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Abstract

therapeutic target.

Preconditioning (PC) is a phenomenon wherein a mild insult induces resistance to a later, severe injury. Although PC
has been extensively studied in several neurological disorders, no studies have been performed in amyotrophic lateral
sclerosis (ALS). Here we hypothesize that a sub-toxic acute exposure to the cycad neurotoxin beta-methylamino-L-
alanine (L-BMAA) is able to delay ALS progression in SOD1 G93A mice and that NCX3, a membrane transporter able to
handle the deregulation of ionic homeostasis occurring during ALS, takes part to this neuroprotective effect.
Preconditioning effect was examined on disease onset and duration, motor functions, and motor neurons in terms of
functional declines and severity of histological damage in male and female mice. Our findings demonstrate that a sub-
toxic dose of L-BMAA works as preconditioning stimulus and is able to delay ALS onset and to prolong ALS mice
survival. Interestingly, preconditioning prevented NCX3 downregulation in SOD1 G93A mice spinal cord, leading to an
increased number of motor neurons associated to a reduced astrogliosis, and reduced the denervation of
neuromuscular junctions observed in SOD1 G93A mice. These protective effects were mitigated in ncx3+/— mice. This
study established for the first time an animal model of preconditioning in ALS and candidates NCX3 as a new

Introduction

Preconditioning (PC) is a phenomenon wherein a mild
insult induces a cellular and tissue resistance to a later
severe injury’.

Over the years numerous stimuli were described as
possible PC inductors. Among these, hypoxic stimuli,
bacterial toxins such as LPS, small seizures, volatile
anesthetics, hyperthermia, and hypothermia’. Protection
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triggered by these stimuli is usually divided by a temporal
point of view in acute, rapid PC, and long-lasting, delayed
PCL In particular, the delayed PC includes the involve-
ment of a genomic reprogramming, which wavers, in most
cases, in a downregulation or upregulation of proteins
involved in the pathogenesis of the disease’. To date,
although PC has been extensively studied in several
neurological disorders such as Parkinson disease, brain
ischemia, and epilepsy, no evidence has been provided on
the existence of this PC neuroprotection strategy in
amyotrophic lateral sclerosis (ALS).

The aim of this study was therefore to identify
candidate stimuli and/or genes that can activate the
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pro-regenerative preconditioned state and to characterize
the first PC model in ALS.

To this aim, we hypothesized that a sub-toxic dose of
the cycad neurotoxin L-BMAA, an excitatory non-protein
amino acid produced by cyanobacteria and associated
with amyotrophic lateral sclerosis-Parkinson dementia
complex (ALS-PDC), in Guam indigenous population,
could be used as a PC stimulus. It is well known, in fact,
that the toxin L-BMAA represents a possible cause of ALS
linked to environmental factors. In fact, people who
chronically feed foods rich in L-BMAA seem to contract
the disease more frequently’™. These data are supported
by in vitro and in vivo experimental studies showing that
this toxin may elicit ALS features®™.

On this basis and assuming that a sub-toxic dose of the
toxin could serve as a PC stimulus, experiments were
conducted to verify: (a) whether the supposed PC sti-
mulus could act as neuroprotectant, and (b) to elucidate
the mechanisms underlying this phenomenon. Among the
proposed putative mechanisms, it has been investigated
the role of a plasma membrane ionic transporter, namely
Na'/Ca®" exchanger (NCX). Indeed, it is well known that
alteration of calcium homeostasis is of significant
importance in the pathogenesis of ALS®’. In fact, in
recent years it has been shown that the selective vulner-
ability of motor neurons in ALS may be due to the
reduced capacity of these cells to buffer the excess of
calcium ions that occurs in the course of the disease’.
This concept arises from several studies carried out in
humans and in cellular and experimental animal models
of ALS in which Ca>" binding proteins such as calbindin
are reduced during the progression of the disease®. These
findings are in good agreement with the demonstration
that in patients and ALS mice, in those regions that
precociously undergo to degeneration, such as facial,
spinal, and hypoglossal motor neurons, the neuronal
cytosolic Ca*" buffering capacity is lower, whereas those
areas
that are more resistant to the disease display a greater
cytosolic Ca®" buffering capacity’. As NCX is one of the
main mechanisms by which calcium and sodium ions can
be extruded from the cell, we decided to investigate its
role.

NCX is a membrane transporter that, by regulating
the homeostasis of Na® and Ca®", participates to
the evolution of several neurological disorders
including brain ischemia, epilepsy, multiple sclerosis
and Alzheimer disease'®'®. To date three different iso-
forms, NCX1-3, and several splicing variants have been
described within the CNS. The specific role of each iso-
form in ALS pathophysiology has not yet been deter-
mined, nevertheless some seminal works attribute to
NCX3 a pivotal role in neuromuscular transmission
impairment'®*®,  These information render this
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transporter particularly interesting as putative druggable
target in ALS.

RESULTS

NCX3 transcript and protein expression decreased in
spinal cord, brain stem, and gastrocnemius muscle of
SOD1 G93A mice

To examine the role of NCX3 in ALS, we first deter-
mined NCX3 expression levels in affected CNS regions
and in the gastrocnemius muscle of WT and G93A mice
by real-time PCR and western blot analysis.

In particular, at 2 months of age, when SOD1 G93A
mice were still asymptomatic, the expression of NCX3
mRNA appeared strongly reduced (50%) only in the spinal
cord (Fig. 1c). Although, at 4.5 months, when SOD1
G93A mice were fully symptomaticc, NCX3 mRNA
expression was also reduced in brain stem area, spinal
cord, and gastrocnemius (Fig. 1b-d). No changes in
mRNA NCX3 levels were observed in motor cortex area
in the asymptomatic and symptomatic phases (Fig. 1a).

The expression of NCX3 protein appeared significantly
reduced in spinal cord, brain stem and gastrocnemius of
SOD1 G93A mice in the fully symptomatic phase,
4.5 months (Fig. 1f~h) and in the brain stem and spinal
cord of pre-symptomatic animals, 2 months. No changes
were observed in motor cortex area (Fig. le).

PC induced by sub-toxic treatment with the cycad toxin L-
BMAA prevented NCX3 expression and activity
downregulation in spinal cord and brain stem of SOD1
G93A mice

To prevent NCX3 decrease observed in spinal cord and
brain stem areas of SOD1 G93A mice, we settled up a PC
protocol by an acute intracerebroventricular injection of
L-BMAA toxin (4.5mM/1pl) and then, we evaluated
NCX3 activity and expression by microfluorimetry,
immunohistochemical, and western blotting analysis.
SOD1 G93A mice treated with a sub-toxic dose of L-
BMAA or saline, and a comparison group of wild-type
mice treated with a sub-toxic dose of L-BMAA or vehicle,
were killed 7 days after L-BMAA injection. To verify the
effect of L-BMAA-induced PC on NCX3 activity, NCX
reverse mode was evaluated by Na'-free-induced [Ca*"];
increase in spinal cord synaptosomal preparations from L-
BMAA-treated SOD1 G93A mice, vehicle-treated SOD1
G93A mice, and vehicle-treated SOD1 wild-type mice, all
at 4.5 months. Na'-free-induced [Ca®']; increase was
significantly reduced in synaptosomes from vehicle-
treated SOD1 G93A mice compared to wild-type ani-
mals. Interestingly, L-BMAA PC significantly prevented
the reduction of NCX activity registered in synaptosomes
from SOD1 G93A mice (Fig. 2a).

Accordingly, further investigations by confocal micro-
scopy experiments indicated that NCX3 expression
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Fig. 1 NCX3 mRNA and protein expression, arbitrary units (AU), in motor cortex, brain stem, spinal cord, and gastrocnemius of SOD1 G93A
mice. NCX3 mRNA expression from motor cortex (a), brain stem (b), spinal cord (c), and gastrocnemius (d). The GUSB expression level was used for
normalization. NCX3 protein expression, arbitrary units (AU), from motor cortex (e), brain stem (f), spinal cord (g), and gastrocnemius (h). B-actin
expression level was used for E, F, G normalization, and GAPDH for H normalization. Data are expressed as mean + SEM (n = 3-6 for each group of
age). *P < 0.05 vs. respective wild type. Student’s t-test was used for the comparison between two mean groups
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comparisons

Fig. 2 NCX3 immunolocalization, expression, and quantification of total NCX activity in SOD1 G93A mice subjected to L-BMAA-induced
PC. Quantification of NCX activity as [Ca”*]i increase induced by Na*-free perfusion in Fura-2 AM-loaded spinal cord synaptosomes of adult wild-type
mice treated with vehicle and symptomatic SOD1 G93A mice treated with vehicle or preconditioned with L-BMAA. *P < 0.05 vs. wild-type vehicle; P
< 0.05 vs. SOD1 G93A mice (a). Double labeling of NCX3 and NeuN in spinal cord of pre-symptomatic wild-type mice (b—e), SOD1 G93A mice treated
with vehicle (f-i) and SOD1 G93A mice treated with L-BMAA PC (j—m). Scale bar 75 um. Quantification of NCX3 fluorescence as arbitrary units (AU). *P
< 0.05 vs. wild-type vehicle; AP < 0.05 vs. SOD1 G93A mice (n). Representative Western blotting and quantification of the effect of L-BMAA-induced
PC on NCX3 protein expression, arbitrary units (AU), in brain stem (o) and spinal cord (p). *P < 0.05 vs. wild-type vehicle; AP <0.05 vs. SOD1 G93A
mice. The B-actin expression level was used for normalization. Data are expressed as mean + SEM (n = 5-6 for each group). *P < 0.05 vs. wild-type
vehicle and SOD1 G93A preconditioned mice. P values were obtained using one-way ANOVA with Newman Keuls's correction for multiple

increased in L-BMAA preconditioned SOD1 G93A
compared to vehicle-treated SOD1 G93A mice
(Fig. 2b—n). Interestingly, although NCX3 was present in
all neuronal populations, its expression was prevalent in
large polygonal-shaped neurons, such as motor neurons
(Fig. 2b—m).

Finally, western blotting experiments confirmed that
L-BMAA PC determined an upregulation of NCX3
expression in spinal cord and brain stem areas. In fact, in
these two CNS regions, NCX3 protein expression was
significantly higher in L-BMAA preconditioned SOD1
G93A mice than in vehicle-treated SOD1 G93A mice
(Fig. 20-p).

No effect on NCX activity and NCX3 expression were
observed when wild-type animals were treated with sub-
toxic dose of L-BMAA (Data not shown).

Notably, although NCX2 expression was reduced dur-
ing ALS progression, PC was not able to induce any effect
on NCX1 and NCX2 expression evaluated in brain stem
and motor cortex of SOD1 G93A mice (Fig. S1).

PC prevented motor neuron degeneration in ventral horn
and nucleus facialis of SOD1 G93A mice

To further demonstrate that the protective effect of PC
is correlated to NCX3, we generated SOD1 G93A/ncx3
+/— mice by crossing SOD1 G93A mice with ncx3+/—
mice.

Sections of the spinal cord and brain stem nucleus
facialis of these mice at the fully symptomatic phase of
disease were stained with Nissl, and motor neurons were
counted in the defined spinal cord and brain stem regions
of interest. As ALS degeneration occurs preferentially in
large motor neurons, the number of motor neurons with a
perikaryal projection area of more than 200 pm? was
counted. PC by L-BMAA treatment preserved large motor
neurons in the spinal cord (number of motorneuros per
square mm in wild-type animals 292 +15; G93A mice
150 = 3; G93A preconditioned mice 228 + 2; G93A/ncx3
+/— mice 136 +5; and G93A/ncx3+/— preconditioned
mice 141+7) and in the brain stem facialis nucleus
(numer of motorneuros per square mm in wild-type
animals 1800+9; G93A mice 792+3; G93A
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preconditioned mice 1442 + 5; G93A/ncx3+/— mice 696
+9; and G93A/ncx3+/— preconditioned mice 793 + 12)
compared to vehicle-treated SOD1 G93A mice
(Fig. 3a—d). Interestingly, PC failed to prevent the loss of
motor neurons when applied to SOD1 G93A/ncx3+/—
mice, thus suggesting that NCX3 contributes to the pro-
tection mediated by L-BMAA-induced PC (Fig. 3a—d).

L-BMAA-induced PC reduced astroglia but not microglia
proliferation in the spinal cord of SOD1 G93A mice

The motor neuron damage caused by expression of
mutant human SOD1 induces the activation of astroglia
and microglia, evaluated as GFAP and IBA-1 expression
(Fig. 4). Interestingly, PC was able to prevent GFAP
overexpression but not IBA-1 overexpression, thus sug-
gesting that the reduced astrogliosis contributed to PC-
induced protection. Indeed, GFAP-immunoreactive
astrocytes were more abundant in vehicle-treated SOD1
G93A mice compared to preconditioned SOD1 G93A
mice (Fig. 4i—p). Notably, when PC was induced in SOD1
G93A/ ncx3+/— mice, astrogliosis was no longer reduced
(Fig. 5).

L-BMAA-induced PC increased fully innervated end plates
in neuromuscular junctions (NMJ) of SOD1 G93A mice

We first examined the effect of PC on NM]J innervation
in 4.5 months old wild-type, G93A mice and G93A/ncx3
+/— mice by assessing co-localization of fluorescently
labeled pre-synaptic and post-synaptic NMJ markers in
the gastrocnemius muscle (Fig. 6a—0). NM]Js were classed
as “fully innervated”, “partially innervated”, or “dener-
vated”. As expected, by late-stage disease, a large pro-
portion of NMJs exhibited complete (75.7+7.0%) or
partial (21.6 +2.4%) denervation in G93A mice, while
only 2.5+ 0.7% remained fully innervated. However, PC
resulted in a significant increase in the proportion of fully
innervated NM]Js (15.4 +2.0%) and an equally marked
decrease in the proportion of denervated NMJs (35.0 +
7.0%) (Fig. 6p).

Notably, PC was not able to exert its protective effect in
G93A animals crossed with ncx3+/— mice (% of dener-
veted end plates 76.3 + 8.8) (Fig. 6p), thus indicating that
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Fig. 3 Effect of L-BMAA-induced PC on motor neurons survival. Representative image of Nissl stained in spinal cord (a). Scale bar 200 um. Cell
counting analysis of motor neurons expressed as the percentage of total motor neurons in spinal cord of 4.5 month-old SOD1 G93A mice treated
with vehicle or -BMAA compared to wild-type vehicle (b). Representative image of Nissl stained in nucleus facialis (c). Scale bar 200 um. Cell counting
analysis of motor neurons expressed as the percentage of total motor neurons in nucleus facialis of 4.5 month-old SOD1 G93A mice treated with
vehicle or I-BMAA compared to wild-type vehicle (d). Data are expressed as mean + SEM (n =4 for each group). *P < 0.05 vs. wild-type vehicle **P <
0.05 vs. all other experimental groups. P values were obtained using one-way ANOVA with Newman Keuls's correction for multiple comparisons

the presence of NCX3 is necessary to mediate this pro-
tective effect.

L-BMAA-induced PC improved survival rate and motor
performances, delayed paralysis onset, and prevented
body weight loss in SOD1 G93A mice during the
development of the disease

L-BMAA PC prolonged the survival of SOD1 G93A
mice compared to vehicle-treated animals (123.3 +3 vs.
142.5 + 4 survival average days) (Fig. 7Aa, b). By contrast,
L-BMAA PC was not able to prolong mice survival in
SOD1 G93A/ ncx3+/— mice, (119 + 6 vs. 123 + 4 survival
average days) thus showing that NCX3 contributes to PC
effect (Fig. 8Aa, b).

The important role of NCX3 in mediating PC protec-
tion was confirmed by examining other parameters of
ALS progression such as paralysis onset, body weight
(Figs. 7b and 8b) rotarod (Figs. 7c and 8c) and grip per-
formance (Figs. 7d and 8d). Indeed, the protective effect of
PC was absent in SOD1 G93A/ ncx3+/— mice.

In fact, L-BMAA PC prevented the body weight loss
observed in vehicle-treated SOD1 G93A mice from
7 weeks to 9 weeks after treatment (Fig. 7Bc). Conversely,
in SOD1 G93A/ ncx3+/— mice, PC did not modify this
parameter (Fig. 8Bc).

In a similar way, L-BMAA PC delayed the onset of
disease by 14 days (46.4 +3 vs. 59.7 +5 days) in SOD1
G93A mice. By contrast, L-BMAA PC failed to delay
paralysis onset in SOD1 G93A/ ncx3+/— mice (paralysis
onset: 46 + 3 days in SOD1 G93A mice; 60 +5 days in
preconditioned SOD1 G93A mice; 44 + 4 in SOD1 G93A/
ncx3+/— mice and 43 +5 days in preconditioned SOD1
G93A/ ncx3+/— mice) (Figs. 7Ba, b and 8Ba, b).

In addition, rotarod test showed that L-BMAA PC
increased time spent on rotarod in SOD1 G93A mice but
not in SOD1 G93A/ ncx3+/— mice (Figs. 7C and 8C).

Moreover, L-BMAA PC was able to attenuate the
decline in grip performance in SOD1 G93A mice but not
in SOD1 G93A/ ncx3+/— mice (Figs. 7D and 8D).

DISCUSSION

The present study established for the first time an ani-
mal model for studying the possible protective role
exerted by PC in SOD1 G93A mice based on the

Official journal of the Cell Death Differentiation Association

administration of a sub-toxic dose of the cycad neuro-
toxin L-BMAA. In addition, we demonstrated (a) that the
cycad toxin L-BMAA, at this sub-toxic dose, improves
survival rate and motor performances, delays paralysis
onset and prevents body weight loss in SOD1 G93A mice
during the development of the disease and that (b) the
plasma membrane transporter Na™/Ca>" exchanger 3,
NCX3, contributes to the protection elicited by L-BMAA-
PC thus representing a target for setting on new strategies
in ALS intervention.

PC is a phenomenon wherein a mild insult induces a
cellular and tissue resistance to a later severe injury"’.
Many different stimuli, named triggers, such as chemicals,
ischemia, hypoxia, and hypothermia lead to PC. “Triggers”
generate “transducers” and “effectors”, such as chemical
mediators, neurotransmitters, and proteins, that elicit PC-
protection’. In experimental models, protection through
PC has been consistently demonstrated across multiple
organ systems and in many different animal species,
leaving no doubt on the existence of this phenomenon.
For instance, in ischemic PC exposing an organ to brief
ischemia induces temporary resistance to more severe
ischemia, in the same or even a distant organ, i.e., remote
conditioning*%?,

That a protein involved in calcium and sodium home-
ostasis maintenance could be linked to ALS pathophy-
siology was clearly conceivable from = previous
reports®®*?>, In fact, recent evidence suggest that
abnormalities in cellular Ca”*" signaling are common
features in the pathogenesis of a range of neurodegen-
erative disorders, including ALS®**?. It is well known
that Ca®>" is one of the most relevant intracellular mes-
sengers, being essential in neuronal development, synaptic
transmission and plasticity, as well as in the regulation of
various transduction pathways in the brain’. In subtypes
of ALS associated with the SOD1 mutation and in the
sporadic disease, there have been several reports indicat-
ing the involvement of intracellular Ca*" homeostasis
disruption in ALS pathophysiology®”****. Combining
conclusions from multiple animal models as well as cell
culture models used to determine pathogenic mechan-
isms in ALS, the central insight is that selective vulner-
ability of MNs likely arises from a combination of several
mechanisms; two of them, such as mitochondrial
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correction for multiple comparisons

Fig. 6 Effect of L-BMAA-induced PC on NMJs innervations of SOD1 G93A mice. Double labeling of synaptophysin and bungarotoxin of
symptomatic wild-type mice treated with vehicle (a-c), SOD1 G93A mice treated with vehicle (d-f), SOD1 G93A mice treated with L-BMAA PC (g-i),
SOD1 G93A/ncx3+/— mice treated with vehicle (j-I) and SOD1 G93A /ncx3+/— mice treated with (-BMAA PC (m-o). Scale bar 10 um. Cell counting
analysis of gastrocnemius NMJs of wild-type vehicle, SOD1 G93A vehicle, SOD1 G93A PC, SOD1 G93A/ncx3+/— vehicle and SOD1 GI93A /ncx3+/— PC.
The data are expressed as the percentage of 270 or more NMJs from each group. Data are expressed as mean + SEM (n =5 for each group). *P < 0.05
vs. respective wild-type vehicle. **P < 0.05 vs. all other experimental groups. P values were obtained using two-way ANOVA with Bonferroni's

dysfunction and Ca®" homeostasis are prominent®. By
documenting the involvement and relevance of an
alteration of Ca>" homeostasis in ALS pathophysiology, it
is possible to propose two scenarios: the first one is that
motor neurons possess large number of transporters and
ionic channels that, when activated, cause rapid Ca%t
influx, which, in part because of relatively weak cytosolic
Ca”" buffering, results in mitochondrial Ca®>" overload
and strong ROS generation. In addition, it is possible to
hypothesize that, in ALS affected tissues, the extrusion
mechanisms, mainly represented by the high capacity-low
affinity plasma membrane Na'/Ca®' exchanger, are
impaired and cannot provide an efficient removal of cal-
cium ions. Results of the present study support this
hypothesis. In fact, in line with these premises, we
documented a reduction in NCX3 expression in motor
neurons and muscle of asymptomatic G93A mice. Dif-
ferently from NCX1 and NCX2, the other two CNS iso-
forms, the reduction in NCX3 expression was mitigated
by PC treatment thus underlining the important role of
NCX3 in ALS pathophysiology. In fact, in asympto-
matic SOD1 G93A mice, PC treatment with L-BMAA did
not modify the expression of NCX1 and NCX2 (data not
shown). It should be underlined that NCX3 is not the only
protein controlling intracellular Ca>* concentration that
is downregulated during ALS progression (see Supple-
mental Figure 1). In fact, we demonstrated that NCX3 is
the only protein whose downregulation induced by ALS is
prevented by PC. The effect on intra-synaptosomal Ca®"
reduction can, therefore, be ascribed, also to other pro-
teins controlling intracellular Ca>* concentration such as
NCX2. The reduction of NCX3 protein expression was
functionally mirrored by the reduction of the exchanger
activity in synaptosomal preparations obtained from brain
stem of SOD1 G93A mice. More importantly, in ncx3+/—
mice the protection elicited by L-BMAA-induced PC was
almost completely prevented, thus underlining the
importance of this transporter in mediating PC-induced
protection in ALS. Indeed, the increased NCX3 expres-
sion induced by PC is partially prevented in ncx3+/—
mice, this is sufficient to prevent PC-induced protection.
The fact that NCX3 may represent one of the effector of
ALS PC is in line with previous works demonstrating that
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the genetic ablation of this transporter worsens the course
of several neurological disorders such as brain ischemia,
multiple sclerosis, Alzheimer disease and epilepsy'*'?.

In conclusion, this study candidates NCX3 as a
putative target in the strategy for alleviating ALS. The
pharmacological activation or the overexpression of
NCX3, by reducing the alteration in ionic homeostasis
occurring in ALS, can mitigate motor neurons degen-
eration in ALS.

MATERIALS AND METHODS
Animal model

B6SJL-TgN SOD1/G93A(+)1Gur mice expressing high
copy number of mutant human SOD1 with a Gly93Ala
substitution [SOD1 G93A] and B6SJL-TgN (SOD1)2Gur
mice expressing wild-type human SOD1 (WT)*® were
obtained from Jackson Laboratories (Bar Harbor, ME,
USA). Transgenic animals have been crossed with
background-matched B6SJL wild-type female and selec-
tive breeding maintained each transgene in the hemi-
zygous state. All transgenic mice were identified analyzing
extracts from tail tips by staining for SOD1 as previously
described®’. To generate double-mutants carrying the
NCX3+/— heterozygous mutation and the SOD1 G93A
transgene (SOD1 G93A;ncx3+/—), SOD1 G93A male
mice (mixed C57BL6-SJL background) were bred with
ncx3+/— females (Sv129 background). NCX3 knockout
mice (ncx3—/—) were generated by our research group as
previously described'®.

Overall, 120 male and female mice (50% each gender)
housed under diurnal lighting conditions (12 h darkness/
light) were used, 13 male and 12 female out of 120 ani-
mals were not included in the experimental groups as they
died for unknown reasons. The number of female and
male mice was balanced among all the experimental
groups. Animals excluded were equally distributed among
the experimental groups.

Experiments were performed according to the interna-
tional guidelines for animal research and approved by the
Animal Care Committee of “Federico II” University of
Naples, Italy and Ministry of Health, Italy. All efforts were
made to minimize animal suffering and to reduce the
number of animals used.
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Fig. 7 Effect of L-BMAA-induced PC on survival, paralysis onset, body weight reduction, and motor functions in SOD1 G93A mice. Survival
curve of SOD1 G93A mice treated with vehicle compared to 1-BMAA preconditioned SOD1 G93A mice (Aa, b). Survival is expressed as percentage
(Aa) or in days (Ab). Paralysis onset of SOD1 G93A mice treated with vehicle compared to .-BMAA preconditioned SOD1 G93A mice (Ba, b). Paralysis
onset is expressed in days after treatment with vehicle or -BMAA PC (Ba) or as percentage (Bb). Percentage of body weight reduction in SOD1 G93A
vehicle compared to SOD1 G93A mice preconditioned with 1-BMAA (Bc). Percentage of rotarod onset and time spent on rotarod by SOD1 G93A
mice treated with vehicle compared to SOD1 G93A mice preconditioned with L-BMAA (Ca, b). Grip performance of SOD1 G93A mice treated with
vehicle compared to SOD1 G93A mice preconditioned with L-BMAA expressed as percentage (Da) or in seconds (Db). Data are expressed as mean +
SEM for A, b; B, b, ¢; Cb; and D, b. n =10 for SOD1 G93A mice treated with vehicle, n =12 for SOD1 G93A mice preconditioned with -BMAA, *P < 0.05
vs. SOD1 G93A vehicle mice. Kaplan-Meier plot was used for Aa, Ba, Ca, and Da. Student’s t-test was used for Ab, Bb, ¢, Cb, Db

L-BMAA-induced PC procedure

L-BMAA was dissolved in saline solution (4.5 mM) and
1 pl intracerebroventricularly injected into the right lateral
ventricle of 8-weeks-old mice on a stereotaxic frame using
a stainless steel cannula connected to a Hamilton syringe
through a PE10 tube (stereotaxic coordinates in mm with
reference to the bregma were AP, —0.6; ML, —1.6; DV,
—2.1)*%, All mice were anesthetized with a gas mixture of
2% sevoflurane and 98% oxygen.

Usually, PC can be induced by toxic compounds used at
1/10 of their toxic concentration (ie., LPS, hypoxia or
tMCAO)**?, Starting from this assumption, a con-
centration of L-BMAA ten times smaller than that used to
mimic experimental ALS in vitro and in vivo, has been
used.

Tissue processing, immunostaining, and confocal
immunofluorescence

Immunostaining and confocal immunofluorescence
procedures were performed as previously described®'.
Animals were anesthetized and transcardially perfused
with saline solution containing 0.01 ml heparin, followed
by 4% paraformaldehyde in 0.1 mol/l PBS saline solution.
Brains were rapidly removed on ice and postfixed over-
night at +4°C and cryoprotected in 30% sucrose in 0.1 M
phosphate buffer (PB) with sodium azide 0.02% for 24 h at
4°C. Next, brains were sectioned frozen on a sliding
cryostat at 40 pm thickness, in rostrum-caudal direction.
Afterwards, free floating serial sections were incubated
with PB Triton X 0.3% and blocking solution (0.5% milk,
10% FBS, 1% BSA) for 1 h and 30 min. The sections were
incubated overnight at +4 °C with the following primary
antibodies: anti-NeuN (mouse monoclonal antibody;
1:500; Millipore, Milan, Italy), anti-NCX3 (1:3000; Swant,
Bellinzona, Switzerland), anti-Glial Fibrillary Acidic pro-
tein (GFAP, rabbit polyclonal antibody; 1:500; Abcam,
Cambridge, UK) and anti-ionized calcium binding adap-
tor molecule 1 (Ibal, rabbit polyclonal antibody; 1:500;
Wako Diagnostic, Waco, VA, USA)

The sections were then incubated with the corre-
sponding florescent-labeled secondary antibodies, Alexa
488/Alexa 594 conjugated antimouse/antirabbit IgGs
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(Molecular Probes, Invitrogen S.R.L., Milan, Italy). Nuclei
were counterstained with Hoechst (Sigma-Aldrich, Milan,
Italy). Images were observed using a Zeiss LSM700
META/laser scanning confocal microscope (Zeiss, Ober-
kochen, Germany). Single images were taken with an
optical thickness of 0.7 m and a resolution of 1024 x 1024-.
In double-labeled sections, the pattern of immune reac-
tivity for both antigens was identical to that seen in single-
stained material. Control double-immunofluorescence
staining entailed the replacement of the primary antisera
with normal serum (data not shown). To minimize a
possible cross-reactivity between IgGs in double immu-
nolabeling experiments, the full complement of secondary
antibodies was maintained but the primary antisera were
replaced with normal serum or only one primary antibody
was applied (data not shown). In addition, the secondary
antibodies were highly preadsorbed to the IgGs of
numerous species. Tissue labeling without primary anti-
bodies was also tested to exclude autofluorescence. No
specific staining was observed under these control con-
ditions, thus confirming the specificity of the
immunosignals.

Quantification of GFAP, NCX3, and Ibal fluorescence
intensity on tissue sections at the level of the spinal cord,
was quantified in terms of pixel intensity value by using
the NIH image software, as described previously'”®,
Briefly, digital images were taken with x40 or x10
objective and identical laser power settings and exposure
times were applied to all the photographs from each
experimental set. Images from the same areas of each
brain region were compared. Results were expressed in
arbitrary units. Three sections from each mouse were
analyzed, with # =3 mice per treatment group.

To obtain an indirect measure of the amount of NCX3
in neurons, image analysis of NeuN was performed by
NIH image software by measuring the intensity of fluor-
escent NCX3 immunolabeling in 50 NeuN positive neu-
rons for each group. The intensity of NCX3
immunoreactivity was expressed in arbitrary units.

Standard Nissl staining was employed on coronal step
serial sections from spinal cord and brain stem.
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with vehicle or preconditioned with (-BMAA

Fig. 8 Effect of L-BMAA-induced PC on survival, paralysis onset, body weight reduction, and motor functions in SOD1 G93A /ncx3+/— mice.
Survival curve of SOD1 G93A/ncx3+/— mice treated with vehicle compared to 1-BMAA preconditioned SOD1 G93A mice (Aa, b). Survival is expressed
as percentage (Aa) or in days (Ab). Paralysis onset of SOD1 G93A mice treated with vehicle compared to .-BMAA preconditioned SOD1 G93A/ncx3
+/— mice (Ba, b). Paralysis onset is expressed in days after treatment with vehicle or .-BMAA PC (Ba) or as percentage (Bb). Percentage of body weight
reduction in SOD1 G93A/ncx3+/— vehicle compared to SOD1 G93A/ncx3+/— mice preconditioned with 1-BMAA (Bc). Percentage of rotarod onset
and time spent on rotarod by SOD1 G93A/ncx3+/— mice treated with vehicle compared to SOD1 G93A/ncx3+/— mice preconditioned with L-BMAA
(Ca, b). Grip performance of SOD1 G93A/ncx3+/— mice treated with vehicle compared to SOD1 G93A/ncx3+/— mice preconditioned with L-BMAA
expressed as percentage (Da) or in seconds (Db). Data are expressed as mean + SEM for Ab; Bb, ¢; Cb; and Db. n =6 for SOD1 G93A/ncx3+/— treated

Neuromuscolar junction (NMJ) analysis

Gastrocnemius muscle was removed and snap-frozen in
liquid nitrogen-cooled isopentane. To study the NMJ,
gastrocnemius muscle, sectioned in 10 pm thickness, in
rostrum-caudal direction, was stained with a post-
synaptic marker, a-Bungarotoxin, Alexa 488 conjugate
(1:500), and a pre-synaptic marker, Synaptophysin (rabbit
polyclonal antibody 1:500; Abcam, Cambridge, UK).
NMJs were scored according to whether there was com-
plete co-localization of pre- and post-synaptic markers
(fully innervated), partial co-localization (intermediate
innervation), or only post-synaptic labeling (fully dener-
vated). All of the NM]J analyses were performed on 270 or
more NMJs from each group®.

Motor neurons counting analysis

Motor neurons were counted in the cervical spinal cord
and in the brain stem facialis nucleus. Sections of each
area were analyzed as previously described®’. Frozen brain
tissue and spinal cord were sectioned on a sliding cryostat
at 20 pm, in rostrum-caudal direction. Four mice for each
genotype and four slides from every mouse were analyzed.

Analyses were performed using image ] software in
Polygonal-shaped neurons larger than 20 pm with a well-
defined cytoplasm, nucleus, and nucleolus®*.

Western blot analysis

Western blot analysis was performed as previously
described®. Spinal cord, motor cortex and brain stem
tissues were lysed in lysis buffer containing 50 mM
Tris—HCI, pH 7.4, 150 mM NaCl, 1 mM EDTA, 1% Triton
X-100, and protease and phosphatase inhibitors. Samples
were subjected to SDS-polyacrylamide gel electrophoresis
(SDS-PAGE) and immunoblotted with specific antibodies.
Polyclonal antibodies were used against NCX3 (rabbit
polyclonal; 1:2000; Swant, Bellinzona, Switzerland), anti-
B-Actin (rabbit polyclonal 1:1000 dilution; Sigma-Aldrich,
St. Louis, MO, USA). Immunoreactive bands were
detected using ECL (GE Healthcare, Milan, Italy). The
optical density of the bands (normalized for B-actin) was
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determined by Chemi-Doc Imaging System (Bio-Rad,
Segrate, Italy)®”.

RT-PCR experiments

Tissues were quickly removed from mice, then imme-
diately frozen on dry ice and stored at —80 °C until use.
Total RNA was extracted with Trizol reagents, following
supplier’s instructions (Life Technologies, Monza, Italy).
The first-strand cDNA was synthesized with 2 pg of total
RNA using the High Capacity cDNA Reverse Transcrip-
tion Kit following supplier’s instruction (Life Technolo-
gies, Monza, Italy). Quantitative real-time PCR with
TagMan assays for NCX3 gene and glucuronidase beta
(Gusb) as housekeeping were performed in a 7500 real-
time PCR system (Life Technologies, Monza, Italy).
Samples were amplified simultaneously in triplicate in 1
assay run. Changes in mRNA levels were determined as
the difference in threshold cycle (ACt) between the target
gene and the reference gene®.

Purified synaptosomal preparation and [Ca®*]; imaging
Spinal cord synaptosomes were purified on dis-
continuous Percoll gradients, as previously described® .
Briefly, tissues were homogenized in a medium containing
0.32M sucrose, 1 mM EDTA, and 0.25 mM bL-dithio-
threitol (pH 7.4). Each homogenate was centrifuged at
1000x g for 10 min at 4 °C and the supernatant was diluted
at 14 ml/g with sucrose medium (pH 7.4). Two ml of the
suspension were placed onto 8 ml Percoll discontinuous
gradient containing 0.32 M sucrose and 3%, 10%, 15%, and
23% Percoll (pH 7.4). After centrifugation at 32,000 xg for
15 min at 4 °C, synaptosomes were recovered between the
15% and 23% Percoll bands, diluted five times with HEPES
buffer medium containing (in mM): 125 NaCl, 2.5 KCI, 5
NaHCOs3, 1.2 NaH,PO,, 1.2 MgSO,, 6 glucose, and 25
HEPES (pH 7.4), and centrifuged at 15,000xg for 15 min
at 4°C. Finally, the pellet was resuspended in 1ml of
medium B (145 mM NaCl, 3 mM KCl, 1.2 mM MgCl,, 10
mM glucose, and 10 mM HEPES, pH 7.4) and stored on
ice. Protein content was determined by the Bradford
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method®®. Percoll-purified synaptosomes were resus-
pended in medium B (1 mg/ml) and loaded with the
ratiometric fluorescent Ca®" indicator Fura-2 AM
(6 uM)'? in the presence of 16 uM bovine serum albumin
for 45 min at 37 °C. Dye-loaded synaptosomes were then
washed by centrifugation, resuspended in medium B
containing 1.2 mM CaCl,, and attached to poly-p-lysine-
coated coverslips for 20 min at 37 °C. The coverslips were
placed into a perfusion chamber (Medical System,
Greenvale, NY, USA) mounted on the stage of an inverted
Zeiss Axiovert 200 fluorescence microscope (Zeiss,
Oberkochen, Germany) equipped with a x40 oil objective
lens. Experiments were carried out with a digital imaging
system composed of MicroMax 512BFT cooled CCD
camera (Princeton Instruments, Trenton, NJ, USA),
LAMBDA 10-2 filter wheel (Sutter Instruments, Novato,
CA, USA), and META-MORPH/METAFLUOR Imaging
System software (Universal Imaging, West Chester, PA,
USA). Synaptosomes were illuminated at 340 and 380 nm
wavelength by a 100-W Xenon lamp (Osram, Berlin,
Germany). The emitted light was passed through a 512
nm barrier filter. Images were digitized and analyzed
using metafluor Imaging software. NCX activity was
evaluated as Ca®" uptake through the reverse mode by
switching the normal Krebs medium to Na'-deficient
NMDG" medium named Na'-free, containing (in mM):
5.5 KCl, 147 NMDG, 1.2 MgCl,, 1.5 CaCl,, 10 glucose,
and 10 Hepes-Trizma (pH 7.4).

Evaluation of motor performance

Hindlimb grip test was conducted by placing the mouse
on a grid (45 cm long x 28 cm large) upside-down (30 cm
above a foam pad). The test was performed once a week
and the latency to fall off the grid was also measured up to
a maximum of 60 s.

Motor coordination and balance was assessed using a
five-station mouse rotarod apparatus (Ugo Basile; Milan,
Italy). In each station, the rod was 6 cm in length and 3 cm
in diameter. Mice were trained to maintain balance at
increasing speed up to a constant speed of 14 rpm for
three consecutive trials. The test sessions were conducted
by one rotarod trial administered once a week. In this
session, the speed of rotation was increased from 4 to 14
rpm over 60s. Mice had three trials on the rod, and the
latencies to fall were measured once a week and then
averaged. The maximum latency of 60 s was assigned to
the mice that did not fall at all*’.

Weekly evaluation of hindlimb paralysis was performed.
Hindlimb paralysis was scored when the animal dragged
one of its hindlimbs, and paralysis of a forelimb was
scored when the mouse failed to use its forelimbs for
walking or righting.
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Body weight was measured immediately before each
session of behavioral tests.

Disease endstage was defined by the inability of mice to
right themselves within 20 s when placed on their sides.

Statistical analysis

Data were evaluated as means + SEM. Statistically sig-
nificant differences among means were determined by
one-way ANOVA followed by Student-Newman—Keuls
post-hoc test for western blotting, cell counting, and real-
time PCR analysis. Two-way ANOVA followed by Bon-
ferroni post-hoc was used for motor performances test
and body weight analysis. The Kaplan—-Meier plot was
used to evaluate survival, grip, rotarod and paralysis onset.
Student’s t-test was used for two groups comparison.
Statistical significance was accepted at the 95% confidence
level (P<0.05). Statistical analyses were performed by
using GraphPad Prism 5.0 (La Jolla, CA, USA). All
experiments were carried out in a blinded manner.

Study approval

Experiments were performed according to the interna-
tional guidelines for animal research and approved by the
Animal Care Committee of “Federico II” University of
Naples, Italy and Ministry of Health, Italy. All efforts were
made to minimize animal suffering and to reduce the
number of animals used.
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