. Moreover, zinc oxide has numerous applications in diverse fields, such as
drug delivery [19,20], cosmetics [16,21], paints [5], medical devices [22], dentistry [23], and
the textile industry [24]. The applicability of zinc oxide is not limited to sunscreens [15]; it
is also important in other industries such as rubber, pharmaceuticals [25], and food [26].

On the nanoscale, zinc oxide shows antimicrobial properties, which makes it a po-
tential agent for various applications [27]. Researchers have successfully incorporated
ZnO as an antimicrobial agent into textiles [28], surface coatings [29], cosmetics [16,21],
and cellulose fibers [30] to inhibit microbial growth. For this reason, zinc oxide is widely
accepted as a beneficial antibacterial agent and due to its durability and selectivity, is
considered a safe material for humans and animals [31,32]. The U.S. FDA classifies ZnO
as Generally Recognized as Safe (GRAS). Many studies have demonstrated that ZnO
antibacterial activity has potential applications in water purification by improving the
quality of wastewater [3,33]. The literature describes the photocatalytic mechanism of
ZnO that influences its antibacterial activity and how light enhances it [22]. The safety
and photocatalytic activity of ZnO have become important factors when referring to its
antimicrobial activity and antimicrobial potential for water treatment [8,27,34–36].

The aim of this study was to use ZnO nanoparticles synthesized by precipitation in
water treatment. ZnO nanoparticles were synthesized and characterized by the proper
techniques and further evaluated for their antimicrobial and photodegradative poten-
tial. A photodegradation test on a pollutant model (organic dye) was conducted and
the proven antimicrobial activity revealed that these nanoparticles are suitable for the
desired applications.

2. Materials and Methods
2.1. Experimental

Zinc acetate dihydrate, Zn(OAc)2·2H2O, having 99.99% purity, was acquired from
Sigma Aldrich (Merck, Burlington, MA, USA). Sodium hydroxide (NaOH) with 98% purity
was obtained from Fluka (Merck, Burlington, MA, USA), and distilled water was used in
this experiment. All chemicals used in the present study were of analytical grade without
further purification.

For the experiments, we used the following laboratory devices: a hotplate mag-
netic stirrer from Daihan LabTech (Batam, Indonesia), model LMS-1003; a furnace from
Nabertherm GmbH (Lilienthal, Germany), model L 9/11/B180; and an electric oven from
Memmert GmbH (Büchenbach, Germany), type UF55.

We synthesized ZnO through a simplified co-precipitation method as described in [10].
To obtain zinc oxide nanoparticles, two solutions were prepared from zinc acetate dihydrate
[Zn(OAc)2·2H2O], and sodium hydroxide [NaOH]. Both were dissolved in 50 mL of
distilled water each until complete dissolution. The obtained solutions were combined and
magnetically stirred at 1300 rpm on a hot plate at almost 70 ◦C until white precipitates of
zinc oxide nanoparticles formed. After the precipitate was washed several times for acetate
removal, it was left to dry in an electric oven at 60 ◦C overnight. The powders of zinc oxide
were then placed in a furnace at 1000 ◦C for 3 h.



Materials 2021, 14, 4747 3 of 15

2.2. Characterization

The obtained ZnO nanoparticles were characterized by thermal analysis, Fourier
transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron mi-
croscopy (SEM), transmission electron microscopy (TEM), photocatalytic activity, and by
determining the antimicrobial activity against Gram-negative and Gram-positive bacteria.

The Fourier transform infrared spectroscopy (FTIR) measurements were performed
using a Nicolet iS50R spectrometer (Thermo Fisher Scientific, MA, USA). The spectra were
performed at room temperature using the attenuated total reflection (ATR) (Thermo Fisher
Scientific, MA, USA), with 32 sample scans between 4000 and 400 cm−1 at a resolution of
4 cm−1, with the scanning time being 47 s. The recording and the future processing and
analysis of the data were possible by connecting the spectrometer to the data acquisition
and processing unit through the Omnic program (Thermo Fisher Scientific, MA, USA).

X-ray diffraction experiments were carried out on a Panalytical Empyrean instrument
(Malvern Panalytical, Worcestershire, UK) with Ni-filtered Cu radiation (λ = 0.15406 Å)
equipped with a 1/4◦ fixed divergence slit and a 1/2◦ anti-scatter slit on the incidence beam
side, and a 1/2◦ anti-scatter slit mounted on a PIXCel3D detector (Malvern Panalytical,
Worcestershire, UK) on the diffracted beam side. Data reduction and analysis of the
patterns were performed in HighScore Plus 3.0.e software coupled with the ICDD PDF4 +
2021 database. For the Rietveld refinement [37] procedure, based on Hill and Howard’s
computer program [38], a polynomial function and a pseudo-Voigt function were used for
the approximation of the background and the peak profile, respectively. For the correction
of intensity caused by preferential orientation, the March–Dollase [39] procedure was used.

The electron microscopy images were obtained using a Quanta Inspect F50 (FEI
Company, Eindhoven, The Netherlands) equipped with a field emission gun (FEG) with
a 1.2 nm resolution, and an energy dispersive X-ray spectrometer (EDS) with a MnK
resolution of 133 eV Kα.

The transmission electron images were obtained on dried, finely powdered samples
using a high-resolution Tecnai G2 F30 S-TWIN (FEI Company, Eindhoven, Netherlands)
transmission electron microscope equipped with a selected area electron diffraction (SAED)
(Gatan, Inc., Pleasanton, CA, USA) module. The microscope operated in bright-field
transmission mode at an acceleration voltage of 300 kV, with a punctual and line resolution
of 2 Å and 1 Å, respectively.

Thermal analysis (TG-DSC) was performed with an STA 449 F3 Jupiter apparatus,
from Netzsch (Selb, Germany). Approximately 10 mg of dry powder was placed in an
open alumina crucible and heated up to 900 ◦C with a 10 K·min−1 rate, under a flow
of 50 mL·min−1 of dried air. As a reference, an empty alumina crucible was used. The
evolved gases were analyzed with an FTIR Tensor 27 from Bruker (Bruker Co., Ettlingen,
Germany) equipped with a thermostatic gas cell.

The photocatalytic activity was determined against methyl orange (MO) 6.11 × 10−5 M
(20 mg/L) solution by irradiation with a LOHUIS®(Lohuis, Bucharest, Romania) a fluo-
rescent lamp of 160 W/2900 lm, with a color temperature of 3200 K and a color rendering
index of >60, placed at a 20 cm distance. A sample of 0.0250 g ZnO powder was placed in a
10 mL solution of MO and left under stirring for 30 min in the dark to reach adsorption–
desorption equilibrium. After irradiation, at defined time intervals, a sample was placed in
a quartz 10 mm cuvette, and its UV–Vis spectra were recorded with a JASCO (Easton, PA,
USA) V560 spectrophotometer, with a speed of 200 nm·min−1.

For the qualitative antimicrobial assay, we used the adapted diffusiometric method
was (according to the CLSI recommendation, 2015). On the surface of the Mueller Hinton
medium (without glucose) with 2% agar (pH = 7.2–7.4), Sabouraud medium agar with
chloramphenicol, with a thickness of 4 mm, distributed in Petri dishes (Ø = 10 cm), was
inseminated on the “canvas”, a standardized inoculum (suspension in a physiological
buffer) obtained from the fresh culture (18–20 h) of S. aureus and E. coli, with a standard
density of 1.5 × 108 CFU/mL (corresponding with 0.5 McFarland standard), and C. albicans
with a density of 3 × 108 CFU/mL (corresponding to 1 McFarland standard).
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The fresh cultures were obtained by inseminating the strains into the solid media
trypticase soy agar (TSA) and yeast pepton glucose (YPG). Subsequently, 10 µL of each
suspension of tested nanoparticles was observed on the surface of media inseminated in
the canvas. After their diffusion, the Petri dishes were incubated for 18–24 h at 37 ◦C. The
sensitivity of microbial strains to the action of ZnO nanoparticles was assessed using the
diameters of the inhibition zones around the spot [26].

The quantitative assay was performed using the micro dilutions method in 96-well
plates in liquid TSA medium or YPG to determine the minimum inhibitory concentrations
(MICs). In this sense, binary serial dilutions were performed from each suspension of the
tested nanoparticles in volumes of 150 µL of liquid media. Each well was inoculated with
15 µL of microbial suspension, with a standard McFarland density of 0.5 (for bacterial
strains) and 1 (for yeast strains), and then incubated at 37 ◦C for 24 h. Each test was
performed in a microbial culture control (wells containing only culture medium inoculated
with microbial suspension) and with a media sterility control (wells containing only culture
medium). After incubating the plates at 37 ◦C for 24 h, the samples were analyzed under
macroscopic observation. The concentration of the tested compound corresponding to
the last well in which the cultural development is no longer observed represents the MIC
value (µg/mL). In subsequent wells, including cell growth control (C+) wells, media are
disturbed because of microbial growth. The sterility control (C−) well does not show
developed cultures [40].

The quantitative assay—investigating the capacity to inhibit adhesion to an inert
substrate by the crystal violet method—was conducted to establish the effect of the tested
suspensions on the adhesion capacity of the inert substrate before continuing to the MIC
method. Adhesion to the inert substrate of the tested strains was evaluated at 24 h and
48 h after incubation by washing the wells 3 times with a sterile physiological buffer and
fixing them with cold methanol for 5 min. After removing the methanol, the dry plates
were stained with 1% crystal violet solution for 20 min. After staining, the excess dye was
rinsed with water. The dye from the cells adhered to the walls and solubilized with 33%
acetic acid solution. A spectrophotometric reading of the absorbance of the suspensions at
490 nm was taken, with the BioTek Synergy™ HTX ELISA Multi-Mode Reader (BioTek,
Winooski, VT, USA) [26].

Antimicrobial assessments were performed in triplicate and were analyzed using
GraphPad Prism 9 for Windows 64-bit, version 9.1.1 (225), developed by GraphPad Soft-
ware, San Diego, CA, USA. We compared the resulting data using analysis of variance
(ANOVA), and Tukey’s multiple comparisons test where a p-value < 0.05 was considered
statistically significant.

3. Results and Discussion

The ZnO nanoparticles were analyzed by TG/DSC to establish the sample purity and
the calcination temperature (if necessary). The as-obtained ZnO precipitate still contained
adsorbed water molecules, –OH moieties, and some zinc acetate species (Figure 1).

The first two mass loss processes correspond to the elimination of bound water
molecules and –OH moieties from the nanoparticle’s surface. Endothermic effects ac-
company both mass loss steps. The FTIR 3D chromatogram confirms the presence of water
molecules in the evolved gases up to 135 ◦C (Figure 2). The endothermic effect from 230.9 ◦C,
without recorded mass loss, corresponds to the melting of Zn(CH3COO)2 impurities.

After 270 ◦C, the impurities start to decompose, eliminating acetate ions and, at
the same time, an exothermic oxidation reaction to CO2 and H2O occurs. The FTIR
spectra of evolved gases present the characteristic vibration for CH3COOH (3550 cm−1

νOH, 2970 cm−1 νCH, 1745 cm−1 δOH) and CO2 (2324–2355 cm−1). The multistep mass
loss process after 270 ◦C indicates the presence of more than one type of impurity, most
probably Zn5(OH)8(CH3COO)2, because it is also present in the sample. Based on the 2D
representation, carbonate release is intense between 400 and 600 ◦C, but acetate release
also appears in the same interval. As such, we decided to calcinate the sample at 1000 ◦C
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to remove all the impurities. This thermal treatment is also useful because the precursor is
transformed into pure ZnO.
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Figure 2. FTIR 3D chromatogram of evolved gases.

FTIR analysis was performed to evaluate the purity of the ZnO powder. The FTIR
spectra of the synthesized ZnO samples was measured between 4000 and 400 cm−1, as
presented in Figure 3. The main adsorption peaks are observed at 462 cm−1 and 419 cm−1

and correspond to the stretching vibrations of the Zn–O bond [41,42]. No absorption peaks
are observed for the precursors (especially acetate). On the FTIR spectrum presented below,
the main characteristic peaks can be identified as belonging to ZnO, and because no peaks
belonging to acetate are present, we can conclude that pure ZnO powder was obtained [43].
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The XRD pattern (Figure 4) of the synthesized ZnO nanoparticles shows the formation
of a single-phase component, zinc oxide. The X-ray diffraction technique was used to
determine the crystallinity degree of the prepared sample. The data in the pattern pre-
sented below were reduced and refined by the Rietveld algorithm. The agreement indices
(Rexpected = 9.1688, Rprofile = 8.8184, weighted Rprofile = 10.6262, and χ2 = 1.3432) show that
the pattern fits with the ZnO hexagonal wurtzite structure (ICDD PDF4 + 04-007-1614 [44]),
with lattice parameters of a = b = 3.251648 ± 0.000022 Å and c = 5.207833 ± 0.000041 Å.
It is worth mentioning that the bond angles are α = β = 90, and γ = 120, and the unit cell
volume is approximately 47.68644 Å3. Moreover, there is a preferential orientation in the
002 crystallographic direction with a March–Dollase parameter of 0.81842. The average
crystallite size determined from the whole pattern fitting is 19 ± 11 nm.
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The SEM images (Figure 5) represent the as-obtained ZnO nanoparticles gathered in
micrometric agglomerations arranged in a polyhedral-shaped manner. ZnO nanoparticles
present uniformity in size and shape and the majority of them are hexagonal.
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The TEM images (Figure 6) obtained of ZnO nanoparticles reveal that the powder
is composed of polyhedral-shaped particles, having a particle size ranging from 20 to
30 nm. By correlating TEM with XRD analysis, we conclude that the particles are mainly
composed from one crystallite. Moreover, the nanopowder presents a tendency to form
small agglomerates with discontinuous and irregular grading.

The photocatalytic activity of ZnO nanoparticles is well-known, and the literature
reports many investigations into the possible links between antimicrobial activity and
photoluminescence [7]. To study the photocatalytic degradation of ZnO nanoparticles,
methyl orange (MO) was used as a model pollutant. The decrease in the absorption maxima
at 464 nm (Figure 7) indicates that ZnO nanoparticles are capable of photodegrading
the organic dye. If the degradation ratio is defined as the ratio between the decreased
absorptive intensity and the initial MO solution, the degradation ratio is about 91% for ZnO
nanoparticles when the solution is irradiated for 150 min [42,45]. These results support
the premise that daily exposure of aqueous suspensions containing organic pollutants and
ZnO powder to the natural light could be efficient in degrading these pollutants.
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For diluted solutions, the photodegradation reactions exhibit apparent first-order
kinetics (Figure 8),

ln(C0/C) = kapp·t (1)

where C0 is the initial concentration of MO, C is the MO concentration at time t (min), and
kapp is the rate constant of the apparent first order.
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Table 1. The values for kapp, removal efficiency, and R-square for ZnO nanoparticles.

Sample kapp (min−1) 10−3 Removal Efficiency R-Square

ZnO 15.82 ± 0.53 91% 0.995

The antibacterial mechanism of ZnO nanoparticles is still unclear, but it exhibits
different activities in the presence of light than in the dark. In the presence of light, reactive
oxygen species (ROS) are generated, and this might involve photocatalytic activity in the
promotion of the antimicrobial activity. ROS are responsible for photocatalytic activity but
also for oxidative stress, which is damaging to the bacterial membrane [46,47].

The antimicrobial activity of ZnO nanoparticles can be explained by the release of
ROS from the surface of nanoparticles, photocatalytic activity, the release of Zn2+, direct
contact with the cell membrane, and morphology or the size of the nanoparticles [3,32].
The release of ROS depends on the photocatalytic activity of ZnO nanoparticles because
they are activated by UV and visible light. After the electrochemical reaction, ROS are
generated [32,46,48]. Through the action of ROS at the level of the cell wall and membrane,
the internalization of Zn2+ is facilitated, causing strong oxidative stress that determines the
inhibition of cell growth, and finally leads to cell death [3,46–48].

The qualitative results obtained from evaluating the ZnO nanoparticles for antimicro-
bial activity revealed the appearance of the inhibition zone only in the case of the S. aureus
(Table 2), with a diameter of the inhibition zone of 19 mm, which agrees with the litera-
ture [49]. The other two strains showed resistance to the action of tested samples, which can
be explained by the greater sensitivity of Gram-positive bacteria vs. Gram-negative bacteria
and yeast/fungi [3,47,50,51]. Gram-positive bacteria are more sensitive to the action of
ZnO because of their simpler cell wall structure compared to other microorganisms, and
the negative charge of the cell attracting positive ions (Zn2+) [3,47,52].
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Table 2. The diameters of the inhibition zones.

Bacterial Strains
The Diameter of the Inhibition Zone, mm

ZnO NPs (10 mg/mL)

Staphylococcus aureus ATCC 25923 19

Escherichia coli ATCC 25922 0

Candida albicans ATCC 10231 0

From the MICs evaluation of the tested suspensions, compared to the solid medium
diffusion of the tested nanoparticles, the liquid medium diffusion enhances the level of
manifestation of the inhibitory effect of the tested suspensions. The inhibitory effect for
ZnO nanoparticles was displayed up to a concentration of 125 µg/mL in the case of S.
aureus, which further manifested as the most sensitive strain to the action of this compound
out of the three tested (Table 3) [53]. The MIC values for S. aureus were between 105 and
135 µg/mL and between 125 and 170 µg/mL for E. coli [54]. The MIC evaluation used the
same types of standard bacterial strains as this study, obtaining a value of 500 µg/mL for
both strains. Many studies show that Gram-negative bacteria and yeasts are more resistant
to the action of ZnO nanoparticles [55–58].

Table 3. MIC values for the tested ZnO nanoparticles.

Bacterial Strains ZnO NPs (10 µg/mL)

Staphylococcus aureus ATCC 25923 125 µg/mL

Escherichia coli ATCC 25922 250 µg/mL

Candida albicans ATCC 10231 500 µg/mL

We obtained quantitative results for the capacity to inhibit adhesion to an inert sub-
strate. We analyzed the graphs obtained from the spectrophotometric reading of the
absorbance at 490 nm to determine the minimal biofilm eradication concentration (MBEC)
value. The inhibitory effect on the adhesion capacity to the inert substrate manifests differ-
ently depending on the strain. Thus, when the incubation was performed in the presence
of different concentrations of ZnO nanoparticles, the adhesion of S. aureus to the inert
substrate was intensely inhibited up to higher dilutions of the compound, with the correct
MBEC being 7.812 µg/mL at 24 h and 1.953 µg/mL at 48 h (Figure 9).

In the case of E. coli, the MBEC values at 24 h and 48 h after incubation were approx-
imately equal (62.5 µg/mL), suggesting an impediment to the adhesion of E. coli cells
to the inert substrate and, implicitly, to the development of a mature and stable biofilm
(Figure 10).

The inhibitory effect of ZnO nanoparticles against C. albicans was more pronounced
than in previous assays and the MBEC value was 31.25 µg/mL at 24 h and 15.625 µg/mL
at 48 h (Figure 11).

Biofilms are an accumulation of microbial cells that are surrounded by a matrix
and attach to solid surfaces [59,60]. The first step in inhibiting biofilm formation is pre-
venting surface colonization with antimicrobial agents. The antimicrobial potential of
ZnO nanoparticles depends on the size of the nanoparticles because the smaller they are
(<30 nm), the stronger the interaction with microbial cells, and the easier they penetrate the
cell [60–64], which agrees with the XRD and TEM results obtained (20–30 nm diameter of
nanoparticles). Another key finding of the antimicrobial effect of ZnO nanoparticles is the
remarkable results obtained after the evaluation of the photocatalytic activity. The results
revealed that Gram-positive bacteria (S. aureus) are highly sensitive to the action of ZnO
nanoparticles compared to other strains and, therefore, they have antimicrobial potential
in water treatment.
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4. Conclusions

In conclusion, we presented zinc oxide nanoparticles that were successfully syn-
thesized starting from zinc acetate dihydrate and sodium hydroxide, through a simple
co-precipitation method. The X-ray diffraction pattern results prove that, based on the iden-
tified peaks, the material has a hexagonal wurtzite structure and exhibits good crystallinity.
Furthermore, the FTIR analysis confirmed that the peaks from 462 and 419 cm−1 are at-
tributed to the stretching vibrations of Zn–O, which indicate the presence of ZnO. From
the electron microscopy images, it was observed that the ZnO nanoparticles tend to form
topolyhedral-shaped agglomerates. It is worth mentioning that the size of the as-obtained
zinc oxide nanoparticles was about 20–30 nm. For the evaluation of the photocatalytic
activity of ZnO nanoparticles, methyl orange was used as a model pollutant, and it proved
that ZnO has great photocatalytic activity against the organic dye. The antibacterial activity
of ZnO nanoparticles was tested against Gram-negative and Gram-positive strains and it
was found that the most activity was experienced against Gram-positive bacteria (S. aureus).
ZnO nanoparticles obtained through the co-precipitation method have great potential as
an antibacterial and photocatalytic agent for further use in developing nanocomposite
membranes for water purification. It is expected that the absorptive property of these
membranes will further contribute to the photocatalytic degradation of organic pollutants
and the removal of antibiotics, pesticides, etc., found in wastewater that present a threat to
both aquatic and human life.
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