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The aim of this study was to identify potential microRNAs and genes associated with idiopathic pulmonary fibrosis (IPF)
through web-available microarrays. The microRNA microarray dataset GSE32538 and the mRNA datasets GSE32537,
GSE53845, and GSE10667 were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed
miRNAs (DE-miRNAs)/genes (DEGs) were screened with GEO2R, and their associations with IPF were analyzed by
comprehensive bioinformatic analyses. A total of 45 DE-microRNAs were identified between IPF and control tissues, whereas
67 common DEGs were determined to exhibit the same expression trends in all three microarrays. Furthermore, functional
analysis indicated that microRNAs in cancer and ECM-receptor interaction were the most significant pathways and were
enriched by the 45 DE-miRNAs and 67 common DEGs. Finally, we predicted potential microRNA-target interactions between
17 DE-miRNAs and 17 DEGs by using at least three online programs. A microRNA-mediated regulatory network among the
DE-miRNAs and DEGs was constructed that might shed new light on potential biomarkers for the prediction of IPF progression.

1. Introduction

Idiopathic pulmonary fibrosis (IPF), which is the most com-
mon form of the idiopathic interstitial pneumonias (IIPs), is
characterized by clinical symptoms of cough and dyspnea,
restrictive pulmonary function with impaired gas exchange,
and progressive lung scarring [1]. Recently, two modestly
effective drugs for treating IPF have been identified [2, 3].
However, the prognosis of IPF remains grave, thus emphasiz-
ing a need for a more complete understanding of its mecha-
nisms of disease pathogenesis.

In the past decades, a number of studies have revealed
that microarrays can be used to identify potential biomarkers
in numerous diseases at molecular level with more effective
and detailed insights [4, 5]. MicroRNAs (miRNA) are a class

of noncoding RNAs that have drawn considerable attention
for their critical effects in cellular processes such as apoptosis,
proliferation, and differentiation. Over the last decade, more
and more studies have been performed to find potential
biomarkers for the prediction of IPF. Through microarray
profiles, IPF has been reported to be interrelated with
multiple putative miRNAs, including miR-92a [6], miR-210
[7], miR-29 [8], miR-326 [9], miR-98 [10], and miR-let-7d
[11]. However, only a very small number of differentially
expressed genes were found and they were not consistent
across all these studies. Therefore, further development into
clinically useful biomarkers and therapeutic targets were
limited by these incongruous results. It has been well recog-
nized that small sample sizes, different microarray platforms,
and different statistical methods are among the limiting
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factors contributed to the discordant results. To resolve this
limitation, meta-analysis represents a powerful approach to
combine different datasets from different studies to improve
the reliability and generalizability of the findings by increas-
ing its statistical power analysis. Meta-analysis on gene
expression data has yielded new biological insights, as well
as identification of more robust and reliable candidate bio-
markers and therapeutic targets [12, 13].

The present study aimed to identify differentially
expressed miRNAs (DE-miRNAs) in microRNA expression
profiles and differentially expressed genes (DEGs) in three
messenger RNA (mRNA) expression profiles through the
Gene Expression Omnibus (GEO) database to explore the
biological processes in IPF. Correlations between the DEGs
and DE-miRNAs were examined using comprehensive bio-
informatics analysis. We combined the information retrieved
from the DE-miRNA and DEG data, PPI interaction network
construction, and pathway enrichment analysis and then
screened out potential biomarkers for IPF. In addition,
text mining was conducted to obtain ideas and clues for
further experimental research, assisting in indicating more
biomarkers of IPF.

2. Materials and Methods

2.1. Acquisition and Analysis of Datasets. Microarray
data from IPF-related microRNA and mRNA expression
profiles were retrieved and downloaded from the National
Center for Biotechnology Information (NCBI) GEO database
(http://www.ncbi.nlmNih.gov/geo). Queries were performed
using “IPF” as a keyword. The search was restricted to the
following specific fields: study type, expression profiling by
array, and species—Homo sapiens. We downloaded the
microRNA expression microarray dataset GSE32538 [14]
and the mRNA expression microarray datasets GSE32537
[14], GSE53845 [15], and GSE10667 [16–18].

2.2. Inclusion Criteria for Differentially Expressed
MicroRNAs and Genes. GEO2R (http://www.ncbi.nlm.nih.
gov/geo/geo2r/), a web tool, can perform sophisticated
R-based analyses of GEO data and presents the results
as a table of differential gene expression that can be visualized
using GEO Profile graphics [19]. This tool is based on a t-test
(ANOVA) or analysis of variance, and it is useful for compar-
ing two or more groups of samples across the same experi-
mental conditions to characterize differentially expressed

microRNAs or genes. In the present study, microRNAs and
genes that were differentially expressed between IPF and
controls were screened using an adjusted p value (adj. p)
of less than 0.05 and a |log fold change| of >1.0 as thresh-
olds. DE-miRNAs or DEGs that were common to at least
two expression profile datasets were selected using the
Bioinformatics & Research Computing website (http://jura.
wi.mit.edu/bioc/tools/compare.php). Bioinformatic analyses
of the DE-miRNAs and DEGs were conducted. Pathway
enrichment analysis of differentially expressed microRNAs
was performed using DIANA miRPath (http://diana.imis
.athenainnovation.gr/DianaTools/index.php?r=mirpath/
index) [20]. DAVID (http://david.abcc.ncifcrf.gov/) was used
to analyze the pathway enrichment of the differentially
expressed genes [21]. Protein/gene interactions were ana-
lyzed using STRING (http://www.string.embl.de/) [22],
and mRNA-microRNA interactions were analyzed using
the miRanda (http://www.microrna.org/microrna/home.do)
[23], picTar (http://pictar.mdc-berlin.de/) [24], TargetScan
(http://www.targetscan.org/) [25], PITA (http://genie.weiz
mann.ac.il/pubs/mir07/mir07_data.html/) [26], and RNA22
(http://cbcsrv.watson.ibm.com/ma 22 .html) [27] tools.

3. Results

3.1. Microarray Datasets That Met the Inclusion Criteria. In
the present study, the microRNA expression profiling dataset
was GSE32538, which was generated by the University of
Colorado, Anschutz Medical Campus using the GPL8786

Table 1: microRNA and gene expression microarray datasets related to idiopathic pulmonary fibrosis.

Accession number
of the dataset

Organization
name

Platform Status Organism Experiment type
Disease type
IPF Control

MicroRNA GSE32538 [14]
University
of Colorado

GPL8786
Public on

June 21, 2013
Homo sapiens

Noncoding RNA
profiling by array

106 50

mRNA GSE32537 [14]
University
of Colorado

GPL6244
Public on

June 21, 2013
Homo sapiens

Expression profiling
by array

119 50

GSE53845 [15] Genentech, Inc. GPL6480
Public on

Oct. 14, 2014
Homo sapiens

Expression profiling
by array

40 8

GSE10667 [16–18]
University of
Pittsburgh

GPL4133
Public on

Feb. 20, 2009
Homo sapiens

Expression profiling
by array

23 15

Table 2: Top 10 logFc of differentially expressed miRNAs obtained
from the GSE32538 dataset.

Dysfunction miRNA logFc adj. p value

Upregulated

hsa-miR-205 1.8093192 2.79E-08

hsa-miR-34c-3p 2.2856359 1.91E-08

hsa-miR-34c-5p 2.3310863 3.36E-07

hsa-miR-31 2.3422275 1.28E-08

Downregulated

hsa-miR-532-5p −1.9021268 5.03E-18

hsa-miR-652 −1.8713939 8.44E-15

hsa-miR-130a −1.6770333 5.48E-11

hsa-miR-210 −1.6699558 5.39E-11

hsa-miR-500 −1.6698889 3.16E-15

hsa-miR-193a-5p −1.6402524 4.57E-15

2 Mediators of Inflammation

http://www.ncbi.nlmNih.gov/geo
http://www.ncbi.nlm.nih.gov/geo/geo2r/
http://www.ncbi.nlm.nih.gov/geo/geo2r/
http://jura.wi.mit.edu/bioc/tools/compare.php
http://jura.wi.mit.edu/bioc/tools/compare.php
http://diana.imis.athenainnovation.gr/DianaTools/index.php?r=mirpath/index
http://diana.imis.athenainnovation.gr/DianaTools/index.php?r=mirpath/index
http://diana.imis.athenainnovation.gr/DianaTools/index.php?r=mirpath/index
http://david.abcc.ncifcrf.gov
http://www.string.embl.de/
http://www.microrna.org/microrna/home.do
http://pictar.mdc-berlin.de/
http://www.targetscan.org/
http://genie.weizmann.ac.il/pubs/mir07/mir07_data.html
http://genie.weizmann.ac.il/pubs/mir07/mir07_data.html
http://cbcsrv.watson.ibm.com/ma&percnt;2022&percnt;20.html


Affymetrix miRNA Array platform. The samples used to
generate the GSE32538 dataset were lung tissues from 167
subjects with IIP and 50 nondiseased controls. The mRNA
expression profiling datasets studied were GSE32537,
GSE53845, and GSE10667. GSE32537 was generated by the
University of Colorado, Anschutz Medical Campus using
the GPL6244 Affymetrix Human Gene 1.0 ST Array plat-
form. The data were derived from 167 subjects with IIP
and 50 nondiseased controls. GSE53845 originated from
Genentech, Inc., using the GPL6480 Agilent-014850 Whole
Human Genome Microarray platform. The data were
derived from lung tissue samples from 40 IPF patients and
8 healthy controls. The GSE10667 dataset was generated by
the University of Pittsburgh using the GPL4133 Agilent-
014850 Whole Human Genome Microarray platform. The
data were derived from 23 IPF and 15 control lung tissue
samples (Table 1).

3.2. Differentially Expressed MicroRNAs and Pathway
Enrichment. Differentially expressed microRNAs of the IPF

and control groups in the GES32538 expression profiling
datasets were analyzed using the GEO2R tool. After rigorous
screening using adj. p < 0 05 and |logFC| > 1, a total of 45 dif-
ferentially expressed miRNAs were identified in the IPF
group compared with those in the control group. Three
microRNAs (has-miR-205, has-miR-34c, has-miR-31) were
significantly upregulated in IPF, whereas the expression
levels of the remaining 42 microRNAs were decreased. The
top 10 dysregulated miRNAs were hsa-miR-205, has-miR-
34c-3p, hsa-miR-34c-5p, hsa-miR-31, hsa-miR-532-5p, hsa-
miR-652, hsa-miR-130a, hsa-miR-210, hsa-miR-500, and
hsa-miR-193a-5p (Table 2). Pathway enrichment analysis
was performed on these 45 differentially expressed micro-
RNAs using DIANA miRPath [20]. A total of 82 signaling
pathways were identified (p < 0 05), and the 20 most signifi-
cantly enriched pathways were selected according to their p
values (Figure 1(a)). Functional analysis demonstrated that
the dysregulated miRNAs could be enriched into 263 func-
tional GO terms, and the top 20 are shown in Figure 1(b).
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Figure 1: Significant GO terms and pathway analysis obtained from the miRNA expression datasets. (a) Significant GO terms for DE-
miRNAs. (b) Significant terms for De-miRNA pathways.
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miRNAs) are shown in Supplementary Figure 1 available
online at https://doi.org/10.1155/2017/1804240.

3.3. Screening for Differentially Expressed Genes in Three
Sets of mRNA Microarrays and Analysis of the Correlation
between Differentially Expressed Genes in IPF. The
GSE32537, GSE53845, and GSE10667 datasets were screened
using the GEO2R tool to identify genes that were differen-
tially expressed between the experimental and control
groups, and 428, 661, and 1287 differentially expressed genes
were identified, respectively. A total of 67 differentially
expressed genes were found that exhibited exactly the same
expression trends in all three microarray sets (the list of the
67 differentially expressed genes is shown in Supplementary
Table 1). Of the 67 genes, 10 were downregulated in IPF
and 57 were upregulated (Figure 2(a)).

To reveal the biological significance of the common
differentially expressed genes in the regulation of IPF at
the unitary level, biological pathway enrichment and biolog-
ical process annotation were performed on the above-
described 67 genes using DAVID. Among the 81 biological
processes, cell adhesion, biological adhesion, and skeletal sys-
tem development were found to be significantly related to
IPF regulation (p < 0 05) (Figures 2(b) and 2(c)). Based on
KEGG pathway analysis, the enriched target genes were
involved in the focal adhesion signaling pathway and ECM-
receptor interact signaling pathway (Figure 2(d)). The rela-
tionship among the 67 common differentially expressed
genes in IPF was further demonstrated using the STRING
web tool. Overall, 57 interactions existed among the 67 pro-
teins/genes in the PPI network (Figure 3). The connectivity
degree of each node was calculated, and the top nine nodes
with degrees ≧5 were COL1A1, MMP1, COL3A1, TNC,

SPP1, MMP7, POSTN, ITGB8, and COL6A3. COL1A1,
which had the highest degree [14] in the network, was con-
sidered the hub node because it interacted with many pro-
teins, including LEPREL1, ZNF521, TGFB3, COL15A1,
COL17A1, and TNC.

3.4. Analysis of the Correlation between Differentially
Expressed MicroRNAs and Differentially Expressed Genes
Associated with IPF. The candidate target genes of the 45 dys-
regulated microRNAs were predicted using microRNA-
target interaction tools, including miRanda/mirSVR, targetS-
can, picTar, RNA22, and PITA. Genes identified by at least
three prediction tools were selected as candidate targets,
and intersections between the candidate target genes and
the 67 common differentially expressed genes in the three
microarray datasets were determined. Seventeen microRNAs
and their target genes existed in the DEGs of the three com-
mon mRNA datasets (Supplementary Table 2). TRIM2 was
predicted as the target of 7 microRNAs, and SIX4 and ITGB8
were predicted as the target of five microRNAs. There are
totally 17 DEGs of three common mRNA datasets predicted
can be regulated by dysregulated miRNAs, and 8 of the 17
have interactions in the PPI network (Supplementary
Table 3). To further elucidate the correlations between
miRNAs and potential target genes, miRNA-gene network
analyses were generated by Cytoscape (Figure 4(a)). Text
mining of the 17 DE-miRNAs and 17 DEGs was performed
using the GenCLip 2.0 software. The occurrence frequency
of terms in corresponding gene-related literature including
cell differentiation, signal transduction, mesenchymal stem
cells, transforming growth factor, extracellular matrix, cell
migration, and apoptosis are shown in Figure 4(b). All of
the above biological processes are significantly related to IPF.
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Figure 2: Bioinformatic analysis of the DEGs obtained from three mRNA expression profiling datasets. (a) Analysis of the DEGs in the three
mRNA expression profiling datasets using the GEO2R tool. (b and c) Biological processes of DEGs related to IPF. (d) KEGG pathways
obtained from the DEGs.
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4. Discussion

IPF is a chronic fibrotic lung disease that is characterized by
increasing fibroblast proliferation and activation, including
fibroblast accumulation, collagen synthesis, and deposition
of extracellular matrix proteins and glycoprotein [28, 29].
MicroRNAs are a class of noncoding small RNAs that are
approximately twenty-two nucleotides in length and are

important regulators in gene regulation. The endogenous
19–25nt noncoding RNAs can bind to the 3′-untranslated
region (3′-UTR) of specific genes to inhibit the translation
of the corresponding mRNA. Previous studies have shown
that the pathogenesis of pulmonary fibrosis is related to var-
ious factors, including DE-miRNAs, DEGs, and microRNA-
controlled differential gene expression [30, 31]. Therefore,
screening for and identifying microRNAs and genes that
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are differentially expressed in IPF and investigating the
correlations between DE-miRNAs and DEGs may shed
light on the molecular mechanisms underlying IPF patho-
genesis and provide guidance both for clinicians and for
predicting prognosis.

GEO2R is an R programming language-based analytical
tool that is used for studying DEGs. In the present study,

microRNA expression microarray data from IPF and non-
diseased control lung tissue samples (GSE32538) were ana-
lyzed, and 45 differentially expressed microRNAs were
identified. Forty-two of these microRNAs were downregu-
lated, whereas 3 microRNAs (hsa-mir-205, hsa-mir-34c,
hsa-mir-31) were upregulated. Among the top 20 signaling
pathways regulated by the 45 identified DE-miRNAs and
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67 common DEGs, at least three are related to the pro-
gression of IPF, including cell cycle [32–34], TGF-beta sig-
naling pathway [35–37], and adherens junction [38]. These
results indicate that the 45 DE-miRNAs may be associated
with the progression of IPF.

In lung epithelial cells and fibroblasts, the miRNAs could
affect fibrogenic activity via targeting TGF-beta signaling
events, α-Smooth muscle actin (α-SMA) and collagen, type
I (COL1) gene expression. TGF-β is secreted for storage in
the extracellular milieu, and it is kept inactive in a latent form
by binding to latency-associated peptide (LAP). Released
from LAP, TGF-β dimers sequentially associate with two pri-
mary transmembrane receptors, the type II and then the type
I TGF-β receptor, activating receptor heterodimerization.
Various signaling pathways and biological progresses are
thereby initiated, including the Smad-mediated and non-
Smad-mediated pathways, differentiation, proliferation,
migration, epithelial mesenchymal transition (EMT), and
ECM. Previous studies have shown that miRNAs are
involved in regulating target genes in lung inflammation,
EMT, ECM, and lung fibrosis processes [31].

Recent reports have shown that let-7 participates in pul-
monary fibrosis by regulating EMT and TGF–β signaling
activity. The let-7 miRNA family was first discovered [39]
and extensively studied in metastasis. Its expression was sig-
nificantly decreased in IPF lungs compared to normal lungs
[30, 40]. Pandit et al. [40] elucidated that let-7d expression
may be inhibited by TGF- β1, which is mediated by combina-
tion of SMAD3 with the let-7d promoter. Prior studies also
showed that let-7d significantly downregulated the expres-
sion of HMGA2, SLUG, ID1, and ID2 in human primary
fetal lung fibroblasts [11, 40].

Furthermore, miR-29 regulates a large number of genes
associated with fibrosis. In the lung biopsies of patients with
IPF, Montgomery et al. showed a significant decrease in the
levels of miR-29a, miR-29b, and miR-29c as well as reduced
trichrome staining in miR-29b mimic-treated mice in com-
parison with that in bleomycin-treated mice [41]. MiR-92a
occupies an important role in pulmonary fibrosis. MiR-92a
could decrease TGF-β1-induced Wnt1 inducible signaling
pathway protein 1 (WISP1) protein expression (qRT-PCR
and ELISA) in lung fibroblasts ex vivo [6].

Thus, in spite of the above specific profibrotic and antifi-
brotic miRNAs, the function of the rest of the DE-miRNAs
remains to be clearly demonstrated.

Three sets of mRNA expression profiles were analyzed
and a total of 67 genes were identified as DEGs in IPF.
Enrichment analysis of biological processes and signaling
pathways showed that the above-described 67 differentially
expressed genes are significantly related to a series of biolog-
ical processes such as cell adhesion, biological adhesion, and
skeletal system development. ECM-receptor interaction and
focal adhesion are significant pathways enriched by the
DEGs that have been proven to be closely related to the
regulation of IPF [42–44]. A previous study has demon-
strated that cell adhesion and biological adhesion are the
critical steps leading to the occurrence of pulmonary fibro-
sis [45–48]. These findings revealed that the 67 genes are sig-
nificantly differentially expressed in all three IPF gene

expression profile datasets and may be involved in the pro-
gression of IPF by participating in processes such as cell
adhesion, biological adhesion, ECM-receptor interaction,
and focal adhesion.

The epigenetic regulation of microRNAs plays an impor-
tant role in the progression of IPF. MicroRNAs are reported
to be one of the important mechanisms in pulmonary fibro-
sis. Therefore, in the present study, microRNA-mRNA inter-
action analysis was conducted using microRNA and mRNA
expression profiles to obtain additional information related
to IPF. By analyzing interactions between DE-miRNAs and
DEGs in IPF and control tissues, we discovered that seven-
teen microRNAs may have regulatory effects on nearly half
of the 45 identified genes. These findings indicate that the
DE-miRNAs and DEGs described above may act in concert
to participate in IPF. A total of 15 DE-miRNAs and 11
DEGs involved in this microRNA-target relationship have
been identified by GenCLip 2.0 to be associated with cell
differentiation, signal transduction, mesenchymal stem
cells, extracellular matrix, cell migration, and apoptosis.
At the same time, we analyzed the 67 DEGs in our manu-
script with the clinical characteristics according reference
[14]. As shown in Supplementary Table 1, there are several
dysregulated transcripts associated with age (ITLN2, BTNL9,
TNC, TDO2, SPP1, PSD3, and LTBP1); gender (SLC6A4,
HSD17B6, CRTAC1, TNC, TDO2,SPP1, and LRRC17); and
smoking (CFH, CDH2). Expression of cilium genes appears
to identify two unique molecular phenotypes of IPF/UIP
[14].The differentmolecular profilesmay be relevant to thera-
peutic responsiveness in patients with IPF/UIP. There are 8
out of 10 downregulated DEGs that are downregulated in
Group II compared with those in Group I, namely VIPR1,
SLC6A4, NECAB1, LEPREL1, ITLN2, HSD17B6, HHIP, and
CRTAC1 and 14 out of 57 upregulated DEGs that are upregu-
lated in Group II compared with those in Group I, namely
TRIM2, TP63, TMPRSS4, SPP1, SIX4, MMP1, ITGB8,
GOLM1,CP, COL17A1, CLIC6, CDH3,CD24, andC12orf75.

These results indicate that the microRNA-target network
constructed from 17 DE-miRNAs and 17 DEGs might shed
new light on potential biomarkers for the prediction of IPF
progression. The exact roles of these DE-miRNAs/DEGs will
require further in-depth study.
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