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Significant progress has been made during the past few decades in stem cell therapy research for various diseases and injury states;
however this has not been overwhelmingly translated into approved therapies, despite much public attention and the rise in

unregulated ‘regenerative clinics'. In the last decade, preclinical research focusing on mesenchymal stem/stromal cell (MSC) therapy
in experimental animal models of hemorrhagic stroke has gained momentum and has led to the development of a small number of
human trials. Here we review the current studies focusing on MSC therapy for hemorrhagic stroke in an effort to summarize the
status of preclinical and clinical research. Preliminary evidence indicates that MSCs are both safe and tolerable in patients, however
future randomized controlled trials are required to translate the promising preclinical research into an effective therapy for hopeful

patients.
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INTRODUCTION

The exuberant public demand for stem cells has led to a rise in
unregulated ‘regenerative clinics’ around the world offering
unproven stem cell therapy of unknown quality and source for
hundreds of diseases and conditions.” However, as illustrated by
the recent approval in Europe of Alofisel (Takeda)®> we are
beginning to see emergence of pharmaceutical grade stem cell
therapies. Properly controlled studies are ongoing to determine if
stem cell therapy is a viable treatment option for many diseases
and injury states. This review is focused on the status of preclinical
rodent studies and clinical trials of mesenchymal stem/stromal cell
(MSC) therapy for hemorrhagic stroke.

Hemorrhagic strokes account for 15% of all strokes, but are
responsible for a disproportionate 40% of stroke-related deaths.>*
Moreover, up to 50% of stroke patients are still dependent on care
1 year after initial ictus and report impairments in memory,
speech, and daily activities.> Hemorrhagic stroke is caused by
blood vessel rupture and subsequent extravasation of blood into
the cranium, and can be further divided into subtypes based on
the location of the bleed, including subarachnoid hemorrhage
(SAH),® intracerebral hemorrhage (ICH), and intraventricular
hemorrhage (IVH). Bleeding into the brain results in oxygen and
glucose deprivation to perilesional tissue and initiates a secondary
inflammatory response that contributes to lesion expansion, is
detrimental to patient outcomes, and for which there is a dearth
of therapeutics.”® Surgical therapies focused on acute hematoma
evacuation continue to evolve, but their indication remains
exceptional,”’® whereas therapies targeted at inhibiting the
secondary inflammatory cascade represent an important oppor-
tunity to improve patient survival, reduce functional disability, and
offer hope to millions of patients worldwide.

MSCs have been extensively investigated as a treatment for
ischemic stroke; however they have been less well studied for

hemorrhagic stroke.''™'® Nonetheless, more than 10 years of
preclinical research investigating MSC therapy for hemorrhagic
stroke exist and demonstrate functional improvements in a range
of animal models of the disease. Therapeutic use of MSCs may
repair or regenerate damaged neuronal cells and may reduce
secondary neuroinflammatory cascades, which could improve
patient outcomes. The first step towards translation from
preclinical data to human trials is to build consensus around the
safety and tolerability of MSCs to guide future research protocols
and coordinate appropriate trial conditions. We may be at the
cusp of overcoming these hurdles for hemorrhagic stroke,
exemplified by several publications investigating MSCs therapy
for hemorrhagic stroke in humans, and the listing of the first Phase
I clinical trial for MSC therapy in hemorrhagic stroke in the United
States. This review will focus on preclinical and clinical studies that
have investigated MSCs for treatment of hemorrhagic stroke.
MSCs are multipotent stromal progenitor cells and the common
precursors of bone, adipose, and cartilage tissue. They retain the
ability to differentiate into these tissues, and possibly trans-
differentiate into cells of other lineages such as neurons and
glia."*"> They are derived from easily accessible sources such as
bone marrow, adipose tissue, umbilical cord tissue and the
placenta, which make them appealing for therapeutics;'® however,
despite sharing a common name, MSC properties and functions
can vary depending on their source of origin. For example, human
placenta-derived MSCs have been reported to have a higher
expansion and engraftment capacity than bone marrow-derived
MSCs (BM-MSCs).'”"'® Similarly, umbilical cord-derived (UC)-MSCs
and adipose tissue-derived MSCs (AT-MSCs) have a higher
proliferative capacity than BM-MSCs in vitro.'>?° Differences in
epigenetics,?' transcript expression,? in vivo engraftment,' cell
surface expression,”> and cytokine secretion’® have also been
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reported among MSCs of different origins. In addition, significant
donor-to-donor variability has been reported.?°

Unlike traditional drug therapies, MSC pharmacology once
delivered into the body cannot be measured through customary
pharmacokinetic/pharmacodynamic studies, thus elucidation of
cell fate after MSC therapy is essential. Studies have demonstrated
that within seconds the majority of intravenous administered
MSCs are trapped within the lungs of rodent models,**> however,
MSCs also have the ability to ‘home in’ on the site of injury.?%?’
The exact mechanisms of this trafficking are still unknown,
however expression of receptors and adhesion molecules such
as chemokines and matrix metalloproteinases are likely involved
in this cell migration.?® Our understanding of these mechanisms is
further complicated by variability in sourcing, culturing, and
delivering MSCs.>® Nonetheless, it is postulated that MSCs can
mediate multiple mechanisms of action, which could make them
ideal for the treatment of a wide range of degenerative and
inflammatory diseases.

Preclinical research

Investigation into MSC therapy for animal models of hemorrhagic
stroke (Table 1; Fig. 1) has been performed for over ten years. Just
over half of these studies used MSCs of human origin to treat
intracranial hemorrhage, and the rest were sourced from rats.
Around 60% of MSCs were sourced from bone marrow (BM-MSCs),
as this is a viable source from both humans and rats, whereas
umbilical/placental/amniotic-derived cells were used in about one
quarter of the studies, and the rest derived from adipose tissue
(AT-MSCs). The latter sources were all derived from human tissue.
MSCs were generally characterized by expression of cell surface
markers assessed through flow cytometry or immunohistochem-
ical methods. MSCs were positive for CD29, CD44, CD73, CD90,
and CD105 among others, and negative for the hematopoietic
lineage markers, CD14, CD34, and CD45, the stem cell marker
CD133, and the marker for endothelial cells, CD144,>>™*' which is
consistent with guidelines.*? The delivery method for MSCs also
varied, with under half of studies using stereotactically guided
intracerebral injection, followed closely by intravenous adminis-
tration, then intra-arterial and intranasal administration. Although
the number of MSCs per dose ranged widely from 1x 10° to 8 x
10° cells, they tended to split into two groups depending on the
delivery method. MSCs delivered via intracerebral injection were
given at an average dose of 6.4 x 10° cells per rat (range, 1 x 10° to
5x10° cells), whereas MSCs administered intravenously were
given at an average dose that was four-fold higher at 2.6 x 10°
cells per rat (range, 1x10° to 8x10° cells). Most studies
administered MSCs within one day of injury, followed by between
one day and one week after injury. Only one study assessed the
efficacy of MSCs for the treatment of chronic stroke and
administered MSCs two months after lesion to positive results.>®

Once administered, the engraftment and differentiation of
MSCs into other cell types was assessed. BM-MSCs*® and fetal/
neonatal tissue derived-MSCs****** were found in the ipsilateral
cortex and around the lesion area after intracerebral injection,
suggesting that transplanted MSCs are capable of surviving in the
perilesional space. Moreover, migration of BM-MSCs to perihema-
tomal sites was observed following intranasal delivery after ICH.*
Although there is consensus that migration and survival of MSCs is
possible after intracerebral injection of MSCs, there is continued
debate on whether MSC migration into the brain is observed with
intravenously administrated MSCs.3'4°

Similarly, groups reported that BM-MSCs, 3037384748 AT_MSCs 36
Wharton's jelly-derived MSCs,** and UC-MSCs***¢ were able to
differentiate into neurons, astrocytes, and oligodendrocytes in the
brain and incorporate into the cerebral vasculature, while others
report that only a very small percentage of UC-MSCs differentiate
into neurons and glia.3® In contrast, Zhou and colleagues report

npj Regenerative Medicine (2019) 10

that human amniotic MSCs do not co-localize with any neuronal
or astrocyte markers one month after treatment, suggesting that
MSCs do not differentiate at all.> Interestingly, AT-MSCs were
easily detectable in the spleen up to 28 days after administra-
tion,>! highlighting the role of the splenic response to stroke.*®

Most hemorrhagic stroke models used rats; two studies used
C57BL/6J mice;*>° and one used Macaca fascicularis monkeys
(first in primate study).>' Sprague-Dawley rats were the most
commonly used, followed by Wistar rats, and two separate studies
used the spontaneously hypertensive rat (SHR) model, which
would seem well-suited for a cerebral hemorrhage model as
hypertension is the primary risk factor of human intracerebral
hemorrhage.**>? All rat model-based papers investigated MSC
treatment across groups of the same sex, with experiments
heavily weighted towards male rats, thus it is not possible to
reliably assess whether there are sex differences in response to
MSC treatment based on animal model data alone. Studies in
mouse and primate models were performed exclusively in male
animals.*>°%>1

A number of well characterized experimental models are used
to mimic hemorrhagic stroke in animals.>® In the studies reviewed,
two of the most common methods were employed: direct
intracranial injection of whole blood or of bacterial collagenase.
A single injection of blood into the intracranial space to mimic
hemorrhage has been widely used for almost 40 years,>**> and
widely used in the current papers, with autologous blood sourced
from the femoral vein or artery.3>>1°2°638 QOne study also used
fresh donor blood, such as maternal blood when 4 day old pups
were used.”® Injection of collagenase imitates hemorrhagic stroke
by disrupting the extracellular matrix and opening the
blood-brain barrier (BBB).°® Collagenase injection was the most
widely used method in the reviewed papers, and similarly to
whole blood injection, was administered via direct intracranial
stereotactic injection. Only one group perforated the Circle of
Willis to induce bleeding, which is more appropriate as a model of
human subarachnoid hemorrhage.®' Though blood vs collagenase
injection methods have been the subject of much debate, neither
accurately reproduces all aspects of the human disease. However
both protocols result in reproducible hematoma sizes and should
continue to be used until better methods are developed.>3°>6263

Changes in sensorimotor and mechanosensory function after
MSC therapy were assessed by modified Neurologic Severity
Scores (MNSS; a composite of motor, sensory, balance and reflex
tests), limb motor function and modified-limb placing tests, corner
turn tests, rotor rod performance, negative geotaxis tests (for
newborn rats), modified Kito Score (neurological deficit score),
adhesive removal test, Video-Tracking-Box test, and locomotor
function evaluation. MSC therapy following stroke significantly
attenuated impairment in these tests when compared to stroke-
onIy control grOUpS,30'31'33_40'43_45'48'51'52'56_59'61'64_66 except for
Seyfried and colleagues who report no functional improvements
in NSS and corner turn tests when rats were treated with 1 million
BM-MSCs, 24h post-ICH3? In contrast, the same group had
previously reported significant improvements in NSS and corner
turn tests in rats treated with 3, 5, and 8 million BM-MSCs.®
Learning and memory were also tested in rodent models in the
Morris water maze paradigm. Liao and colleagues®® reported
cognitive improvement after UC-MSC therapy with rats, demon-
strating reduced latency to the platform compared to the stroke-
only groups, which is in contrast to Cui et al,”® who show no
change in learning and memory between stroke-only and stroke
with BM-MSC therapy groups.

Along with functional outcomes, gross measures of injury such
as brain degeneration and lesion size were performed by
histological inspection or magnetic resonance imaging (MRI)
assessment. Treatment with BM-MSCs,>'*86! AT-MSCs,%* UC-
MSCs,** and placenta-derived MSCs*' after hemorrhagic stroke
reduced gray and white matter loss®"' - including reduced
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Fig. 1 Roadmap of preclinical studies

striatal tissue loss,”® hemispheric atrophy,®* and ipsilateral internal
capsule loss** - as well as reduced perihematomal glial prolifera-
tion,®* and decreased stroke-induced ventricular enlargement.*' A
conflicting report described no difference in striatal tissue volume
between fibroblast-treated and BM-MSC-treated groups after
stroke; however this was not compared to an ICH only group.3?
Hemorrhage volumes were also significantly reduced following
BM-MSC,*>%% UC-MSC,**%% and placenta-derived MSC*' therapy
compared to stroke only groups, and a comparison of adminis-
tration methods within the same study found that both
intracerebral and intraventricular routes of UC-MSC delivery
significantly reduced hematoma volume when compared to
stroke alone, but demonstrated no difference in hematoma
volume when comparing the two methods of administration.*®
Only one study using AT-MSCs reported no change in lesion size
as assessed by histology and MRI>'

Brain edema after BM-MSC3"4%°657 and placenta-derived MSC*'
treatment was significantly decreased by 1-10% following stroke
injury compared to non-treated groups. Moreover, BM-MSC
therapy prevented the development of post-hemorrhagic hydro-
cephalus (PHH) after severe IVH, and reduced compression of the
periventricular corpus callosum induced by PHH.>° Cerebral
tissues, including cerebral arterial walls, were evaluated by
electron microscopy, and BM-MSC therapy was found to improve
the structural integrity of cerebral tissues,®® and attenuate leakage
of the BBB *%” BM-MSC**?®” and placenta-derived MSC*
treatment can also potentially restore BBB disruption through
upregulation of BBB integrity proteins, such as claudin-5 and
zonula occludens-1 (ZO-1), which are downregulated by stroke,
and through suppression of peroxg/nitrite (ONOO-) formation.
Furthermore, BM-MSC,>">" UC-MSC,*#%%¢ and Wharton's jelly-
derived MSC*® treatment, increased perihematomal blood vessel
density, suggestive of angiogenesis,>*3743465165 including a
significant increase in von Willebrand factor (an endothelial
marker protein)-positive blood vessels.>

While the exact mechanisms by which MSCs exert their
beneficial effects remain a matter of debate, there are data
emerging that MSC-derived exosomes and other secreted factors
have the same beneficial effects on hemorrhagic stroke as
MSCs.>¢%97% Therefore, it is likely that part of the therapeutic
action of MSCs is mediated through paracrine secretion of cargo-
bearing exosomes, and small molecules such as cytokines. This is
exemplified in the current studies, which report that BM-MSC
treatment decreased the levels of proinflammatory cytokines
interleukin (IL)-1B, IL-2, IL-4, IL-6, tumor necrosis factor (TNF)-a,
and interferon (IFN)-y,*”*%%57 and BM-MSCs*® and UC-MSCs>?%¢
increased the levels of anti-inflammatory cytokines IL-10, trans-
forming growth factor (TGF)-f1, IL-1a and IL-1f. These humoral
factors can travel throughout the body and affect the biology of
both proximal and distant responder cells.”! BM-MSCs,**¢"%” UC-
MSCs, 332966 AT-MSCs,%* and amniotic-derived MSCs,*° were also
shown to be immunomodulatory as exemplified by reduced
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astrogliosis,”>®" downregulated density of Ibal, CD11b, EDI,

CD68, and (D206 immunostained microglia and macro-
phages,?33940616667 and reduced myeloperoxidase (MPO) posi-
tive cells, which is representative of  neutrophil

activation. 3339646667 Moreover, treatment with BM-MSCs, %8
AT-MSCs,%* UC-MSCs,***° and amniotic-derived MSCs®® after
experimental stroke significantly attenuated the increase in
apoptotic and degenerating cells in the perihematomal area.

MSCs have also been shown to promote neurogenesis. This was
investigated in a number of the reviewed studies through
histochemical staining for markers of proliferating cells, immature
neurons, and neuronal precursors. In the perihematomal regions,
BM-MSC,3%47483861 AT_MSC,*" and amniotic-derived MSC?° ther-
apy increased the number of cells positive for these markers two
fold, suggesting the presence of newly formed immature neurons.
Growth factors also play a role in the therapeutic aspects of MSC
function. Bone marrow-">°%*>7 and amniotic-derived MSC*°
transplantation rescued the levels of glial cell-derived neuro-
trophic factor (GDNF), vascular endothelial growth factor (VEGF),
and brain-derived neurotrophic factor (BDNF) that were down-
regulated as a result of experimental stroke,***> represented by
increased phosphorylation of downstream signaling mole-
cules.>®*” Moreover, blocking these signaling molecules with
specific inhibitors blocked the therapeutic effects of MSCs.>’

Manipulation of BM-MSCs in vitro prior to use as therapy, such
as with hypoxic preconditioning, rescued tissue loss after
hemorrhagic stroke injury and reduced the subsequent enlarge-
ment of ventricle cavity size.** Similarly, priming of Wharton'’s jelly-
derived MSCs in vitro with a Rho-associated, coiled-coil containing
protein kinase (ROCK) inhibitor increased the expression of GDNF
and enhanced their therapeutic potential resulting in improved
functional outcomes.** One study combined minimally invasive
hematoma aspiration following ICH with UC-MSC treatment and
demonstrated that the combination therapy is more effective than
either therapy alone,** highlighting the potential of this applica-
tion in human patients. These studies suggest that using
combined approaches may be synergistic.

Clinical studies

Clinical trials focused on MSC therapy for hemorrhagic stroke are
currently limited. A search through clinicaltrials.gov comes back
with only one result (currently recruiting); while conversely, MSC
therapy for ischemic stroke presently lists 13 trials. Despite this
underrepresentation in current clinical trials, six research articles
have been published of completed trials and case series, ranging
from 9 patients to 100, with a total patient count of 164 cases
(39.6% female; 106 patients in treatment groups) reported in the
literature (Table 2).”>777 As with preclinical research, a range of
sources was used to obtain MSCs. Bone marrow-derived
MSCs,”>7*77 and umbilical cord-derived MSCs’%7%7> were the
most often used in clinical trials. Bone marrow-derived
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mononuclear cells containing MSCs were also used,”® and
combination cell transplantation of olfactory ensheathing cells
(OEQ), neural progenitor cells (NPC), UC-MSCs, and Schwann cells
(SCs) were tested.””

The first publication for MSC therapy for hemorrhagic stroke
was published in 2011 by Bhasin and colleagues.”®> They used
autologous BM-derived MSCs administered intravenously at a
dose of 50-60 million cells per patient, and followed up at 8 and
24 weeks. This study included a mix of hemorrhagic and ischemic
lesions in the treatment group, and assessed functional recovery
and imaging parameters in patients suffering from chronic stroke
(3 months to 1 year post-lesion). Despite reporting improvements
in functional testing from baseline to follow-up time points post-
treatment, these improvements were observed in all groups and
were not different between MSC-treated and control-treated
patients.

Human studies included neurological impairment and func-
tional assessment measures such as the National Institutes of
Health Stroke Scale (NIHSS), the Glasgow Coma Scale (GCS), the
Barthel Index (Bl), modified Rankin scale (mRS), and the Fugl-
Meyer assessment. In the five published cases of MSC treatment
for hemorrhagic stroke that measured functional outcomes, four
groups reported improvements in these measures relative to the
control groups, which is in contrast to the original Bhasin’? article,
as well as improvements in other measures such as speech,
breathing, and pain reporting.”*”” Moreover, computed tomo-
graphy (CT) scans purportedly demonstrate accelerated hema-
toma reabsorption by 2 weeks after MSC transplantation in
patients, however no statistical testing was performed to support
this.”* These functional effects were reported from 6 months to 5
years after MSC treatment, regardless of MSC source, dose,
administration route or timing of treatment. Additionally, in
contrast to preclinical rodent studies, human trials were not
restricted to a treatment window within a day or week of stroke;
instead these six studies were evenly distributed within a
continuum of one week to greater than one year post-stroke.
This is demonstrated by Tsang and colleagues’”’ who treated
patients with severe neurological disabilities one year after onset
of ICH. They report improvements in modified Bl and functional
independence measures 16 weeks post-treatment and an
improvement in extended GCS at 60 weeks post treatment when
treated with autologous BM-MSCs.””

Overall, almost all groups reported a lack of side effects. Patient
follow ups for up to 5 years after treatment demonstrate that the
therapy is well tolerated, and the trials report almost no adverse
events, nor signs of de novo tumor development among
patients.”>”>’7 The exception is Li et al,”® who report that 5
patients (12.5% of their treatment group; compared to one patient
(2.5%) in their control group) developed a low-grade fever
(38.5 °C), but this resolved within 3 days and without pharmaceu-
tical intervention. This is consistent with a meta-analysis of MSCs
in clinical trials which show a significant correlation between MSCs
and transient fever,”® and could support the idea that MSCs are
immune-evasive and not immune-privileged.”® Perhaps patient-
to-patient variability in immune system function underpins this
finding. One patient was diagnosed with lung cancer four months
after treatment;”® however there is no direct evidence that cell
therapy, or MSCs therapy specifically, leads to lung or other
cancers.”®8° Despite this, treatment with MSCs still warrants
further investigation into their long-term safety.

Biomarkers of injury and inflammation were investigated by one
group in a Phase | clinical trial of MSC transplantation for severe
intraventricular hemorrhage in premature infants. Ahn and
colleagues’? investigated the temporal profiles of inflammatory
cytokines and growth factors in the CSF before and after
intraventricular transplantation of umbilical cord blood-derived
MSCs. They found reduced levels of the pro-inflammatory cytokine
IL-6, but no changes in the levels of TGF-B1, TGF-2, TNF-q, IL-§,
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VEGF, fibroblast growth factor (FGF) and BDNF; however this is
reported in a premature immune system that might not be
representative of an adult immune response®' This is also in
contrast to biomarker profiles observed in rodent preclinical
research, and highlights the need for further investigation in
human patients, or better models for preclinical research.

CONCLUSION

Timing, dosage, and route of administration are all variables of an
experimental intervention for hemorrhagic stroke that need to be
properly considered, controlled for, and, ideally, tested. As stem
cells are likely to act as a modulator of the inflammatory response
and not as a reducer of ongoing bleeding, delivery is likely optimal
beyond the first 24 h when the hematoma has effectively stopped
expanding. Dose ranging studies specific to the intervention will
need to be done to define ideal dose, which may not be the
maximally tolerated dose, and routes of administration to be
tested should be feasible in this patient population. As surgery is
generally not recommended for hematomal decompression,
indirect targeting of the hematomal lesion through intravenous
infusion or other non-invasive route would have an appeal. Finally,
as fevers are known to worsen neurological outcomes post-stroke,
it would be important to closely monitor and, if necessary,
mitigate the effects of fever in future trials.

Over 10 years of preclinical research has broadly demonstrated
the effectiveness of MSC therapy in experimental hemorrhagic
stroke. Moreover, small case studies and series in human
hemorrhagic stroke patients have shown improvements in
functional recovery with MSC therapy. Given the devastating
effects of hemorrhagic stroke, and the millions of patients it
affects, there is an understandable drive to develop this therapy
for human use. Although a comprehensive understanding of the
mechanisms of MSC therapy remains elusive, there is substantial
evidence to the effectiveness of these cells as a therapy. A lack of
mechanistic clarity has not always been a hurdle for drug
development® even in those as widely used as acetamino-
phen/paracetamol,®® and penicillin®* Initial positive preclinical
and clinical results strongly suggest that further investigation into
MSC therapy for hemorrhagic stroke is warranted.

Reporting summary

Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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