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Abstract

The purpose of this study is to recognize the contamination characteristics of trace metals in

soils and apportion their potential sources in Northern China to provide a scientific basis for

basic of soil environment management and pollution control. The data set of metals for 12

elements in surface soil samples was collected. The enrichment factor and geoaccumula-

tion index were used to identify the general geochemical characteristics of trace metals in

soils. The UNMIX and positive matrix factorizations (PMF) models were comparatively

applied to apportion their potential sources. Furthermore, geostatistical tools were used to

study the spatial distribution of pollution characteristics and to identify the affected regions

of sources that were derived from apportionment models. The soils were contaminated by

Cd, Hg, Pb and Zn to varying degree. Industrial activities, agricultural activities and natural

sources were identified as the potential sources determining the contents of trace metals in

soils with contributions of 24.8%–24.9%, 33.3%–37.2% and 38.0%–41.8%, respectively.

The slightly different results obtained from UNMIX and PMF might be caused by the estima-

tions of uncertainty and different algorithms within the models.

Introduction

It is well known that heavy metals in soils present risks for human health due to their toxicity,

persistence, and non-biodegradable natures [1]. Urban and industrial areas are generally con-

sidered a sink of trace metals from various pollution sources [2]. In China, vehicular emissions,

industrial waste, and atmospheric deposition are the most important sources of heavy metals

in urban topsoil, whereas wastewater irrigation and land fertilization with sludge contribute

most to heavy metal contamination of topsoil in rural areas [3]. Due China’s rapid urbaniza-

tion and industrialization, the establishment of industrial operations and fast urban expansion
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have drastically increased industrial and municipal wastewater discharges and other pollutant

emissions nationwide [4]. Consequently, strengthening the prevention and control of soil pol-

lution has become China’s current key strategic task [4].

Tianjin City, located in Northern China, is an important industrial base. Since the 1980s,

Tianjin has undergone rapid agricultural and industrial development, so heavy metals are

more or less constantly emitted into the soil via atmospheric deposition, solid waste emissions,

application of pesticides and fertilizers and wastewater irrigation from sewage and industrial

effluents [5]. In particular, wastewater irrigation for agriculture has been used for nearly 50

years, to some extent, leading to the accumulation of metals in soils [6]. Studies have found a

significant enrichment of trace metals in the topsoil of Tianjin [7]. Elevated soil trace metal

concentrations in Tianjin have attracted attention from both the government and the public.

The Work Plan of Soil Pollution Prevention and Control of Tianjin was published by the Tian-

jin Municipal Government in January 2017 [8]. Therefore, understanding the contamination

characteristics of trace metals in soils and identifying their potential sources are important for

developing appropriate pollution prevention and control regulations [9, 10]. However, few

reports have focused on the source apportionment of trace metals in the soils of Tianjin.

Source apportionment of heavy metals in soil uses quantitative methods to accurately iden-

tify natural and anthropogenic sources and apportion their contribution [10]. The receptor

model is a general approach for apportioning the contribution from all major sources based

on the concentration profiles observed at sampling sites [10, 11]. Several receptor models, such

as the chemical mass balance (CMB) model, principal component analysis/absolute principal

component scores (PCA/APCS), APCS/multiple linear regression, positive matrix factoriza-

tion (PMF), and UNMIX, have been proposed over the past several decades [12]. Although

these models have their own characteristics and limitations, they have been widely used and

have shown good applicability in source apportionment of pollutants in various environmental

media, including the atmosphere, sediments, and water.

Among them, the UNMIX and PMF models can apportion potential sources without prior

knowledge of source profiles, and they incorporate non-negative constraints into their calcula-

tion procedures, which makes their results more interpretable [10]. In addition, the UNMIX

and PMF models have been recommended by the United States Environmental Protection

Agency (U.S. EPA) as general modeling tools for source apportionment studies [10, 12]. How-

ever, the source apportionment of soil trace metals in large-scale regions is challenging because

of the high spatial variability of heavy metal contents in topsoil that is caused by both heteroge-

neous parent materials and widespread human activities. In these cases, the spatial variability

of the trace metal concentrations in soils is basic information for identifying the possible

sources of contamination. Mapping based on geographical information systems (GIS) and spa-

tial analysis is widely used to understand spatial distribution patterns and identify the likely

sources of metals in surface soils. Therefore, receptor models combined with GIS may be an

effective method that can improve the accuracy of source apportionment of soil trace metals.

In this study, a detailed investigation was conducted to comprehensively understand the

levels and spatial distribution in soils of the Tianjin area and to identify their potential sources.

Geochemical methods, including the geoaccumulation index and enrichment factor, were

used to analyze the contamination characteristics of trace metals in soils. Receptor models,

including the UNMIX and PMF models, were applied to identify trace metal sources and cal-

culate source contributions. The systematic research presented here provides significant infor-

mation for understanding the applications and challenges of PMF and UNMIX in the source

apportionment of soil heavy metals at regional scale. In addition, the results will be useful and

helpful for managers of soil environments to select and implement suitable measures for soil

pollution prevention and control in Tianjin.

Source apportionment of soil metals by multivariate statistical models
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Materials and methods

Study area

Tianjin (N: 38˚340–40˚150; E: 116˚430–118˚040), in the lower reaches of the Haihe River System, is

an important industrial metropolitan area in northern China. Major industries include metal

smelting and pressing, machine manufacturing, petrochemical industry, electronic equipment

manufacturing, automotive manufacturing, chemical industry, pharmaceutical manufacturing and

production of electric and heat power; there are several other industrial activities [13–15]. Tianjin

covers a total area of 11,900 km2 and had a population of 12.99 million in 2010 [13]. This region,

close to Bohai Bay, which is affected by the ocean climate and has a semi-humid monsoon climate,

that is characterized by wide seasonal variation in annual rainfall of approximately 600 mm [13].

The landform of its north is higher in elevation than is that in the south [13]. The altitude ranges

from 3.5 to 1052 m [13]. The main soil types are endoaquept, haplaguept and hapludalf [13].

Sample collection and analysis

A total of 171 surface soil samples (0–20 cm) were collected in May 2013, which reasonably

represent soils of the entire study area. Sample collection and preparation, analytical methods

and quality control were conducted according to the Technical Specification for Soil Environ-

mental Monitoring of China [16].

Before field work, sampling coding system and sampling cell were made on a 1:250,000 dig-

ital maps in national fundamental geographic information system. The size of sampling grid

(sampling density) varied with land use patterns, with an 8 km×8 km grid for cultivated land, a

16 km×16 km grid for forested land and grasslands, and a 40 km×40 km grid for unutilized

land. Each total sample was a composite material taken from several sub-sample (0–20 cm)

over a 50 m × 50 m patch of land. Ten to thirty sub-samples were collected at sites that did not

have a not flat landscape and had heterogeneity in soils by using the S-shaped method. Five to

nine sub-samples were collected at sites in cropland by using diagonal method. Five sub-sam-

ples were collected at sites with flat landscapes and homogeneous soil using the quincunx

method. Samples for measuring organic compounds were collected with a pre-cleaned stain-

less steel scoop in a pre-cleaned brown glass bottle with a Teflon cap and were immediately

transported to the laboratory and stored at -4˚C until analysis.

Soil sample preparation for element analysis was performed as follows [17]. Each soil sam-

ple (10–20 mg) was digested in 1 mL of 60% (w/w) HNO3 and 1 mL of 60% (w/w) HClO4 in a

stainless steel high-pressure digestion bomb at 140˚C for 6 h. After completely cooling the sys-

tem, the open vial was transferred to a hot plate (about 190˚C) to evaporate the solution until

the volume had decreased to several hundred micro-liters, then 0.5 mL of 49.5% (w/w) HF was

added and the sample was evaporated again. The HF treatment was repeated several times

until the silicate minerals had been completely dissolved. Finally, the residual solution was

diluted to 6 mL with 1% (w/w) HNO3, filtered through a syringe filter (0.45 μm). The total

concentrations of As, Hg and Se were analyzed using atomic fluorescence spectrometry (AFS);

the total concentrations of the other elements were determined using inductively coupled

plasma mass spectrometry (ICP-MS). The detection limits were 0.2, 0.1, 0.7, 5.0, 0.5, 0.005, 5.0,

0.5, 0.5, 5, 1.0 and 5.0 mg kg-1, for As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, V, Se and Zn, respec-

tively. Quality assurance and quality control procedures were performed in conjunction with

laboratory analyses by analyzing standard reference materials GSS-1, GSS-2, GSS-3, and GSS-

4 soil (National Research Center for Geoanalysis of China). The results showed that the preci-

sion and bias of the analysis were generally below 5%. Recoveries of samples spiked with stan-

dards ranged from 95 to 105%.

Source apportionment of soil metals by multivariate statistical models
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Geochemical methods

Enrichment factor. An enrichment factor (EF) is a commonly used geochemical criterion

to evaluate the degree of heavy metal pollution [18]. It is defined as follows:

EF ¼ ð
Cn

Cref
Þsample=ð

Bn

Bref
Þbackground ð1Þ

where (Cn/Cref)sample is the concentration ratio of the examined metal and the reference ele-

ment in soil samples, and (Bn/Bref)background is the natural background value of the examined

metal to the reference element ratio. The elements that are most often employed as reference

elements include several conservative elements, such as Sc, Mn, Al, and Fe. [19]. In this study,

Mn was used as the reference element. The background values of soil trace metals in the Tian-

jin area (CNEMC 1990) were used for calculating the EF values. The five-category system pro-

posed by Sutherland [20] was used to classify samples: no or minimal enrichment (EF<2),

moderate enrichment (2�EF<5), significant enrichment (5�EF<20), very high enrichment

(20�EF<40), and extremely high enrichment (EF�40).

Geoaccumulation index. The geoaccumulation index (Igeo), was first proposed by Müller

[21] to assess the pollution levels of bottom sediments, and has been widely applied to the

assessment of contamination by trace metals in soil. It is calculated as follows:

Igeo ¼ log
2
ðCn=1:5BnÞ ð2Þ

where Cn is the concentration of the examined trace element (n) in the soil samples, and Bn is

the background value for the corresponding trace element. A constant of 1.5 is used to com-

pensate for possible variations in the background data because of lithological variations as well

as very small anthropogenic influences [19]. Igeo was calculated using the background values in

order to compare the calculation results of EF and Igeo. The Igeo consists of 7 classes [18]: Class

0 (Igeo�0), uncontaminated; Class 1 (0<Igeo�1), uncontaminated to moderately contaminated;

Class 2 (1<Igeo�2), moderately contaminated; Class 3 (2<Igeo�3), moderately to heavily con-

taminated; Class 4 (3<Igeo�4), heavily contaminated; Class 5 (4<Igeo�5), heavily to very

heavily contaminated; Class 6 (Igeo�5), very heavily contaminated.

Source apportionment models

Both UNMIX and PMF are advanced multivariate receptor models that are based on factor

analysis, and constrain all of the elements in the factorized matrices to nonnegative. They

determine the number of sources as well as their chemical compositions and contributions

without the source profile data. In the models, the sample data matrix is decomposed into two

matrices (factor contributions and factor profiles), with a residual matrix [5, 22]. The matrix

equation can be expressed as:

xij ¼
Xp

k¼1

gikfkj þ eij ð3Þ

where xij is the jth measured element concentration in the ith sample, p is the number of fac-

tors that contribute to the samples, gik is the relevant contribution of factor k to the ith sample,

fkj is the concentration of element j in factor k profile, and eij is the residual error matrix.

Details of the two models are described in the following sub-sections.

UNMIX. The UNMIX program includes two key algorithms, that are linked by the matrix

operation of Singular Value Decomposition (SVD). Given a data matrix with n samples and m
species, the first step is to perform the SVD to reduce the dimensionality of the data space

Source apportionment of soil metals by multivariate statistical models
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from m to p, the number of sources. The number of sources (p) is estimated by the NUMFACE

algorithm based on signal-to-noise considerations [23]. The next algorithm is to find data

"edges" (more generally, hyperplanes) in a (p−1)-dimensional space, which are then used to

determine the compositions and contributions of the p sources [24]. It should be noted that

UNMIX retains only the species that contribute to the improvement of the model’s signal-to-

noise ratio. In this work, U.S. EPA UNMIX version 6.0 was used.

PMF. Compared to UNMIX, the PMF model considers the uncertainty of each data point

individually and is built on a completely different algorithm [25, 26]. The core of the PMF

algorithm is to minimize the object function Q in the following way [27]:

Q ¼
Xn

i¼1

Xm

j¼1

ð
eij

mij
Þ

2
ð4Þ

where μij is the uncertainty of the jth species concentration for the ith sample, n is the number

of samples, and m is the number of species.

In this study, U.S. EPA PMF version 5.0 was employed based on the multilinear engine-2

(ME-2) algorithm. ME-2 solves the PMF equation iteratively using the conjugate gradient

algorithm, minimizing the Q function [28]. The model was used in robust mode to avoid the

impact of outliers on the PMF model results. Additionally, the application of the PMF model

depends on the uncertainty of each data point to reduce the influence of noise in the environ-

ment data. In this study, for data above the method detection limit (MDL), the uncertainty

matrix (μij) was calculated to be 10% of xij plus MDL divided by three (μij = 0.1 × xij + MDL/3).

If xij is below or equal to MDL, xij values below MDL were replaced with MDL/2, and the

uncertainty matrix is estimated to be 20% of xij plus MDL divided by three (μij = 0.2 × xij +

MDL/3) [29].

Geostatistical tools

Kriging and inverse distance weighting (IDW) are the two most commonly used geostatistical

interpolation methods for characterizing spatial patterns of soil contamination. Kriging is a

linear interpolation technique that exhibits the best linear unbiased estimates for spatial vari-

ables [30]. However, the relatively easy method of IDW is more appropriate for the purposes

of this study of assessing the spatial variations of soil trace metals contamination based on EF

and Igeo values and for identifying the affected regions of pollution sources obtained from

UNMIX and PMF models. It uses a specific number of nearest points, which are then weighted

according to their distance from the point being interpolated [31]. The IDW interpolation

maps were produced using ArcGIS 10.2 software.

Results and discussion

Contamination characteristics

The soil pH values varied from 5.9 to 9.0 with a mean value of 8.24. Because 93.6% of soil pH

levels were above 7.5, this indicated that most soil of this region is alkaline soil. The basic statis-

tics for the concentrations of measured trace metals in surface soils from the Tianjin area are

listed in Table 1. From Table 1, it apparent that only that the median and mean concentrations

of only Cd, Pb and Zn were higher than their corresponding average background values

(ABVs). Approximately 76.6% of Cd samples, 74.3% of Pb samples and 54.4% of Zn samples

exceed their corresponding ABVs. In the Chinese soil quality guidelines [32], Grade I repre-

sents the average natural levels for uncontaminated soil and Grade II indicates that interven-

tion should occur to protect human health [33]. Compared with the Chinese soil quality

Source apportionment of soil metals by multivariate statistical models
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guidelines [32], 24.6%, 15.8%, 13.5%, 15.2%, 32.8% of the Cd, Cu, Hg, Ni and Zn concentra-

tions exceed their corresponding Grade I values. Additionally, the highest concentrations of

these five trace metals even exceeded their Grade II values. It was also found that the mean

concentrations of most trace metals, except Co and V, were lower than the target values that

are recommended by in the Netherlands soil contamination guidelines [34].

To evaluate the extent of trace metals contamination and anthropogenic inputs, EF and Igeo

values of different elements were calculated separately for all sampling sites (Fig 1; Table 2; S1

Table). EF values showed that Cd was the most serious metal contaminant in soils, with 47.9%

of samples classified above the moderate contamination level (Fig 1(A); Table 2(A)). Both Pb

and Zn had the same average EF of 1.38, with 16.2% of samples for Pb and 22.0% of samples

for Zn with EF>2. Although the mean EF value for Hg was below zero, 17.1% of EF values for

Hg were in the range of 2–5 and 2.6% of EF values were in the range of 5–20, that influences

Hg was also an important pollutant influencing soil quality in Tianjin. At least 93% of EF

Table 1. Summary statistics of trace metal concentrations in soil samples and some reference values (mg kg-1).

Trace metal As Cd Co Cr Cu Hg Mn Ni Pb Se V Zn

Minimum 0.67 0.010 3.7 10.0 10.4 0.004 285 12.1 8.6 0.016 10.4 12.8

50th 9.17 0.150 13.2 66.5 25.0 0.037 615 30.8 25.8 0.145 77.0 82.5

Mean 9.34 0.183 13.3 67.9 28.1 0.076 681 31.4 26.4 0.149 76.8 101.0

Maximum 20.50 1.310 26.2 200.0 110.0 0.755 1720 68.5 74.0 0.734 148.0 406.0

Standard deviation 3.86 0.141 4.1 21.7 14.1 0.109 258 10.0 7.6 0.089 28.1 61.0

Coefficient of variation 0.4 0.8 0.3 0.3 0.5 1.4 0.4 0.3 0.3 0.6 0.4 0.6

Skewness 0.37 4.26 0.49 1.50 2.68 3.54 1.28 0.93 1.66 2.98 0.04 2.15

Kurtosis 0.23 26.82 0.37 8.76 10.25 16.04 2.28 1.74 8.32 16.86 -0.16 5.93

Average background of Tianjin 9.60 0.090 13.6 84.20 28.800 0.084 686.00 33.300 21 0.18 85.200 79.3

C-Grade I 15 0.2 - 90 35 0.15 - 40 35 - - 100

C-Grade II 30.0 0.6 - 200.0 100.0 0.5 - 50.0 300 - - 250

D-Target 29 0.8 9 100 36 0.3 - 35 85 0.7 42 140

C-Grade I: Grade I of Chinese soil guidelines; C-Grade II of Chinese soil guidelines; D-Target: Target values of Dutch soil guidelines.

https://doi.org/10.1371/journal.pone.0190906.t001

Fig 1. Boxplots of enrichment fator (EF) and geoaccumulation index (Igeo) for trace metals in soil samples.

https://doi.org/10.1371/journal.pone.0190906.g001
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values of the other trace metals showed no or minimal contamination, with only a few individ-

ual sampling sites with EF values >2.

The mean Igeo values for these trace metals, except for Cd (mean Igeo = 0.19), were lower

than 0, indicating no soil contamination. The Igeo values of Cd varied the most, ranging from

uncontaminated to heavily contaminated. The proportions of these elements in soil samples

with Igeo > 0 decreased in the following order: Cd (58.5%) > Zn (25.1%) > Pb (22.8%)> Hg

(14.6%) > As (10.5%)> Cu (8.2%) > Co (5.3%) > Ni (4.7%) > V (4.1%) >Se (3.0%) > Cr

(1.8%) (Fig 2(B), Table 2(B)). The maps of EF and Igeo for these elements exhibited very similar

spatial distributions, confirming the interpolation results (S2 Fig). The classification of samples

by EF was more severe than that by Igeo, which was consistent with the report by Chabukdhara

and Nema [35]. Overall, Cd, Hg, Pb and Zn showed the relatively high contamination levels.

In particular, Cd was the most significant pollutant in Tianjin soils.

Table 2. Percentages of class distribution for pollution assessment of trace metals in soil samples using enrichment factor index (a) and geoaccumulation index (b)

(n = 171; %).

Trace metals As Cd Co Cr Cu Hg Ni Pb Se V Zn

(a)

no or minimal enrichment 95.3 52.1 93.0 96.5 94.7 80.3 97.1 83.8 95.3 94.9 78.0

moderate enrichment 4.7 44.4 6.4 3.5 4.7 17.1 2.9 16.2 4.7 5.1 21.4

significant enrichment 0.0 3.5 0.6 0.0 0.6 2.6 0.0 0.0 0.0 0.0 0.6

(b)

Uncontaminated 89.5 41.5 94.7 98.3 91.8 85.4 95.3 77.2 97.1 95.9 74.9

uncontaminated to moderately contaminated 10.5 45.6 5.3 1.8 7.0 8.8 4.7 22.2 1.8 4.1 19.9

moderately contaminated 0.0 11.1 0.0 0.0 1.2 4.7 0.0 0.6 1.2 0.0 5.3

moderately to heavily contamined 0.0 1.2 0.0 0.0 0.0 1.2 0.0 0.0 0.0 0.0 0.0

heavily contaminated 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

https://doi.org/10.1371/journal.pone.0190906.t002

Fig 2. Concentration (mg/kg) and corresponding percentage (%) of the species in the different factors obtained by

Unmix (Left) and PMF (Right).

https://doi.org/10.1371/journal.pone.0190906.g002
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According to Zhang and Liu [36], EF values >1.5 suggeste that the metal was derived

mainly from anthropogenic sources. From S1 Fig, the estimated maps of the spatial distribu-

tion of trace metal EF values showed that the soils in different districts of Tianjin were affected

by human activities to varying degrees. Cd contamination was observed over a wide area,

which might be associated with agricultural activities, such as fertilizer use and sewage irriga-

tion. Although Pb and Zn showed similar spatial distributions, the hot-spot areas for Zn were

wider than those for Pb, which mainly distributed in the suburban and the northern areas of

Tianjin. The high EF values of Hg mainly occurred surrounding these districts that cross the

Dagu Ditch and the Ji district in the north of Tianjin, demonstrating obvious regional charac-

teristics. The Dagu Wastewater Drainage River, located in the south of Haihe River, is an

important urban drainage channel that has received municipal sewage and industrial waste

water for a long period of time [37]. The main industries that types draining waste into this

channel include electroplated metal products industry, chlor-alkali industry, paper manu-

facturing industry, the leather industry, and textile industry [38]. Previous studies have noted

that Hg in agricultural soils near the Dagu Ditch was one of the most serious pollutants be-

cause the Dagu wastewater is used for irrigation [39]. The high EF values for As, Co, Cr, Cu,

Ni, Se and V were distributed only sporadically in the study area, indicating that these seven

elements were less influenced by anthropogenic emissions.

Comparison of source profiles

To apportion the sources of soil trace metals in the Tianjin area, both the UNMIX and PMF

models were comparatively applied. First, the optimum number of sources needs to be deter-

mined when running these two models. Generally, we can use the Min. R2 value and Min S/N

value as the diagnostic basis for the UNMIX model. Here, Min. R2 means the minimal

explained variance of each species under the specified number of sources, not the overall r-

squared of the fit [40]. Min S/N refers to the smallest estimated signal-to-noise ratio of any of

the factors included in the model [40]. A value of Min. R2 > 0.80 and a value of Min. S/

N> 2.0 usually indicate that the UNMIX model fits well [40]. Table 3 shows the Min. R2 and

Min. S/N values under different source numbers obtained from the UNMIX model in this

study. Obviously, three-factor solution was the optimal choice for UNMIX with the Min. R2

value of 0.85 and Min. S/N value of 2.1 (S2 Table). Unlike UNMIX, no strict rules are set to

find the optimum number of sources for the PMF model. The best value for the number of

sources (p) is determined by repeating the analysis with different p values [40]. An optimal

PMF solution has obtained that had a robust Q value near the theoretical Q value. The theoret-

ical Q value (Qt) was 1503, which was approximated using the equation Qt�m × n–p × (m +

n), where m is the number of species and n is the number of samples [40]. Consequently, the

three-factor solution was chosen. Source profiles for the two models are presented in Fig 2 and

details of source composition are listed in Tables 4 and 5. Qualitatively, it apparent that the

source profiles identified by the two models showed a high degree of similarity in terms of con-

centration and percentage (S3 Table; S4 Table).

To further evaluate how well the two methods fit the data, the performance parameters of

explained variance (r2) and correlation coefficients for the UNMIX factor profiles and

Table 3. Min. R2 and Min. S/N values for different source numbers obtained from UNMIX model.

Source numbers 1 2 3 4 5 6 7 8 9 10 11 12

R2 0.47 0.75 0.85 0.85 0.91 0.93 0.96 0.97 0.98 0.98 0.99 1.00

S/N 11.79 3.53 2.10 1.93 1.39 1.09 1.00 0.89 0.75 0.62 0.51 0.58

https://doi.org/10.1371/journal.pone.0190906.t003
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corresponding PMF factor profiles were calculated (Table 6). The results showed that the

three-factor solution explained 92.4% and 91.5% of the total variances for UNMIX and PMF,

respectively. The minor difference in the r2 values might be attributed to the processing meth-

ods for noisy analytical data in UNMIX and PMF. Measurement errors were assumed to be

identical in UNMIX, whereas PMF considered the noise structure of the analytical data to be

heterocedastic. In most of the cases of source apportionment with noisy environmental data,

the assumption regarding error structure in UNMIX is unrealistic. In comparison, the uncer-

tainty estimate in PMF plays an important role because it allows each data point to be individ-

ually weighed. In this study, most of trace metals in soil samples had relatively high coefficients

of variation, indicating a relatively high noise variation. Thus, the higher r2 values may not

indicate that UNMIX explained the larger amount of meaningful information than PMF. This

might incorporate noise in the UNMIX solution. In general, the resolved solutions by these

two models provided sufficient information to represent the majority of the entire dataset.

From Table 6, the correlation coefficients between composition (gk) / contribution profiles (fk)

from UNMIX and the corresponding profiles from PMF were high in all cases, ranging from

Table 4. Source composition (mg kg-1) from UNMIX model.

Species UNMIX_F1 UNMIX_F2 UNMIX_F3 UNMIX_SUM

As 1.460 1.840 6.040 9.340

Cd 0.016 0.145 0.021 0.182

Co 1.260 3.030 8.930 13.22

Cr 8.500 20.500 38.300 67.30

Cu 3.220 8.870 16.800 28.89

Hg 0.068 0.001 0.007 0.076

Mn 79.6 139 382 600.6

Ni 3.430 8.440 19.600 31.47

Pb 3.690 8.030 14.500 26.22

Se 0.017 0.055 0.079 0.151

V 8.150 12.600 56.100 76.85

Zn 11.000 47.300 43.800 102.1

Explained variances (%) 11.7% 24.1% 56.6% 92.4%

https://doi.org/10.1371/journal.pone.0190906.t004

Table 5. Source composition (mg kg-1) from PMF model.

Species PMF_F1 PMF_F2 PMF_F3 PMF_SUM

As 0.632 5.134 2.040 7.806

Cd 0.008 0.115 0.016 0.139

Co 0.000 6.016 6.034 12.050

Cr 3.861 30.995 27.287 62.143

Cu 0.757 11.321 12.225 24.303

Hg 0.066 0.000 0.008 0.075

Mn 85.850 192.080 362.27 640.200

Ni 0.759 16.200 12.541 29.500

Pb 1.645 11.536 12.040 25.221

Se 0.015 0.057 0.078 0.150

V 3.525 13.102 51.673 68.300

Zn 4.431 40.763 32.236 77.430

Explained variances (%) 9.8% 31.6% 50.1% 91.5%

https://doi.org/10.1371/journal.pone.0190906.t005
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0.848 to 0.999. In particular, the correlation coefficients of composition profiles for each factor

obtained from the two models were higher than 0.98. Generally, uncertainty estimation of the

analytical data would affect the results of source apportionment, because it reflects the quality

and reliability of each measured data point. Different algorithms for the receptor models

would also usually produce incompletely consistent factor score matrix and factor loading

matrix in the matrix decomposition process. Therefore, the difference of source profiles from

UNMIX and PMF might be caused by the uncertainty parameters of the models and their dif-

ferent algorithms. Both models showed good correlation for the same identified factor profiles

and produced good results, with minor differences between them, which mutually verified the

reliability of the source apportionment.

Source identification

Because similar source profiles for the trace metals in soils of Tianjin were derived from both

UNMIX and PMF models (Fig 2), only the PMF solution is further discussed and interpreted

here. The spatial distributions of EF and Igeo were provided as a useful aid to identify hot-spot

areas with high levels of contamination and to infer the possible sources of trace metals in soils

at the regional scale. Estimated maps of EF and Igeo in the whole area of Tianjin are presented

in S1 Fig and S2 Fig, respectively. A scatter diagram of enrichment factor (EF) for soil trace

metals of study area is presented in S3 Fig. The sampling points were plotted in different quad-

rants indicating that the trace metals were controlled by different sources to varying degree.

The first factor (F1) was characterized by high loading of Hg. As mentioned above, the spa-

tial distribution maps of EF and Igeo for Hg indicated that high values were mainly concen-

trated near the Dagu Wastewater Drainage River. Mercury-containing wastewater generated

in industrial activities is discharged into this river for agricultural irrigation, causing an accu-

mulation of Hg in the surrounding soil [39]. Additionally, it has been reported that HgCl has

been used as a catalyst for producing polyvinyl chloride by the calcium carbide method in a

Dagu chemical plant in recent decades, which has led to increasing Hg emission to the envi-

ronment [12]. The accumulation of Hg was also reported to be associated with coal combus-

tion in industrial activities [41, 42]. Thus, the factor might represent an anthropogenic source

of industry activities from waste emission and coal combustion.

The second factor (F2) was predominantly characterized by high loading of Cd, followed by

As, Zn, Co, Cr, Cu and Ni. As analyzed in the previous sections, the calculated results of EF

and Igeo values revealed that a wide range of agricultural soils in Tianjin were highly contami-

nated with Cd. The application of chemical fertilizers was usually regarded as an important

source of Cd in surface soils [43, 44]. Cadmium can be present in relatively large amounts in

phosphate fertilizers ranging from near 0 to more than 150 mg/kg, depending on the prove-

nance of the phosphate rock [45]. Arsenic can be easily emitted into the environment by the

Table 6. Contribution and fits for different factors obtained by UNMIX and PMF.

Factors Identified sources gka fkb SCUNMIXc (%) SCPMFd (%)

Factor 1 Industrial activities 0.990 0.961 24.9 24.8

Factor 2 Agricultural activities 0.981 0.848 33.3 37.2

Factor 3 Natural source 0.999 0.874 41.8 38.0

a: Correlation coefficients between composition profiles from PMF and corresponding profiles from UNMIX
b: Correlation coefficients between contribution profiles from PMF and corresponding profiles from UNMIX
c: Source contributions by UNMIX
d: Source contributions by PMF.

https://doi.org/10.1371/journal.pone.0190906.t006
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application of compound fertilizer and pesticides containing As [46]. Extensively application

of fungicides for crops and vegetables is one of the main soil zinc sources in China [46]. In

addition to the impact of pesticides and fertilizers, the use of sewage irrigation and sewage

sludge is also an important source of trace metals entering agricultural soils [47]. Wastewater

from drainage rivers, mainly receiving municipal sewage and industrial wastewater, has been

used for irrigation in agricultural areas in Tianjin for decades [48]. Previous studies had shown

that heavy metal pollution existed in the wastewater-irrigated area of Tianjin, especially for Cd

accumulation [9–10, 39]. From S1 Fig, we identified several hotspots of high Cd and Zn con-

centration across the study area. Compared to spatial distribution of Cd and Zn, the hotspots

of Hg were only distributed near sewage irrigation area. We can distinguish the difference

between Cd (or Zn) and Hg in agricultural region far away from the sewage irrigation area.

Cumulatively, the sources of Cd and Zn in soil were main originated from agricultural sources,

even though the impact of industrial activity on soil Cd and Zn in sewage irrigation area.

Together, this factor might indicate an anthropogenic source associated with agricultural activ-

ities (e.g., the application of pesticides and fertilizers).

The third factor (F3) was characterized by high loading of V and Mn and slight loading of

Co, Cr, Cu, Ni, Pb, Se and Zn. The mean concentrations of V, Mn, Co, Cr, Cu, Ni and Se in

soils were below their corresponding background concentrations in Tianjin (Table 1). Approx-

imately 94.7% of Igeo values for Co, 98.3% of Igeo values for Cr, 91.8% of Igeo values for Cu,

95.3% of Igeo values for Ni, 97.1% of Igeo values for Se and 95.9% of Igeo values for V were less

than zero (Table 2(B)), indicating that these elements were probably predominantly controlled

by natural sources. Previous studies indicated that soil Co, Cr, Mn, Ni and V were highly

dependent on soil parent materials [49–51]. Thus, these elements were mainly derived from

natural sources. It is worth noting that, the contributions of Co, Cr, Cu and Ni in F2 were simi-

lar to their F3. One explanation is that concentrations were a result of varying inputs due to

spatial differences in influence factors. For instance, some samples contaminated by agricul-

tural activities were identified as agricultural sources. While, some samples with higher con-

centrations for Co, Cr, Cu and Ni were controlled by the parent material. From the study area

as a whole, Co, Cr, Cu and Ni in soil across the study area originated from both natural and

agricultural sources.

To test the potential mixing relationships among mixing endmembers. Correlation analysis

were done by using commercial statistics software package SPSS for Windows (SPSS Inc.

Quarry Bay, HK). Tables 7 and 8 presents pearson correlation coefficients and their signifi-

cance levels. The natural sources exhibited significantly negative correlations (p<0.01) with

industrial sources in PMF (r = -0.243��) and UNMIX (r = -0.517��). The natural sources also

exhibited significantly negative correlations (p<0.01) with agriculture sources in PMF (r =

-0.410��) and UNMIX (r = -0.518��). These results indicate the natural source was much dif-

ferent from anthropogenic sources (agricultural sources and/or industrial sources). This con-

clusion confirmed the third factor (F3) was mainly derived from natural source, whereas the

first factor (F1) and second factor (F2) were derived from anthropogenic sources.

Table 7. Pearson correlation coefficients of different sources obtained from UNMIX model.

Factor 1 Factor 2 Factor3

Factor 1 1.000 -0.007 -0.517��

Factor 2 1.000 -0.518��

Factor3 1.000

�� Correlation is significant at P < 0.01 (two-tailed).

Factor 1: Industrial activities; Factor 2: Agricultural activities; Factor 3: Natural source.

https://doi.org/10.1371/journal.pone.0190906.t007
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Source contributions

The percent contribution from each source was calculated based on the average of the individ-

ual percent contributions and the results are presented in Table 6. The first common source

was mainly generated by coal combustion and waste emission in industrial activities, with rela-

tive contributions of 24.9% for UNMIX and 24.8% for PMF. The secondary source (agricul-

tural activities) identified by UNMIX and PMF models, which was mainly associated with the

application of pesticides and fertilizers and sewage irrigation, accounted for 33.3% and 37.2%,

respectively, of the total contributions. Natural sources were responsible for the most signifi-

cant contribution extracted by UNMIX (41.8%) and PMF (38.0%) models. Both models pro-

vided virtually the same contributions and similar spatial distributions for all the explained

sources. In addition, both UNMIX and PMF models have their special features with different

algorithms and parameter settings. Therefore, it is essential to use multiple methods to esti-

mate potential sources and contributions to confirm the validity of source apportionment.

The spatial variation of different source contributions obtained from UNMIX and PMF

results was shown in Fig 3, clearly showing the respective regions that were affected by the

three sources. The spatial distribution maps of F1 that were identified by the two models

showed almost identical results. The main area under the influence of this factor was in the

region with high concentrations of Hg. The affected regions of F2 and F3 identified by the two

models showed similar results with minor differences. High values of F2 were concentrated in

the urban and suburban areas with dense population and frequent agricultural activities. The

distributions of F3 demonstrated that most of the high values were located in the outer suburbs

and coastal areas less affected by human activities. The apportionment results suggested that

the impact of human activities on trace metals in soils of the Tianjin area cannot be ignored

because of the rapid development over past decades.

Conclusions

In this study, EF, Igeo, PMF, and UNMIX, combined with a GIS tool, were used to identify

contamination characteristics and provide a quantitative source apportionment of soil trace

metals in Tianjin. The results showed that Cd was the most significant pollutant that covered a

wide range of contaminated areas. Low levels of pollution by Hg, Pb and Zn were distributed

in certain regions of Tianjin. The other measured metals (As, Co, Cr, Cu, Mn, Ni, Se and V)

showed no or minimal contamination and were sporadically distributed across the study area.

Industrial activities, agricultural activities and natural sources were apportioned as potential

sources, with relative contributions of 24.8–24.9%, 33.3–37.2% and 38.0–41.8% for soil trace

metals, respectively. Spatially, the regions under the influence of industrial activities and agri-

cultural activities mainly occurred in the urban and suburban areas of Tianjin, whereas the

outer suburbs and coastal areas were less affected by human activities. In addition, both the

UNMIX and PMF models produced comparable results with good agreement between

Table 8. Pearson correlation coefficients of different sources obtained from PMF model.

Factor 1 Factor 2 Factor 3

Factor 1 1.000 0.057 -0.243��

Factor 2 1.000 -0.410��

Factor 3 1.000

�� Correlation is significant at P < 0.01 (two-tailed).

Factor 1: Industrial activities; Factor 2: Agricultural activities; Factor 3: Natural source.

https://doi.org/10.1371/journal.pone.0190906.t008
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respective composition and contribution profiles among the three factors, mutually confirm-

ing the source apportionment. Therefore, the results of this study demonstrate that the combi-

nation of the contamination index, geographic information systems, and multivariate receptor

models, which account for spatial variability, can be a good approach to use for the source

apportionment of soil trace metals on a regional scale.

The application of these models in soil trace metals has not been well studied to date, and it

can be difficult to test because of the complexities of soil geochemistry [51, 52]. Recently, some

researchers have successfully used PMF and UNMIX to trace the source of heavy metals in

soils [53–59]. Most of their study areas were of limited size, having similar geology and rainfall,

thereby providing a relatively homogenous site for the application of these models. Chen at al.

performed a source apportionment for surface soils of the Beijing metropolitan area, which

was an exception [60]. The receptor model assumes, in theory, that the concentration of a

chemical element is the linear summation of the contributors, with no reaction between the

emissions from different sources and any formation or elimination of the substance during

transmission. The modeling errors were caused by using a model in which the true physical-

chemical phenomena were simplified. The instability of a receptor model due to nearly collin-

ear sources is often worsened by a large number of unknown sources. When a study area

becomes larger, the variability of the values increases, and the pollutants from unknown

sources increase [61]. The similarity of these source profiles usually affects the results of the

receptor models. If such data are apportioned by the PMF model or the UNMIX model, one

factor extracted may contain these nearly collinear sources. There have been concerns that

Fig 3. Spatial distribution of factor scores calculated from UNMIX (Upper) and PMF (Below) across study area.

https://doi.org/10.1371/journal.pone.0190906.g003
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using PMF and UNMIX alone for source apportionment cannot reliably identify and appor-

tion pollution sources, as it ignores the geochemical relevance such as pollutants from the

sources that usually do not migrate to the entire area.

Increasing the number of fitting species and samples would enhance the accuracy of the

model outcome. However, doing so is very costly and often prohibited by the available

resources. Thus, simplifying the assumption of sources and contamination pathways in soil is

inevitable but provides a potential application of the receptor model in source apportionment.

In view of this study of source apportionment for soil trace metals in Tianjin, the results still

show relatively large error. Therefore, the application of multivariate receptor modeling to

apportioning sources of soil heavy metals at a regional scale remains a challenge.
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