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Retroviral insertional mutagenesis screens, which identify genes involved in tumor development in mice, have yielded
a substantial number of retroviral integration sites, and this number is expected to grow substantially due to the
introduction of high-throughput screening techniques. The data of various retroviral insertional mutagenesis screens
are compiled in the publicly available Retroviral Tagged Cancer Gene Database (RTCGD). Integrally analyzing these
screens for the presence of common insertion sites (CISs, i.e., regions in the genome that have been hit by viral
insertions in multiple independent tumors significantly more than expected by chance) requires an approach that
corrects for the increased probability of finding false CISs as the amount of available data increases. Moreover,
significance estimates of CISs should be established taking into account both the noise, arising from the random
nature of the insertion process, as well as the bias, stemming from preferential insertion sites present in the genome
and the data retrieval methodology. We introduce a framework, the kernel convolution (KC) framework, to find CISs in
a noisy and biased environment using a predefined significance level while controlling the family-wise error (FWE) (the
probability of detecting false CISs). Where previous methods use one, two, or three predetermined fixed scales, our
method is capable of operating at any biologically relevant scale. This creates the possibility to analyze the CISs in a
scale space by varying the width of the CISs, providing new insights in the behavior of CISs across multiple scales. Our
method also features the possibility of including models for background bias. Using simulated data, we evaluate the
KC framework using three kernel functions, the Gaussian, triangular, and rectangular kernel function. We applied the
Gaussian KC to the data from the combined set of screens in the RTCGD and found that 53% of the CISs do not reach
the significance threshold in this combined setting. Still, with the FWE under control, application of our method
resulted in the discovery of eight novel CISs, which each have a probability less than 5% of being false detections.
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Introduction

Retroviral Tagging
In retroviral insertional mutagenesis experiments, genes

involved in the development of cancer are identified by
determining the loci of viral insertions from tumors induced
by retroviruses in mice [1,2]. After infecting a host cell, the
retrovirus inserts its own DNA into the host cell’s genome,
mutating the host cell’s DNA in the process. The mutation
may alter the expression of genes in the vicinity of the
insertion or, when inserted within a gene, alter the gene
product. When the affected gene is a cancer gene (either a
proto-oncogene or a tumor suppressor gene), activation of
the proto-oncogene or inactivation of the tumor-suppressor
gene can cause uncontrolled proliferation (cell division) of
cells. Eventually this may give rise to tumors. Throughout this
text, these cancer-causing insertions are referred to as
oncogenic insertions.

A tumor develops when an accumulation of oncogenic
insertions causes uncontrolled proliferation of a cell. As a
result, the tumor tissue contains many copies of the cell
bearing the oncogenic insertions that induced the prolifer-
ation, but only a few copies of cells carrying non-oncogenic
(random, background) insertions. Consequently, when the
DNA of the tumor is analyzed, one will encounter the
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insertion that induced proliferation in larger proportions
than insertions that do not. Regions in the genome that are
found to carry insertions in multiple independent tumors are
called common insertion sites (CISs). As a result, the locations
of the CISs are highly correlated with the location of genes
involved in tumor development. Cloning the flanking
sequences of the inserted virus to determine the insertion
loci, and analyzing these data to find significant CISs,
therefore enable the discovery of new candidate cancer
genes. This is summarized in Figure S1.

The Data
Over the last few years an extensive amount of insertional

mutagenesis data has been published [3–10]. These data have
been compiled in the Retroviral Tagged Cancer Gene Database
(RTCGD) [11] (http://RTCGD.ncifcrf.gov), and contains approx-
imately 4,000 insertions (accessed November 2005). The vast
majority of these insertions have been acquired in 20 different
screens that each analyzed the insertions using their own
definition of a CIS, which sometimes includes manual curation.

Due to noise in the data, not all insertions are informative.
In the idealized case, oncogenic insertions are present in
every tumor cell (since these cells are all copies of the cell
with the initial oncogenic insertion that induced the tumor),
whereas background insertions are only present in a small
proportion of the tumor cells. Although this implies that the
probability of finding a non-oncogenic insertion is far lower
than for an oncogenic insertion, it may still occur that a non-
oncogenic insertion is found. This results in non-informative
insertions, the noise. Moreover, when a non-oncogenic
insertion happens early in the tumor development phase,
i.e., co-occurs in the same cell with one or more oncogenic
insertions, there will also be many copies of this non-
oncogenic insertion in the final tumor. Consequently, the
probability of mapping this insertion will increase dramati-
cally. This phenomenon is called piggy-backing. Due to piggy-
backing, it is required that an insertion at a certain locus
occurs in more than one tumor, since this greatly reduces the
probability of finding a CIS that is not causal for the tumor.

Modeling Common Insertion Sites
A CIS is defined as a region in the genome that has been hit

by viral insertions in multiple independent tumors signifi-
cantly more frequently than expected by chance (schemati-
cally illustrated in Figure 1). Ideally, CISs are identified
because insertions in this region induce an oncogenic
mutation that affects nearby cancer genes. Cancer genes
may, however, be affected from various regions around or
within the gene. It is yet unclear what determines the width of
these regions, but it is certain that there does not exist one
such width applicable to all cancer genes. This biological
variance should be accounted for when evaluating the
statistical significance of CISs.
For the analysis of the individual screens in the RTCGD,

previous methods used one, two, or three windows of fixed
size, and obtained an estimate of the number of false CISs by
using Monte Carlo simulation [9] or the Poisson distribution
[8]. When the amount of data (insertion sites) increases, as is
expected in the near future, these analyses will suffer from an
increase in the probability of finding false CISs. To reduce the
number of false detections, the window size has to be
decreased, such that the method performs at the desired
error level. This type of error control is undesirable, since
this results in a mismatch between the new, decreased,
window size, and the biologically relevant window size (the
scale of the putative CIS), and hence may cause CISs to be
missed. Therefore, methods for detecting CISs should be
capable of keeping control of the probability of detecting
false CISs, independent of the scale of the putative CIS.
The definition of a CIS depends on some expectation of the

insertion rate associated with non-CIS regions. For this
reason, we have to make assumptions about the background
insertion distribution, i.e., the distribution of insertions
under the assumption that there is no proliferative selection.
In current methods, this distribution is assumed to be
uniform, i.e., viral inserts show no preference for specific
regions in the genome. Various authors suggest, however, that
viral inserts do show local biases [12–15]. Specifically, it is
suggested that murine leukemia virus (MLV) favors integra-
tion near transcription start sites (TSSs) due to local
recognition of genomic features [14,15]. When the goal is to
identify the regions that are involved in the tumor develop-
ment process, these so called hot spots should be corrected
for [16].
Summarizing, we state that, for the detection of CISs in

retroviral insertional mutagenesis data, a framework is
needed that 1) evaluates significance at any desired (bio-
logically relevant) scale, 2) does so while keeping control of
the error (since in the near future a significant increase in
these data is expected), and 3) provides the possibility of
including a background distribution, enabling compensation
for the background bias. In this study, we propose a kernel
convolution (KC) framework that meets the criteria outlined
above. We apply this framework to the data of all the screens
in the RTCGD combined, as if they originated from one
screen. This gives us the opportunity to evaluate the method
for large amounts of data. Indeed, the method rejects 53% of
the CISs that do not reach the significance level in the
combined set of screens. While keeping the family-wise error
(FWE) under control, the method still revealed eight new CISs
that are significant across the different screens. In addition,
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Synopsis

A potent method for the identification of novel cancer genes is
retroviral insertional mutagenesis. Mice infected with slow trans-
forming retroviruses develop tumors because the virus inserts
randomly in their genome and mutates cancer genes. The regions in
the genome that are mutated in multiple independent tumors are
likely to contain genes involved in tumorigenesis. As the size of
these datasets increases, conventional methods to detect these so-
called common insertion sites (CISs) no longer suffice, and an
approach is required that can control the error independent of the
dataset size. The authors introduce a framework that uses a
technique called kernel density estimation to find the regions in
the genome that show a significant increase in insertion density.
This method is implemented over a range of scales, allowing the
data to be evaluated at any relevant scale. The authors demonstrate
that the framework is capable of compensating for the inherent
biases in the data, such as preference for retroviruses to insert near
transcriptional start sites. By better balancing the error, they are able
to show that from the 361 published CISs, 150 can be identified that
have a low probability of being a false detection. In addition, they
discover eight novel CISs.
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we provide the nearby putative target genes that may play a
role in oncogenesis. Due to its generality, the method can be
applied to other types of high-throughput genome-wide data,
too; for example, to copy number aberration data or data
from insertional mutagenesis screens using transposons [17].

Results

The Kernel Convolution Framework
The steps involved in the application of the KC framework

can be summarized as follows (see Figure 2, for details see the
Methods section). A kernel function is positioned at every
insertion in the data. For any position in the genome, an
estimate of the number of insertions can be obtained by
summing all the kernel functions. Applying a KC effectively
smoothes the observed insertion in a region around this
insertion. This alleviates the problems associated with the
inherent data sparseness, since we use the observed insertion
to infer information about its direct neighborhood. Inser-
tions occurring in each others vicinity will produce a higher
peak in the estimate of the number of insertions. This models
the fact that these insertions may all have an effect on a
nearby cancer gene. The kernel width, which controls the
smoothness of the estimate of the number of insertions, can
be seen as a scale parameter. By varying the scale parameter,
CISs of varying widths can be detected. The peaks in the
estimate of the number of insertions are indicative for the
location of putative CISs. Peaks are significant when they
exceed an amplitude threshold. This threshold is determined
based on a user-defined a-level, and the empirical null-
distribution of peak heights, which is obtained by random
permutation experiments. In addition to a uniform back-
ground distribution, this framework allows the inclusion of
any other background model in the computation of the null-
distribution, in order to compensate for possible background
bias. The probability of detecting false CISs is controlled by

applying the Bonferroni correction [18], by correcting the
user-defined a-level with the number of peaks in the resulting
density estimate. This ensures that the expected error is
controlled and is always smaller than the a-level, for any of
the scales used. In contrast to previous methods, CISs can
now be detected at any desirable (biologically relevant) scale,
while keeping the error under control.
Kernel function. Obviously, the choice of the kernel

function is an important design parameter in the CIS
detection. Various kernel functions (Gaussian, triangular,
rectangular, Barlett-Epanechnikov, etc.) have been proposed
for various applications [19]. Although in principle any type
of kernel function can be used, we will compare the often-
used Gaussian kernel function, the triangular kernel function,
and the rectangular kernel function. The Gaussian and
triangular kernel functions are ‘‘descending’’ kernels, which
have their maximum likelihood at the observed insertion
position. In addition, the Gaussian kernel is a smooth
function. The rectangular kernel function possesses sharp
flanks, which results in a discrete estimation of the number of
insertions. Notably, the use of the rectangular kernel function
bears resemblance to the approaches used in [8,9]. It is
important to evaluate the performance of some kernel
functions independent of any bias or noise. Therefore, we
will evaluate the performance of the KC framework with
artificially generated insertion data. In the text below, GKC,
TKC and RKC will refer to kernel convolution using the
Gaussian, triangular, and the rectangular kernel functions,
respectively.
Scale space. Since it is possible for CISs to be present for

large scale parameters (broad CISs), but not for small scale
parameters (narrow CISs), or vice versa, it is vital to consider
the significance of CISs for different scale parameters. We
propose a scale space approach in which the scale parameter

Figure 2. Schematic Depiction of the Kernel Convolution Framework

The insertions are convolved with a kernel function with a width
determined by the scale parameter. In principle any kernel function can
be used, but the Gaussian kernel function is depicted. The significance of
the peaks is evaluated using a null-distribution computed by means of a
random permutation of the data. This is done for a range of scale
parameters to obtain the CISs in the scale space.
doi:10.1371/journal.pcbi.0020166.g002

Figure 1. Schematic View of Insertion Data

(A) Schematic view of the mapped data of four tumors. Significance is
determined by the number of tumors which contain insertions in a
particular region. The geometric symbols represent the insertions and
are given a different shape for each tumor. The blue regions indicate
possible CISs.
(B) When considering a broad region, the number of insertions one
would expect to have occurred by chance is higher, and hence the
regions need to be hit in more independent tumors than for narrow
regions before significance is reached.
(C) Genes (indicated by the green bars) may be affected from various loci
around or within the gene, and there does not exist one distance over
which viral inserts act on their targets.
doi:10.1371/journal.pcbi.0020166.g001
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is varied across a range of values to gain information about
the ‘‘lifespan’’ of a CIS, while keeping the FWE at a
predefined level. The lifespan is defined as the range of scale
parameters for which the CIS is significant (exists). It will be
shown that the CISs with a long lifespan (i.e., the CISs that
appear for small as well as larger scale parameters) often
consist of different narrow CISs that are joined together
when increasing the scale parameter.

Plotting the CISs versus the scale parameter yields scale
space diagrams (see, e.g., Figure 3). Horizontally, the locus in
the genome is plotted; vertically, the scale parameter. A CIS is
represented by a horizontal line connecting the start and end
positions of the CIS, defined by the intersection of the
estimation of the number of peaks with the threshold. The
vertical positions of these lines correspond to the scale
parameter for which this CIS was found to be significant. The
location of genes is also displayed in the scale space diagram,

providing the opportunity to identify the genes that could be
affected by a detected CIS, the relative location of CISs to
genes, and the range across which a gene can be affected by a
CIS. To enable comparison with the CISs from the RTCGD,
we define a ‘‘cross scale CIS’’ (csCIS) as a unique region in the
genome classified as a CIS by at least one scale parameter.
Background correction. As mentioned before, MLV favors

integration near TSS. Consequently, the location of TSS may
be a good predictor for integration hot spots. We therefore
explore a background model which uses the locations of the
59 ends of the genes annotated in ENSEMBL for background
bias correction. Although it has been shown that the viral
insertions prefer integration near the 59 end of active genes
[14,16], we used all genes for our background correction,
since there is no information available about which genes
were active during integration. There are, however, more
(unknown) factors influencing the selective behavior of MLV

Figure 3. The Myc Locus on Chromosome 15

(A) The blue line represents the estimated number of insertions as a function of position for a certain region. The red line depicts the threshold
associated with an a-level of 0.05.
(B) CISs are depicted by means of vertical lines. From top to bottom these represent: the CISs for the current scale (30k), the csCISs, the CISs from the
RTCGD, the insertions, and the genes (top and bottom strand separated).
(C) Scale space diagram. The vertical axes of the scale space has a logarithmic scale and indicates the scale for which the CIS was detected (only a subset
of scales was actually evaluated: [50 100 250 500 1 k 2.5 k 5 k 10 k 30 k 50 k 100 k 150 k] bp).
(D) Evaluation of the insertion distribution over four small scale CISs, identified by scale space analysis. Per screen we list the number of insertions that
fall within the small scale CIS. The screens are labeled consistent with RTCGD nomenclature.
doi:10.1371/journal.pcbi.0020166.g003
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[16]. This makes it difficult to reliably estimate a background
density, since absence of TSSs does not necessarily imply cold
spots. Furthermore, the data of the RTCGD consists of
insertions from screens with different types of the MLV that
may prove to have slightly different preferential site
selection. For these reasons, we prefer to use a background
model based on both the background (TSS) data and a
uniform data distribution, and hence only correct for the
presence of hot spots.

Results from Artificial Data
The performance and robustness of the KC framework in

conjunction with either the Gaussian, triangular, or rectan-
gular kernel function, is evaluated using artificial data. It
consists of a uniform background distribution and one
artificially generated CIS at a predefined locus. The insertions
within the CIS are generated using a uniform distribution. In

Figures S2 and S3 we have added the result for artificial CISs
generated from a normal distribution.
The following evaluation criteria are defined (for details

see the Methods section): 1) true positive (TP), the true
detection of the artificially generated CIS at a significance
level of 5%; 2) cross scale true positive (csTP), observing a TP
for at least one scale parameter; 3) false positive (FP), the
detection of a CIS at a location other than at the predefined
locus; and 4) cross scale FP (csFP), counting an FP at a locus
only once even if it occurred across multiple scales.
Figure 4A, 4C, and 4E clearly shows that for all the kernel

functions under consideration, the error is controlled to be
below the a-level of 5% for all the scales. The GKC controls
the errors at an average of 5%, whereas the TKC manifests a
slightly more conservative behavior, since the error is below
5% for all scale parameters. This becomes even more
apparent for the RKC, where the errors remain well below

Figure 4. Results from Simulation Experiments—True and False Positives

(A,B) Results for the GKC applied to artificial data.
(C,D) Results for the TKC.
(E,F) Results for the RKC.
The horizontal solid lines in (A), (C), and (E) show the 5% significance level, the dotted lines show the average number of csFPs. The legend shows the
different simulated CISs, stating the number of insertions NCIS that fall within the CIS of width WCIS.
doi:10.1371/journal.pcbi.0020166.g004
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the a-level for all but two scale parameters. Equally important
is the fact that the error is not constant across the scales, that
is, TKC and RKC suffer from a scale-dependent bias, although
for the RKC this bias is far more severe than for the TKC.

This can be explained from the discrete nature of the null-
distribution of peak heights (see Figure S4). Because the
rectangular kernel function does not smooth insertions
weighed by their distance to the observed insertion, a null-
distribution of peak heights results that is discretized to an
integer insertion count. A consequence of this is that, when
increasing the scale parameter gradually, there will be points
in the scale space for which the method suddenly becomes
more conservative, because at these transition points an extra
insertion is needed before significance is reached when
compared with a slightly smaller scale parameter. To a lesser
extent, this effect is also present for the triangular kernel
function (Figure 4C). The scale-dependent bias is only truly
absent when using the Gaussian kernel function, as can be
seen from Figure 4A.

Thus, using the number of peaks to correct for multiple
testing proves to keep the FWE below the predefined level of
5%, as can be seen from Figure 4A, 4C, and 4E. However, it is
the Gaussian kernel function that is capable of controlling
the error at 5%, independent of the scale. The results
obtained from simulating CISs from a normal distribution
also support these findings, as can be seen from Figure S2.

It should be noted that FWE is controlled per scale
parameter. A range of 12 scale parameters is used so that, if
for every scale parameter a unique FP error would occur, an
average number of combined FPs of 0.6 would be expected.
Plotting the average number of csFPs shows that this does not

occur (Figure 4A, 4C, and 4E, dotted line). This indicates that
the dependency between tests at different scales is high. For
this reason, we deem extra correction for the tests over
different scales unnecessary, and the resulting error accept-
able.
The scale-dependent bias and consequent conservativeness

of the RKC and TKC also has repercussions for the TPs
(Figure 4B, 4D, and 4F). From Figure 5A we note that among
the simulated CISs some borderline cases are present. The
case for which only two insertions are present in a region of
500 bp is not detected with 100% accuracy. For the broad
CISs with a low number of inserts, the results are similarly
mediocre. This is not surprising since for those CISs, the CIS
insertion rate approaches that of the background insertion
rate. Still, using a triangular or rectangular kernel function
seems to perform reasonably well, considering the average
number of csTPs approaches one for most of the simulated
CISs. However, with the FWE under control, it is the GKC
that manages to reach a maximal average number of TPs for
most scale parameters (Figure 4B) and most simulated CISs
(Figure 5A), outperforming the TKC and RKC.
From Figure 4B, 4D, and 4F it is clear that the methods

mostly reach a TP rate of one when the scale parameter is
approximately equal to the simulated CIS width, indicating
the specificity of the scale parameter to a certain CIS width.
This specificity property is evident from the fact that small
simulated CISs (light bars) are detected more frequently in
the simulations using small scale parameters, whereas the
large simulated CISs (dark bars) are mainly detected using
larger scale parameters. Notably, the range of scale param-
eters across which a CIS of a certain width is detected is
considerably larger for GKC and TKC than for RKC, which
indicates a larger degree of robustness.
From Figure 5B it can be seen that, when considering only

the TPs, the positional accuracy of the GKC and TKC are
slightly better than for the RKC. This can best be explained by
the fact that these kernel functions optimize the CIS location
by using the peaks of the estimated number of insertions, and
thereby incorporate the distribution of the insertion data in
the detection of CISs, whereas the RKC only uses the two
outer insertions of a CIS to position its center.
The results for a Gaussian distribution of insertions within

the CIS are given in Figures S2 and S3. GKC, TKC, and RKC
appear to perform only slightly worse. Still, the differences
between the different kernel functions remain obvious. These
results indicate that the method is relatively robust for
different insertional distributions within the CIS.
In conclusion, the GKC shows a clear advantage with regard

to the performance when applied to artificial data, some
advantage with regard to positional accuracy, but most
important, it shows a consistent error distribution across
the scales. For these reasons, we propose the GKC to be the
method of choice to analyze the data from the RTCGD.

Results from RTCGD Data
Scale space. Applying the GKC method to real data yields

scale space diagrams, such as the one depicted in Figure 3.
The same subset of scale parameters is evaluated as was used
for the experiments on artificial data. The CISs are displayed
in the scale space, which offers the opportunity to evaluate
the lifespan of CISs across multiple scales. For instance, we
learn that the locus near the gene to the right of the Pvt1 gene

Figure 5. Results from Simulation Experiments—Cross Scale True

Positives and Deviations from CIS Center

(A) Average number of csTPs per artificially generated CIS. Significant
errors are made for the borderline cases: the narrow CISs (500 bp), or
broad CISs (80k bp) with relatively few insertions. The GKC outperforms
the RKC and TKC for all simulated CISs.
(B) Average deviation of the detected CIS center from the actual
simulated CIS center normalized on the simulated CIS width plus the
scale parameter under consideration.
doi:10.1371/journal.pcbi.0020166.g005
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is only significant for scales larger than 2.5 k bp. It is also
possible that CISs are only significant for small scale
parameters (see Figure S5 for a region on Chromosome 11).
In the scale space diagram, we see that, for the Myc locus, it is
equally justified to state that there is one, or that there are
two, three, or four distinct CISs present, all depending on
which scale range is considered.

The added value of breaking a single large-scale CIS for the
Myc locus into a number of small-scale CISs can be illustrated
by examining the genotype specificity of the CISs at a scale of
10 k bp (four CISs). Interestingly, it is observed that Cdkn2a
null mice have a notable bias toward the first and third of
these small-scale CISs. This finding suggests that inserts in
these CISs functionally differ from those in the other two
CISs, either in the expression levels they induce or perhaps
via more complex effects on temporal regulation of Myc or
the abundance of differentially translated Myc isoforms. As
such these tumors might be a useful starting point to examine
tumor cells’ tolerance to Myc protein in the presence or
absence of the Cdkn2a; for instance, with respect to Myc-
induced apoptosis/senescence.

Integral analysis. In [8] a CIS is defined as observing either
two insertions within 26 k bp or three insertions within 250 k
bp. When applying this definition to the 962 insertions from
the combination of the screens from [8] and [7], we find 94
CISs. We can estimate the number of FPs using a permutation
procedure, as detailed in [9]. This results in an estimated
number of false detections equal to 11 (12%). Depending on
the type of followup experiment, this might still be accept-
able. The GKC detects 53 CISs, for which the probability of
being a false detection is always lower than 5%.

The limitations of the definition from [8] become evident

when applying it to the complete set of data (3,947
insertions). This results in the discovery of 451 CISs, but as
many as 244 (54%) are estimated to be false detections.
Clearly, this definition is unsuitable for larger datasets, such
as the one obtained by combining all the data from the
RTCGD (also illustrated in Figure 6A). Figure 6B shows that,
although our method does not find new CISs when compared
with the CISs resulting from the definition in [8], our method
selects the CISs that have a small chance of being false
detections. In other words, the KC framework balances the
number of detections and the number of false detections
more efficiently by controlling the FWE. While the total
number of detected CISs is reduced, the set of detected CISs
is guaranteed to be TPs with a probability imposed by the a-
level. This makes the method suitable for scaling to large
datasets.
Figure 7 shows the number of CISs for all scale parameters

individually, the number of csCISs, and the number of CISs in
the RTCGD. From the Venn diagram in Figure 8A we learn
that the integral analysis using the fully data-driven GKC
method results in ten novel CISs (Figure 8B also shows an
example) when compared with the published CISs from the
RTCGD. Further analysis of the CISs indicated that six of
these novel CISs could only have been discovered when
integrally analyzing the data, since the individual insertions
occurred in different screens. Two of the CISs consisted of
two insertions either at the exact same locus or within a few
base pairs (bp) of each other, in different tumors but from the
same screen. For some reason these CISs have been omitted
from the database by the authors of the screens. The two
remaining CISs consisted of insertions occurring in the same
tumor and can therefore not be called a CIS. These CISs can

Figure 6. Comparison with Previous CIS Definition

(A) Plot of the increase of the error as a function of the screen size, when using the definition from [8], computed using the Poisson distribution, or a
permutation approach. Also the results from the two individual windows used are given. Since the errors made by the two windows individually are not
mutually exclusive, the Poisson estimate is an overestimate of the true error.
(B) Venn diagram comparing three different CIS definitions: a) the definition from [8] applied to the complete dataset, b) the csCISs resulting from the
GKC, and c) the published CISs from the RTCGD. The intersection between sets shows three counts (and corresponding percentages), indicating the
count for set a, b, and c, respectively. This is because the three sets of CISs used different definitions (at different scales) for a CIS, so that some CISs are
split up, and hence are counted twice.
doi:10.1371/journal.pcbi.0020166.g006

PLoS Computational Biology | www.ploscompbiol.org December 2006 | Volume 2 | Issue 12 | e1661536

Detecting CISs in Insertional Mutagenesis Screens



easily be removed by preprocessing the data and replacing
insertions close together, but within one tumor, by the
median insertion. Table 1 summarizes the results. We have
annotated this CIS table with nearby putative target genes
which might play a role in oncogenesis. Notably three of these
are genes that play a role in MAP kinase signaling, whilst
others have roles in Wnt signaling, lymphocyte development,
and cell cycle. Several genes also show homology to known
oncogenes.

As expected, the total number of detected CISs is reduced
as a consequence of the control of the FWE. The discarded
CISs (53%) are not necessarily all false detections; many of
them may be screen-specific CISs that consisted of only few
insertions and did not reach significance when we integrally
analyzed the data. Also, some of the CISs in the RTCGD were
found using human interpretation of the insertions. The GKC
can also be applied to any relevant subset of the data,
although a minimum of approximately 800 insertions is

required to reliably estimate a null-distribution within a
reasonable timeframe.
Background correction. Additionally, the background bias

was removed using the procedure described in the Methods
section. Based on the results depicted in Figure 7, we can
conclude that for small scale parameters no CISs were
discarded. This is in accordance with the background bias
model used in the analysis: a Gaussian distribution of 65 k bp
does not justify the removal of small CISs (see also Figure S6).
For larger scale parameters, however, CISs exist that do not
reach the background-corrected threshold for significance.
When looking across the scales, the background bias
accounted for a total of ten csCISs. It is important to note
that three of the rejected csCISs are among the previously
mentioned newly discovered CISs. When correcting for the
background bias, we therefore find five novel CISs, but this is
only based on the TSS as a model for the background. In
Figure 8, an example of a corrected csCIS is given that would
have been significant across two scales (30 k bp and 50 k bp),
but did not reach the background-corrected threshold in
both cases. Because we currently do not model cold spots, no
novel CISs were found using the background correction.

Discussion

Detection of CISs in large retroviral insertional muta-
genesis screens at acceptable false detection rates necessitates
correction for multiple testing and renders manual curation
of CISs impractical. Current methods do not control the
number of falsely detected CISs without changing the scale of
the putative CIS, and fail when applied to large datasets. In
this paper, this is solved by introducing a KC framework
capable of discovering statistically significant CIS, while
controlling the FWE for any biologically relevant scale.
Because the KC framework controls the error per scale, it is
capable of analyzing the data in the scale space, allowing the
discovery of narrow as well as broad CISs.
We evaluated the performance of the KC framework using

three often-used kernel functions: the Gaussian, triangular,

Figure 8. Example of Novel CIS and Background Corrected CIS

(A) Venn diagram comparing the csCISs and the CISs in the RTCGD. For reasons explained in Figure 7, the intersection shows two counts.
(B) An example of a CIS that consists of three insertions from three independent screens, and therefore is only detected when integrally analyzing the
data.
(C) Venn diagram comparing the csCISs with and without applying background correction.
(D) An example of a csCIS, that was also included in the RTCGD, and is rejected based on the background-corrected threshold. The small vertical bars
(red) in the genes denote the 59 ends of genes, and a star denotes a corrected CIS. Since we are only interested in correcting regions that are putative
CISs, a background-corrected threshold is only computed for peaks in the estimated number of insertions. The corrected threshold is given by the
horizontal dotted line above the peak.
doi:10.1371/journal.pcbi.0020166.g008

Figure 7. Number of CISs per Scale Parameter

Number of CISs for Various Scale Parameters (Corrected and Uncor-
rected), the csCISs, the Background-Corrected csCISs, and the CISs from
the RTCGD. Background correction only has effect at larger scales.
doi:10.1371/journal.pcbi.0020166.g007
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and rectangular kernel functions. From the results obtained
using artificial data, we conclude that the KC framework is
capable of keeping the FWE under the desired error level, for
a range of different CISs and scale parameters. The GKC,
however, performs most robustly, since it is capable of
controlling the error in an unbiased fashion across the scales.
This is highly desirable when analyzing the data in a scale
space. Additionally, the TKC and GKC show better positional
accuracy when compared with the RKC.

To test the performance of the method on a large dataset,
we used the GKC to integrally analyze the data from the
RTCGD. This resulted in the discovery of CISs that are
significant across the screens according to a consistent
definition, have a low probability of being false detections,
and can be analyzed in the scale space. As a consequence,
53% of the CISs previously published in the RTCGD did not
reach significance in the combined dataset. Among the
discovered CISs are eight novel CISs, of which six could have
only been found when we integrally analyzed the data. Three
of those might be attributed to the background bias, but this
is based on too little evidence. For these novel CISs, the
putative targets have been provided.

The KC framework is flexible enough to incorporate a
background bias correction. Currently, data to base the
background model on is lacking. For instance, the effect of
active genes being favored integration targets cannot be
incorporated without the data from experiments assessing
which genes are active during integration. Mining data from
infected cells that did not yet show proliferative selection,
independent from the tumor data, and using these in the
background bias correction will circumvent these problems.
Still, making some assumptions about the background bias
model resulted in the rejection of ten csCISs, but verification
whether only true hot spots were corrected should be
conducted.

As an additional benefit, the KC framework excels in

visualizing the results, allowing the biologist to inspect the
smoothed insertion estimate around interesting loci in the
genome. Plotting the CISs in the scale space by means of scale
space diagrams yield a valuable visualization tool for the
biologist, showing the lifespan of CISs across a range of values
of the scale parameter. This enabled the detection of screen-
specific biases toward small-scale CISs. Together with the
insertion locus relative to the neighboring genes, this
provides useful information in determining the target of
the insertional mutations.
Recently, some attention was given to multi-experiment

analysis in the detection of significant copy number aberra-
tions across experiments in array-CGH data (STAC algorithm
from [20]). The STAC algorithm is designed for data
containing aberrations (either deletions or amplifications)
obtained by thresholding the copy number measurements.
Next, it detects regions with overlap between stretches of
aberrations across different samples. Although this makes it
unsuitable to apply to, for instance, insertion data (since
insertions only rarely exactly overlap between samples), the
KC framework may be applied to copy number data. For this
purpose the kernel will need to be tailored to the data type.
Investigating the rules that govern the choice of the kernel
function for different data types will thus further increase the
usability of the KC framework as a multi-experiment analysis
tool. To this end, the use of more advanced nonparametric
density estimators may be investigated. Specifically the use of
wavelet kernel-density estimation is of great interest.

Materials and Methods

Kernel convolution framework. Convolution of the insertion data
with a kernel results in a smoothed estimate of the number of
insertions x̂ at position g:

x̂ðgÞ ¼
XN
n¼0

Kðg � dnÞ with g ¼ ½0; :::;G� ð1Þ

Table 1: Overview of the Novel CISs Detected by GKC

Chromosome Position Number of

Tumors

Number of

Screens

Hot

Spot

Ensembl ID Putative

Targets

Description/

Function

1 183503160 3 2 No ENSMUSG00000039384 Dusp10 MAP kinase signalling

2
25196317 1“ 1

No
ENSMUSG00000026965;

ENSMUSG00000026966

Anapc2;

Ssna1

Cell cycle progression; autoantigen in

Sjogren’s syndrome (autoimmune disorder)

2 92078456 2 2 No ENSMUSG00000027223 Mapk8ip1 MAP kinase signalling

5 144058577 2 1§ No ENSMUST00000071421;

ENSMUSG00000038770

XP_124689.1

AW146299

Contains RasGEF domain;

contains armadillo domain

7 24106914 2 1§ No ENSMUSG00000037463 Fbxo27 Ubiquitin ligase

7 25828622 4 4 Yes ENSMUSG00000064109 Hcst Hematopoietic cell signal transducer

ENSMUSG00000030579 Tyrobp TYRO protein tyrosine kinase binding protein

8 69310147 6 5 Yes ENSMUSG00000036120 Rfxank MHCII complex regulator, mutated

in bare lymphocyte syndrome

10 80754746 3 3 Yes ENSMUSG00000003345;

ENSMUSG00000003348

Csnk1g2

Mobkl2a

Wnt signalling cytokinesis/cell cycle exit

11 103084866 1“ 1 No ENSMUSG00000020941 Map3k14 MAP kinase signalling

17 32705243 3 3 No ENSMUSG00000007029 Vars2 Valyl-tRNA synthetase 2

The number of tumors in which insertions were found that contributed to the CIS and the number of different screens these insertions originated from are given. Also, the result of
applying the background correction, as described in the main text, is given. We learn that the integral analysis using the GKC method results in ten novel CISs. Six of these novel CISs could
only have been discovered when integrally analyzing the data, since the individual insertions occurred on different screens. Two of the CISs marked by § consisted of two insertions either
at the exact same locus or within a few bp of each other, in different tumors, but from the same screen. The two CISs marked by “ consisted of insertions occurring in the same tumor and
can therefore not be called a CIS. Additionally we provide putative target genes including a short description.
doi:10.1371/journal.pcbi.0020166.t001
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where K(�) is a kernel function, dn is the position of the nth insertion,
N is the total number of insertions, and G is the genome length.
Smoothing the observed insertions in a region around the position of
insertion models two important phenomena. First, it models the fact
that observing an insertion also contains information about its direct
neighborhood. Because there is a limited number of observed
insertion positions (data sparseness), it is important to exploit this
information. Second, the distance across which insertions can act on
a specific target gene is not fixed. There may exist multiple regions of
varying widths within or around a gene for which an insertional
mutation alters the function of the gene. By smoothing the observed
insertions, the joint effect of the insertions on the target gene is
incorporated in the model.

Kernel function. The design of the appropriate kernel function is
important. Since we are estimating the number of insertions, rather
than a density, we choose to normalize the kernel function such that:
K(0) ¼ 1, rather than the more common normalization:Z
8z
KðzÞdz ¼ 1, which produces the probability density estimate first

proposed by Parzen [21]. Furthermore, in this study, we assume that
there is no apparent bias to either the left or the right side of the
observed insertion. This constrains the possible kernel functions to
symmetrical functions.

Nondescending kernels that have sharp flanks (e.g., rectangular
kernels), can only result in discrete (or even integer) estimations of
the number of insertions. In this study we show that, although the
error is controlled to be below the a-level, non-integer estimations of
the number of insertions allow a less conservative and more unbiased
control of the error across different scales. Nondiscrete estimations
of the number of insertions can be obtained by using a descending
kernel function (e.g., Gaussian, triangular kernels) that has its
maximum likelihood at the observed insertion. Lastly, smooth kernel
functions give more robust local maxima in x̂ at the loci of interest,

whereas nonsmooth kernels (e.g., triangular) display many noisy local
maxima.

In this study the following well-known kernel functions are used
and compared:

Gaussian : KðzÞ ¼ e�2z
2=h2

Triangular : KðzÞ ¼

�
� jzj

cth
þ 1 for jzj, cth

0 otherwise

Rectangular : KðzÞ ¼
1 for jzj, crh=2

0 otherwise

( ð2Þ

where h is the kernel width and ct and cr are normalization factors for
the width of the kernel function. Because a range of scale parameters
is used, the normalization of the width of the kernel functions is not
crucial, as long as the range of scale parameters is chosen such that all
relevant scales are covered. Here, we choose the normalization factor
such that the surface under the kernel functions is equal, that is ct¼cr
¼ 1

2

ffiffiffiffiffiffi
2p
p

.
Null-distribution. The null-distribution is estimated by a permu-

tation-based analysis of the insertion data (see Figure 9A). More
specifically, the KC is applied to a uniform random permutation of
the insertion data. From this result an estimate is made of the
distribution of peak heights (Figure 9B). This distribution approx-
imates the null-distribution since it estimates the probability of
finding a peak with a certain height in random data. Formally, we
state the null-hypothesis as follows
Hypothesis 1. Null-hypothesis KC

H0 : l0 ¼ lobservedðgÞ

where l0 is the mean height of the peaks in the permuted insertion
data and lobserved ¼ x̂ (g), the observed height of the peak. The null-
hypothesis is rejected if the observed height of the peak significantly
exceeds the mean height of the peaks in the permuted data (one-tailed
test). Significance is guaranteed by thresholding the smoothed
estimate of the number of insertions with an amplitude threshold
for the peaks. This threshold is established by determining the peak
height associated with the a-level in the empirical cumulative
distribution function (CDF) calculated on the peaks in the permuted
data (Figure 9D).

Multiple testing correction. The KC introduces dependencies
between bp. A Bonferroni correction will therefore produce overly
conservative results. When this dependence is removed by only
evaluating the peaks, applying the Bonferroni correction to the p-
values obtained for each peak can be justified. The number of tests,
and hence the Bonferroni correction factor, then equals the number
of peaks in the estimate.

Cross scale CIS. To determine the position of the csCISs, a single
linkage hierarchical clustering algorithm is applied to the CIS center
loci of the CISs, for all scale parameters. The resulting dendrogram is
thresholded at a linkage distance equal to the highest scale
parameter, to ensure good cluster separation (see Figure S7). When
a CIS is detected across more than one scale, the mean of the CIS
center positions is taken as the csCIS position, resulting in an
estimate of the unique CIS loci across the scales.

Background correction. Compensating for background bias re-
quires inclusion of local changes of the a priori insertion probability
in the null-hypothesis. In the KC framework, the correction of the
null-hypothesis is achieved by replacing the permutation of the
insertion data with a simulation process that incorporates the
background insertion distribution. Analogous to recent literature
[16], we collected the 59 end of the 27,602 genes in the Ensembl
database as a model of the TSS (Genebuild: March 2005, Assembly:
NCBI m34). We used a Gaussian density estimation with a kernel
width of 10 k bp (which is equivalent to Gaussian distributions with a
standard deviation of 6 5 k bp around the 59 end of the genes).

The simulation follows the steps outlined in Figure 10. First (Figure
10A), a density estimate of the TSS (with kernel width hbg) is
computed. Second (Figure 10B), the simulated background data is
acquired by generating a realization of the insertions according to
the density estimate from step A. Third (Figure 10C), the GKC
method is applied to this realization. Now, steps A and B are repeated
to yield a distribution of insertion density estimates that follow the
background for every location in the genome. Given this distribution
of background estimates, the threshold as a function of the genome
position can be obtained (Figure 10D). For clear hot spots, this
threshold will be rather high, ensuring that, in the real data, a very

Figure 9. Schematic Depiction of the Significance Analysis of the Density

Estimate of the Insertion Data

(A) The position of the N insertions is permuted.
(B) The convolution method is applied to the resulting permuted
insertion profile. The heights of all peaks are recorded.
(C) Step A and B are repeated. A distribution of the peaks in random data
results.
(D) The threshold is computed by determining the a-level in the
empirical CDF of the null-distribution. This threshold is applied to the
insertion estimate of the real insertion data, resulting in a series of
significant peaks.
doi:10.1371/journal.pcbi.0020166.g009
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high peak is needed before significance is reached. The null-
hypothesis can now be rewritten as follows:
Hypothesis 2. Null-hypothesis GKC corrected for background

Hbg
0 : maxðl0;lbgðgÞÞ ¼ lobservedðgÞ

where l0 is the mean height of the peaks in the random permutation
of the insertion data, lbg(g) is the mean height of the estimate of the
number of insertions in the simulated background data as a function
of the genome location g, and lobserved (g)¼ x̂(g) the height of the peak
in the smoothed insertion estimate. For the background-corrected
significance test, both the mean height of the peaks based on uniform
background as well as the mean height of the estimate of the number
of insertions in background simulated data needs to be significantly
exceeded. Significance is determined from the empirical CDF calcu-
lated on all simulation data as a function of the genome location g.
We maintain control of the FWE by adjusting the background
threshold with the same correction factor as used in the framework
without background correction, since again only peaks in the
insertion data are considered.

Artificial data experiments. To simulate the background, a uniform
distribution of Nartificial¼ 400 insertions is generated on an artificial
genome of Gartificial ¼ 2.6 3 108 bp long. The CIS is generated by
drawing NCIS insertions from a uniform distribution centered at
Gartificial

2 and bounded by 6 WCIS
2 .

The width and number of insertions of the CIS is varied to evaluate
the performance of the method for different types of CISs. WCIS is
varied from 100 bp to 100 k bp, covering the relevant CIS widths. NCIS
is chosen such that the methods operate at a critical point for which
some errors are made, enabling good comparison (for the exact
parameters see the legend in Figure 4 or Table S1). For each
experiment, 500 artificial datasets were generated to simulate the

effect of having different insertion distributions in the background
and within the CIS. For every artificially generated dataset, the
methods were employed for the following scale parameters: [50 100
250 500 1 k 2.5 k 5 k 10 k 30 k 50 k 100 k 150 k] bp. A significance level
of a ¼ 5% was chosen.

To evaluate the accuracy and performance of the methods, some
criteria are defined. Using artificial data allows us to evaluate the
correctness of a detected CIS, since the actual CIS locus is known. A
TP is defined as the true detection of the artificially generated CIS,
and is accomplished if the method identifies a CIS that has one of its
bounds within the bounds of the artificially generated CIS (given by
WCIS). Additionally, we define the csTPs as observing a TP for at least
one scale parameter (or equivalently: the detection of a csCIS).

An FP is defined as the detection of a CIS that does not pass the
test for a TP, and hence occurs in the background. It should be noted
that the probability of making at least one FP (the FWE) is controlled
per scale parameter. If the errors made per scale parameter were
mutually exclusive, this could result in an undesirably high overall
error. To analyze this behavior, the average number of csFPs is
computed, which counts an FP at a locus only once even if it occurred
across multiple scales.

The average number of TPs and FPs are computed by taking the
mean across the 500 simulations. Since FPs only occur in the
background, distinguishing between the different simulated artificial
CISs makes no sense. Therefore, the average number of csFPs is
computed by additionally averaging across all different experiments.

As a final performance measure, the positional accuracy is
evaluated. For this purpose, the deviation of the detected CIS center
with respect to the artificial CIS center is normalized to the artificial
CIS width plus the scale parameter WCIS þ h. If the artificial CIS is
detected more than once, the mean of the CIS center positions is
taken as the detected position.

Figure 10. Schematic Depiction of the Computation of a Background-Corrected Threshold

(A) The density of TSSs (the 59 ends of the genes) is computed using a fixed kernel width hbg.
(B) A new realization of insertions is generated using the density from step A.
(C) The GKC method is applied to the resulting insertion profile, yielding one realization of the background density estimate. Steps (A) and (B) and
applying the GKC are repeated N times to yield a distribution of background realizations. For every position on the genome, a CDF of these realizations
is computed and the threshold is determined based on the a-level.
(D) The location-dependent threshold is combined with the threshold based on uniform background. Finally, the smoothed insertion estimate of the
real data is thresholded with the resulting threshold.
doi:10.1371/journal.pcbi.0020166.g010
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Supporting Information

Figure S1. Schematic—and Idealized—Overview of the Tumor
Development Process and the Procedure to Acquire the Insertion
Loci

(A) The red insertions are oncogenic insertions, i.e., insertions either
activating oncogenes or inactivating tumor suppressor genes, causing
uncontrolled proliferation (cell division) of that cell, yielding a
tumor. The green insertions are non-oncogenic insertions. Note that
in every tumor cell we find this red insertion at exactly the same
locus, since these cells are copies.
(B) After removal of the tumor from the animal, the tumor cells’ DNA
is cleaved into small fragments using restriction enzymes. These
enzymes cut the DNA at certain nucleotide sequences, resulting in
small DNA fragments. An additional property of these enzymes is that
they cut exactly within the viral inserts, yielding fragments with viral
DNA on one end and host cells’ DNA on the other.
(C) The histogram shows the abundance of fragments. Because the
restriction enzymes cut frequently, many fragments result. However,
while only a limited number of insertions is present in each cell, by far
most fragments do not contain an insertion. Due to the proliferation
in (A), the fragments with oncogenic inserts will be present more
often than the fragments containing the non-oncogenic (random)
insertions. Note that in reality these abundances are not known.
(D) With a polymerase chain reaction (PCR), only the fragments
containing a viral insert are amplified (multiplied). There exist
various types of PCR reaction that may be used for this purpose, i.e.,
the linker-mediated PCR [22] or the inverse PCR (IPCR) [23 and
references herein]. In the first place, this results in removal of
fragments not containing a viral insert, and second, enough material
is generated for the sequencing.
(E) Shows the histogram of the abundances of DNA fragments after
the PCR. After PCR amplification, the oncogenic (red) insertions will
be more prevalent than others, and should all map to exactly the
same locus on the genome (defined as a contig). Due to noise in the
following steps (sequencing and mapping), this may differ by several
hundred bp. Singletons are sequences that individually map to a
certain locus on the genome and ideally consist of the non-oncogenic
insertions.
(F) Finally, a subset of the fragments is cloned, sequenced, and
mapped onto the known Ensembl mouse genome. It is highly
probable that an informative (oncogenic) insertion is sequenced
and mapped, because the abundance of DNA fragments containing
oncogenic insertions is a substantial proportion of the total number
of insertions. Thus it might occur that a non-oncogenic insertion is
sequenced and mapped, hence the data contains a certain amount of
noise.

Found at doi:10.1371/journal.pcbi.0020166.sg001 (294 KB EPS).

Figure S2. Results for Simulating CISs from a Normal Distribution

(A,B) Results for the GKC applied to artificial data.
(C,D) Results for the TKC.
(E,F) Results for the RKC.
The horizontal solid lines in (A), (C), and (E) show the 5% significance
threshold, the dotted lines show the average number of csFPs. The
legend shows the different simulated CISs, stating the number of
insertions drawn from a normal distribution of standard deviation:
rCIS.

Found at doi:10.1371/journal.pcbi.0020166.sg002 (871 KB EPS).

Figure S3. Results for Simulating CISs from a Normal Distribution

(A) Average number of csTPs per artificially generated CIS. Only the
CIS with three insertions with r¼1 k bp reaches 100% detection. For
all other CISs, some errors are made. The GKC outperforms the RKC
and TKC for all simulated CISs.
(B) Average deviation of the detected CIS center from the actual
simulated CIS center normalized on the simulated CIS width plus the
scale parameter under consideration.

Found at doi:10.1371/journal.pcbi.0020166.sg003 (380 KB EPS).

Figure S4. Depiction of the Null-Distributions

The threshold corrected for multiple testing is given by the horizontal
red line. Note that the threshold should change because when the scale
parameter increases the number of tests (the number of peaks)
decreases. This is not visible in Figure S4. From these figures it
becomes clear that when increasing the scale parameters there are
transitions (from 50 to 100, 5 k to 10 k, 50 k to 100 k, and 100 k to 150 k
bp) where an extra insertion is needed before significance is reached.
These transitions can also be clearly identified in Figures S2 and S3.

Found at doi:10.1371/journal.pcbi.0020166.sg004 (608 KB EPS).

Figure S5. Estimated Number of Insertions, CISs, and Scale Space
Diagram for a Locus on Chromosome 11

The blue line represents the estimation of the number of insertions
as a function of position for a certain region. The red line depicts the
0.05 threshold level. In the middle, the CISs are depicted by means of
vertical lines. From top to bottom these represent: the CISs for the
current scale (30k, green), the csCISs (cyan), the CISs from the
RTCGD (magenta), and the insertions (blue). The genes are not
shown on this large scale. At the bottom, the CISs are plotted in the
scale space. The vertical axis has a logarithmic scale and indicates the
scale for which the CIS was detected (only a subset of scales was
actually evaluated: [50 100 250 500 1 k 2.5 k 5 k 10 k 30 k 50 k 100 k
150 k] bp).

Found at doi:10.1371/journal.pcbi.0020166.sg005 (547 KB EPS).

Figure S6. Number of CISs That Fall within One Scale Parameter
from a TSS

CISs that fall within one scale parameter from a TSS are candidates
for correction. We clearly see that for small scale parameters only a
few of these CISs exist, indicating that it is not justified to correct
narrow CISs for background bias.

Found at doi:10.1371/journal.pcbi.0020166.sg006 (254 KB EPS).

Figure S7. Schematic Depiction of the Clustering Process of the CIS
Centers across the Scales to acquire the csCISs

A single linkage dendrogram is built from the CIS centers, and
thresholded at a linkage distance equal to the highest scale
parameter. The mean center position of the CISs within one of the
resulting clusters is defined at the locus of the csCIS. Note that a
csCIS arises if a CIS is present for at least one scale parameter. In case
a CIS is present for only one scale parameter, the csCIS locus is equal
to the CIS center position.

Found at doi:10.1371/journal.pcbi.0020166.sg007 (239 KB EPS).

Table S1. Overview of the Artificial Data Experiment Settings

NCIS denotes the number of inserts in an artificially generated CIS of
width WCIS, in bp. The rate is defined as NCIS / WCIS.
Found at doi:10.1371/journal.pcbi.0020166.st001 (45 KB DOC).
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