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Abstract: Since multispectral images (MSIs) and RGB images (RGBs) have significantly different
definitions and severely imbalanced information entropies, the spectrum transformation between
them, especially reconstructing MSIs from RGBs, is a big challenge. We propose a new approach, the
Taiji Generative Neural Network (TaijiGNN), to address the above-mentioned problems. TaijiGNN
consists of two generators, G_MSI, and G_RGB. These two generators establish two cycles by
connecting one generator’s output with the other’s input. One cycle translates the RGBs into the
MSIs and converts the MSIs back to the RGBs. The other cycle does the reverse. The cycles can
turn the problem of comparing two different domain images into comparing the same domain
images. In the same domain, there are neither different domain definition problems nor severely
underconstrained challenges, such as reconstructing MSIs from RGBs. Moreover, according to several
investigations and validations, we effectively designed a multilayer perceptron neural network (MLP)
to substitute the convolutional neural network (CNN) when implementing the generators to make
them simple and high performance. Furthermore, we cut off the two traditional CycleGAN’s identity
losses to fit the spectral image translation. We also added two consistent losses of comparing paired
images to improve the two generators’ training effectiveness. In addition, during the training process,
similar to the ancient Chinese philosophy Taiji’s polarity Yang and polarity Yin, the two generators
update their neural network parameters by interacting with and complementing each other until
they all converge and the system reaches a dynamic balance. Furthermore, several qualitative and
quantitative experiments were conducted on the two classical datasets, CAVE and ICVL, to evaluate
the performance of our proposed approach. Promising results were obtained with a well-designed
simplistic MLP requiring a minimal amount of training data. Specifically, in the CAVE dataset, to
achieve comparable state-of-the-art results, we only need half of the dataset for training; for the ICVL
dataset, we used only one-fifth of the dataset to train the model, but obtained state-of-the-art results.

Keywords: spectral super-resolution; multilayer perceptron; cycle neural network; CycleGAN;
multispectral image; hyperspectral image; RGB image; image translation; image processing; color
vision; computer vision

1. Introduction
1.1. The Background

Different wavelength lights have various propagating, reflecting, and refracting prop-
erties. Multispectral images (MSIs) use distinct bands to record different wavelength
properties and contain affluent spectral information [1]. With the rich spectral information,
MSIs can help to solve problems that RGBs can not, such as MSIs for the retinal oximetry
measurements in four diseased eyes [2], the detection of adulteration with different grains
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in wheat products [3], the non-contact analysis of forensic traces [4], and the visualization
of latent traces in crime scenes [5].

Although MSIs have a broad application scope, acquiring them is a time-wasting,
complicated and expensive process. Tens or hundreds of MSI bands have to be taken one
by one, which consumes a significant amount of time and storage space resulting in big,
complicated, and expensive multispectral apparatuses.

On the other hand, RGB images (RGBs) have only three channels: blue, green, and
red. Additionally, they form other colors by composing the three primary colors with
different ratios, and their formation principle is different from that for spectral images.
Moreover, RGBs can be quickly and cheaply obtained by ordinary consumer cameras, such
as mobile phone cameras. Although the RGB images can give us a good color impression
about the objects or the scenarios, they contain scarce spectral information and have
many restrictions.

In sum, RGBs and MSIs have their pros and cons. It would be meaningful to create
a model that can perform bi-directional translations between RGBs and MSIs. However,
there are two significant challenges to be solved first.

The first challenge is that RGBs and MSIs have different definitions and formation
mechanisms. Although we can synthesize RGBs from MSIs with color matching functions,
they can work under limited circumstances, as long as there is sufficient visible light
(380 nm–700 nm) spectral information. In other circumstances, when we only have several
bands, such as near-infrared (NIR), infrared (IR), and ultraviolet (UV), it is difficult to use
the color matching function to synthesize a real RGB-like image [6]. Moreover, the color
matching functions are often too complex to accelerate in a parallel manner. Furthermore,
no color matching function can synthesize MSIs from RGBs directly [7].

The second challenge is that the spectral resolution of MSIs is much higher than that of
the RGBs’. MSIs often contain much more information than RGBs. One RGB composition
may map to many kinds of MSI composition named metamerism [8]. Reconstructing MSIs
from RGBs is a severely underconstrained problem.

Most previous related works meet a bottleneck when trying to improve reconstructing
MSI performance. As they treat the two reconstruction processes, RGBs->MSIs (converting
RGBs to MSIs) and MSIs->RGBs (converting MSIs to RGBs) as two separate processes
without any relations. They only concentrated on rebuilding MSIs from RGBs and ignored
the process of MSIs->RGBs, since they thought that MSIs->RGBs is obvious and no help
to reconstruct MSIs from RGBs. Thus, they did not discover the link between the two
processes. However, the two processes have a complementary relation. If we treat them
separately, we may lose a large amount of valuable information, which would lead to poor
reconstruction and miss the opportunity to solve the above two problems.

Our approach TaijGNN is inspired by the ancient Chinese philosophy “Taiji” [9] and
Cycle Generative Adversarial Network (CycleGAN) [10] and merged with some of our
recent considerations. It has two in-out ports and two generators. One port is for inputting
or outputting RGBs. The other port is for MSIs. Generator GMSI converts the RGBs into
MSIs. Generator GRGB converts the MSIs into RGBs. Moreover, the two ports and two
generators are formed into two cycles, (1) and (2).

RGB
(Original)

GMSI→ MSI′
(Generated)

GRGB→ RGB”
(CycleGenerated)

(1)

MSI
(Original)

GRGB→ RGB′
(Generated)

GMSI→ MSI”
(CycleGenerated)

(2)

Since the most important fact causing the above two challenges is that RGBs and MSIs
belong to two distinct domains, the conversions between them would be similar to the
conversions between images and labels. The two cycles, (1) and (2), ingeniously covert
the problem of two different domain conversion into the same domain conversion. As we
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know, it is not difficult to convert one image to itself in the same domain. In this way, the
two challenges can be solved naturally.

Moreover, most researchers believe that complex deep neural networks would im-
prove the models’ performance, and the more complex the neural networks are, the better
effect they will have. Therefore, their approaches have often adopted tens or hundreds
of convolutional neural network (CNN) layers with hundreds of residual network layers,
which leads to a long computing time and high power consumption [11–13]. According
to our thorough investigations and experiments, normal 2D convolutional operations
scarcely improve the spectrum reconstruction performance and make the generated im-
ages blurry. Therefore, in our generators, we remove the traditional convolution layers
and mainly adopt multilayer perceptron (MLP) architecture. The following experiments
(Section 4) prove that TaijiGNN based on MLP has a higher performance than the related
works based on CNN.

Additionally, unlike traditional CycleGAN, in TaijiGNN, we also compare the gen-
erated image with the paired ground truth image to enhance the generator’s training
performance. For example, in Cycle (1), when we used Generator GMSI to convert the RGB
into the MSI, we could calculate their mean absolute error (MAE) to update Generator GMSI .
On the contrary, the traditional CycleGAN can only use adversary networks to determine
if the generated images belong to the domain due to lacking the paired dataset. Moreover,
we found that the indirect adversary network learning efficiency is much lower than that
of direct supervised learning. Therefore, TaijiGNN eliminates the adversary network in its
architecture, dramatically increasing the training speed and the model’s performance.

Figure 1 shows TaijiGNN’s reconstruction performance. We used the trained model
to reconstruct an MSI from an RGB and integrated eight selected bands into one image.
Additionally, the reconstruction error map presents the degree of dissimilarity. More details
are provided in the following sections.

Ground Truth RGB
400nm 440nm 480nm 520nm 560nm 600nm 640nm 700nm

Ground Truth MSI
400nm 440nm 480nm 520nm 560nm 600nm 640nm 700nm

Reconstruction MSI
400nm 440nm 480nm 520nm 560nm 600nm 640nm 700nm

Reconstruction Error Map

0.10

0.05

0.00

0.05

0.10

Figure 1. An example of reconstructing a multispectral image from an RGB image.

1.2. The Contributions

Our contributions are mainly in the following three aspects:

• We proposed a new neural network, TaijiGNN (Taiji Generative Neural Network),
which takes advantage of cycled neural network architecture to convert the problem
of comparing two different domain images into comparing the same domain images,
which can supply a solid theory foundation to solve the two distinct domain image
translation problems.

• We effectively designed a multilayer perceptron neural network to substitute the
convolutional neural network when implementing the generators. Additionally, we
used solid experiments to prove that our MLP generators perform better than the
traditional generators based on CNN during spectral super-resolution.

• We innovatively eliminated the traditional CycleGAN’s identity loss to tackle the
different domain images with different dimensions and induced two consistency
losses in TaijiGNN to enhance the training performance.
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The remaining parts of the paper are organized as follows: First, we demonstrate
several related studies in Section 2. Then, the proposed approach is elaborated in Section 3.
Next, in Section 4, the qualitative and quantitative experiments and comparisons conducted
to assess our approach are described. Moreover, we discuss the proposed approach’s
limitations in Section 5. Furthermore, in the last Section 6, a summary and future work are
introduced. In Appendix A, we provide the details of TaijiGNN’s training and inferencing
performance information.

2. Related Work

As described in Section 1, direct spectrum translations between MSIs and RGBs have
many benefits. Many researchers have contributed to this area.

In 2014, Nguyen et al. combined whited balanced RGB images and the radial basis
function (RBF) network to reconstruct multispectral images. The performance of their ap-
proach is acceptable when the spectrum of illumination and reflectance is flat. Nevertheless,
when the spectrum becomes spiked, their method failed to maintain a good performance.
Their work also has some other restrictions, such as that all scenes are under the same
illumination [14].

Two years later, in 2016, with the RGB projection and the sparse dictionary of mul-
tispectral signatures, Arad et al. successfully improved the conversion of MSIs from
RGBs. They obtained top results at that time. However, their method must sample some
information from every RGB image and MSI to make the multispectral image prior to
reconstructing the MSIs, narrowing their applied fields. Additionally, their MSI recovery
quality heavily depends on the scenes [15].

The previous methods were overly reliant on all kinds of prerequisites, such as
the environmental factors or the device’s specifications. Once the prerequisites change,
they have to rebuild their models according to the new prerequisites. On the contrary,
deep learning approaches are data-driven. Once we finish the deep learning network
architecture design, it is not necessary to redesign the whole network even when the
scenes change. Re-training the model with the new dataset is the only necessary action.
Therefore, an increasing number of spectrum conversion approaches take advantage of
this recent technology.

Choi et al. leveraged an autoencoder to restore MSIs from RGBs in 2017. Their
approach avoided the trade-off between spectral accuracy and spatial resolution. However,
it only involves restoring hyperspectral images from compressive spectral images, but not
reconstructing the MSIs from the RGBs [16]. In the same year, Zhiwei et al. suggested
a unified deep learning framework named HSCNN, reconstructing MSIs from RGBs.
They used simple interpolation to upsample RGBs and leveraged the paired upsampled
RGBs and MSIs to train the CNN model. Furthermore, they declared that their approach
surpassed all previous approaches [17].

In 2018, Zhan et al. upgraded HSCNN’s RGB upsampling process from a handcrafted
operation to a simple CNN. They named their new approach “HSCNN+”. Additionally,
they replaced the HSCNN’s regular convolution layers with residual blocks or dense blocks.
Additionally, they gave the name “HSCNN-R” to the network with residual blocks and
named the network with the dense blocks “HSCNN-D” [18]. Moreover, HSCNN-D was the
winner, and HSCNN-R achieved second place in the NTIRE 2018 Spectral Reconstruction
Challenge [19].

In the same year, 2018, Berk et al. successfully produced a multispectral image from
an RGB image in the wild. They first assessed the sensitivity function from an RGB image,
and then proposed a classifier network to predict which function can be used to constitute
the image. Finally, they built a reconstruction model to convert the RGB image to the
multispectral image [20]. They obtained the seventh place in the NTIRE 2018 Spectral
Reconstruction Challenge, and they declared that their approach has the fewest layers and
the fastest speed.
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Moreover, Kin et al. demonstrated how to leverage the conditional GAN to conduct
bi-directional spectrum translation between multispectral images and RGB images in the
2019 Conference on Computer Vision and Pattern Recognition. Although they made
some progress in the spectrum reconstruction performance, they did not give a reasonable
explanation of how to supplement the lost multispectral information [21].

Recently, in 2020, in the “NTIRE Challenge on Spectral Reconstruction from an RGB
Image”, several new approaches emerged [22]. The champion, Jiaojiao et al., suggested
using the adaptive weighted attention network to restore the multispectral image from the
RGB image. Their neural network mainly consists of several dual-residual attention blocks.
Additionally, they obtained the best result in the “Clean” dataset and ranked third in the
“Real World” dataset [23].

Although the previous related papers have achieved some progress in reconstructing
spectral images, no one clearly explained how their approaches solve the underconstrained
spectrum translation in theory. Moreover, most related works neglect the differences be-
tween spectrum reconstruction problems and other image processing, try to use traditional
stacking and design complex CNN layers to solve the problem. However, since traditional
CNNs mainly perform convolutions on the 2D surface, except addition operations, there
are no convolutional operations on the spectral dimension. The relation among different
spectral bands may be overlooked. Additionally, deep neural networks may improve
the generator’s performance, but too many neural layers may cause a series of gradient
vanishing, overfitting, and long executing time problems. Furthermore, most of their works
only focus on reconstructing MSIs from RGBs, but ignore the process of reconstructing
RGBs from MSIs. In fact, the two directions, from MSIs to RGBs and the reverse, have
complementary relations. If we could take advantage of these relations, we could improve
the spectrum reconstruction. In the following sections, we try to solve the above problems
with our approach.

3. The Proposed Method
3.1. The Problem Analysis

Our target is to build a model to efficiently perform bidirectional translation between
RGBs and MSIs. To achieve this target, we need to solve two significant challenges. One
challenge is that RGBs and MSIs belong to two specific domains with different definitions
and synthesis rules. There is no direct mapping relation between the two domains. The
other is how to reconstruct the multispectral information, which does not exist in the RGB
image. Multispectral images have more abundant information than the RGBs.

Figure 2 shows the CIE 1931 RGB color matching function [24], which clearly shows
the relation between the RGBs and the MSIs. Any color pixel can be created by mixing
three primary colors—-red, green, and blue. On the contrary, multispectral pixels comprise
different wavelength light bands. Additionally, each band only records the luminosity
distribution of the specific wavelength light. Therefore, MSIs and RGBs have fundamentally
different definitions and formats. There is no direct mapping relation between them.

Additionally, Figure 3 demonstrates the second challenge. RGBs only have three
bands. However, MSIs have tens or hundreds of bands. Thus, the possible space of MSIs
is much larger than the possible space of RGBs. There is a massive information entropy
gap between the two domains. The multispectral images contain much more information
that does not exist in the RGB images. If we use RGBs to represent MSIs, we will meet the
“metamerism” problem, which means one R, G, and B band combination may map to many
MSI band combinations. The metamerism is an extremely underconstrained problem and
will make the model’s training hard to reach convergence.
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Figure 2. The CIE 1931 RGB color matching function [24].
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Figure 3. The difference of RGB and MSI image information entropies.

3.2. The Proposed Approach

To solve the above two problems, we proposed TaijiGNN. Since this idea is mainly
inspired by the cycle generative adversarial network (CycleGAN) and the ancient Chinese
philosophy Taiji’s concept, we first introduce and compare them. Table 1 shows the symbols
used in Figure 4.
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Figure 4. (a) The traditional CycleGAN’s schematic diagram [25]. (b) The TaijiGNN’s schematic diagram.

Table 1. The symbols table of Figure 4.

Symbol Meaning

x Original sample from X domain

y Original sample from Y domain

x̂ Sample generated by Generator F and paired with y

ŷ Sample generated by Generator G and paired with x

X Domain X

Y Domain Y

X̂ Sample generated by Generator F and unpaired with y

Ŷ Sample generated by Generator G and unpaired with x

G Generator, translate samples from domain X into domain Y

F Generator, translate samples from domain Y into domain X

DX Discriminator of domain X

DY Discriminator of domain Y

Figure 4a is the original CycleGAN’s schematic diagram, which has two cycles, x G→
Ŷ F→ x̂ and y F→ X̂ G→ ŷ. Generator G translates sample x of the domain X into sample Ŷ

of the domain Y. In the flow x G→ Ŷ F→ x̂, we use Ŷ instead of ŷ since there are no paired
datasets in CycleGAN; the generated sample belongs to domain Y, but is not specified to
one and has no direct mapping relation with the original x. Then, we translate the Ŷ into x̂
with Generator F. Here, we aim for the x̂ to be as close to x as possible, which can be used
to train Generators F and G. Moreover, we use the original Y and the generated Ŷ to train

Discriminator DY and Generator G. A similar occurred in the backward cycle y F→ X̂ G→ ŷ.
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The most significant advantage of the original CycleGAN is that it can translate un-
paired images by the cycle structure between two different domains, such as the horse and
zebra [10]. However, in our case, we have paired RGBs and MSIs, which is a great advan-
tage. Due to this advantage, we designed a novel supervised cycle-consistent generative
neural network, “TaijiGNN”.

Figure 4b shows TaijiGNN’s schematic diagram, which also has two cycles, forward,

x G→ ŷ F→ x̂ and backward, y F→ x̂ G→ ŷ. The most significant difference highlighted in
red shows that when we use G to translate the x into samples of domain Y, ŷ replaces
the Ŷ. Since paired datasets are available in this case, we can use L1 loss to enhance the

G’s training performance. A similar situation occurs in the backward cycle y F→ x̂ G→ ŷ.
Moreover, we omit the two discriminators DX and DY, as in our case, we have the paired
dataset, L1 loss is enough to train a good model in the TaijiGNN. Extra adversary networks
will bring in more noise and reduce the model’s performance.

Moreover, we anticipate that TaijiGNN will have better performance than the original
CycleGAN since TaijiGNN has extra direct paired image consistency loss information,
enhancing the generator’s training efficiency. Therefore, each generator of TaijiGNN can
learn from the cycle-consistency loss of the source domain data and the consistency loss of
the target domain data simultaneously.

Although the MSI domain and the RGB domain have different definitions and possible
space sizes, its cycle architecture of TaijiGNN successfully converts comparing different
domain images into comparing the same domain images. In the same domain, there are no
domain matching and information supplement problems.

Furthermore, we named our neural network “Taiji” as it was mainly inspired by the
ancient Chinese philosophy term “Taiji”. Taiji consists of two polarities, “Yang” (“Positive”)
and “Yin” (“Negative”). Additionally, the “Yin” and “Yang” like atoms constitute every
system in the universe. Within each “Yin” and “Yang” system, the “Yin” and “Yang” have
opposite properties and continue to move and change all the time. The most important
factor is the two polarities do not have strict boundaries and can be converted to each
other under some circumstances. In the system, the “Yin” and “Yang” give rise to and
complement each other to make the system reach a dynamic balance [9]. We think Taiji’s
characteristics and working mechanism are consistent with our cycle-consistent generative
neural network. The two generators act as Taiji’s two polarities, and during training, the
two generators compose a whole system and help each other converge. Therefore, we
name our neural network “TaijiGNN”.

3.3. The Detailed Implementation of the Approach
3.3.1. The Model Architecture

Figure 5 is the detailed implementation of TaijiGNN. It mainly consists of two genera-
tors, G or GeneratorRGB (converting the MSI to the RGB) and F or GeneratorMSI (converting
the RGB to the MSI). One generator’s output is connected with the other’s input. From
different directions, they form two cycles, Cycle (3) and Cycle (4).

x
(Original)

G→ y′
(Generated)

F→ x”
(CycleGenerated)

(3)

y
(Original)

F→ x′
(Generated)

G→ y”
(CycleGenerated)

(4)

The significant difference between the standard CycleGAN and TaijiGNN is that
TaijiGNN has two extra L1 consistency losses, Loss LRGB (5) and Loss LMSI (6). These
two losses can help to improve the two generators’ performance by calculating the mean
absolute error (MAE) between the ground truth image and the generated image.
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Figure 5. The detailed implementation of TaijiGNN.

The consistency loss from MSIs to RGBs:

LRGB = ‖G(x)− y‖1 =
∥∥y′ − y

∥∥
1 (5)

The consistency loss from RGBs to MSIs:

LMSI = ‖F(y)− x‖1 =
∥∥x′ − x

∥∥
1 (6)

Additionally, we keep the two cycle consistency losses, Loss Lcycle_MSI (7) and Loss
Lcycle_RGB (8) in our approach. Loss Lcycle_MSI guarantees that the cycled generated image
MSI" is as close as the ground truth MSI when finishing Cycle (3). Similarly, Loss Lcycle_RGB
ensures that the cycled generated image RGB" is as close as the ground truth RGB in
Cycle (4).

The cycle consistency loss from MSIs via RGBs to MSIs:

Lcycle_MSI = ‖F(G(x))− x‖1 =
∥∥F(y′)− x

∥∥
1 =

∥∥x′′ − x
∥∥

1 (7)

The cycle consistency loss from RGBs via MSIs to RGBs:

Lcycle_RGB = ‖G(F(y))− y‖1 =
∥∥G(x′)− y

∥∥
1 =

∥∥y′′ − y
∥∥

1 (8)

Moreover, unlike the normal CycleGAN, TaijiGNN eliminates identity loss. In the
normal CycleGAN, the input and output have identical dimensions; however, the RGB and
the MSI have different dimensions in our scenario. It is neither meaningful nor possible to
compare two images with different dimensions.

We also cut off two discriminator losses of the traditional CycleGAN. The reasons for
this are as follows: the traditional CycleGAN does not have a paired dataset, so it must
use the discriminator loss to help to train the generator. However, in our scenario, since
we have a paired dataset, some L1 losses, such as MAE, have a higher performance than
the discriminator loss. Additionally, training through discriminator losses is an indirect
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training method, which will make the generated image blurry. Overall, direct training is
better than indirect training.

The two generators of TaijiGNN take the core roles of converting images between
the MSI domain and the RGB domain. The choice of architecture directly determines
the performance of the system. We tried several mainstream architectures, including the
convolutional neural netwok (CNN), residual neural network, U-Net and Multi-Layer
Perception (MLP). The MLP has the best performance.

Regarding the above phenomenon, our explanation is as follows: In our scenario, the
main target is to produce the spectral super-resolution, not the spatial super-resolution. The
traditional neural networks based on CNN can effectively extract information distributed
on the two spatial dimensions, such as shape. However, the required spectral information
is distributed on the third dimension. The neural networks based on 1-D MLP focus on
extracting spectral features, neglecting the 2-D spatial information. Therefore, 1-D MLPs
often obtain better results than 2-D CNNs.

Based on the above analysis and our real verifications, TaijiGNN’s two
generators adopt MLP architecture. The detailed network architectures are shown in
Tables 2 and 3, respectively.

Table 2. The architecture of Generator FMSI .

Layer Input Output Activation Function

Dense RGB(3) 512 Leaky Relu

FMSI Dense 512 512 Leaky Relu

Dense 512 MSI(31) tanh

Table 3. The architecture of Generator GRGB.

Layer Input Output Activation Function

Dense MSI(31) 512 Leaky Relu

GRGB Dense 512 512 Leaky Relu

Dense 512 RGB(3) tanh

3.3.2. The Model Training

The core training goal is to make the two generators, GRGB and FMSI , converge. The
primary approach is to apply gradient descent on the previous four losses, LRGB (5),
LMSI (6), Lcycle_MSI (7), and Lcycle_RGB (8).

Figure 6 demonstrates the whole training flow of TaijiGNN. From Figure 6, we can

find that the whole training flow consists of two symmetrical cycles, Cycle x(MSI) G→
y′(RGB′) F→ x′′(MSI′′) marked with red solid and dash lines, and Cycle y(RGB) F→
x′(MSI′) G→ y′′(RGB′′) highlighted with black solid and dash lines. Since they are sym-

metrical, we only describe Cycle y(RGB) F→ x′(MSI′) G→ y′′(RGB′′) in detail.

Cycle y(RGB) F→ x′(MSI′) G→ y′′(RGB′′) starts from inputting an RGB image into
Generator FMSI , which obtains a reconstructed MSI image MSI′. After this operation, the
flow splits into two branches. One branch calculates LMSI by computing the MAE between
the original MSI and the generated MSI′. Additionally, when we obtain Loss LMSI , we can
apply gradient descents to update Generator FMSI . The other branch inputs the MSI′ into
Generator GRGB to obtain the cycled generated RGB′′ and then to calculate Loss Lcycle_RGB
by comparing the original RGB with the cycled generated RGB′′. Once we obtain Loss
Lcycle_RGB, we can apply gradient descents to update Generator FMSI , and Generator GRGB.

A similar training flow occurs in Cycle y(RGB) F→ x′(MSI′) G→ y′′(RGB′′).
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Figure 6. The detailed training flow of TaijiGNN.

Figure 6 demonstrates a classical TaijiGNN training epoch. In each training epoch,
Generator GRGB and Generator FMSI are updated three times, respectively. In detail,
Generator GRGB is updated by applying gradients, Loss LRGB, Loss Lcycle_MSI and Loss
Lcycle_RGB, respectively. Similarly, Generator FMSI is updated by applying gradients, Loss
LMSI , Loss Lcycle_RGB and Loss Lcycle_MSI . Therefore, after several epochs of training,
Generator GRGB and Generator FMSI eventually converge.

4. Experiments

The CAVE [26] and ICVL [15] are the two most classical spectral reconstruction ex-
periment datasets. To compare our work with state-of-the-art works equally and evaluate
our approach’s performance thoroughly, we also selected CAVE and ICVL as our exper-
iment datasets. We demonstrate the detailed experiment process and outcomes in the
coming subsections.

4.1. The Experiment Requisites

We list all the hardware devices and software involved in Tables 4 and 5, respectively.
Since the Graphics Processing Unit (GPU) plays a vital role in the training and the

inferencing, we provide a detailed introduction. Our GPU is Nvidia TITAN Xp, which has
3840 parallel computing cores with a 1582 MHz frequency in our experiment. The GPU
memory has 12 GB GDDR5, 11.4 Gbps speed, and 547.7 GB/s bandwidth. In this experi-
ment, since the image processing contains many high-density computing jobs, we leveraged
the GPU to accelerate the training and inferencing process. Moreover, in Appendix A, we
provide a summary of TaijiGNN’s performance on the GPU and the CPU.
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Table 4. The hardware list.

Hardware Models

Central Processing Unit Xeon(Intel) E5-1620 (3.5 GHz)

Graphics Processing Unit TITAN-Xp (NVIDIA)

RAM DDR4 32 GB (Samsung)

Mechanical Hard Disk Drive Westwood 4TB

SSD 512 GB (Intel)

Table 5. The software list.

Software Version

Operating system Ubuntu 18.04.5 LTS

Programming language Python 3.6.9

Machine learning framework Tensorflow with GPU 2.3.1

GPU programming framework Nvidia CUDA 11.2.0

4.2. The CAVE Dataset
4.2.1. The Dataset Processing and the Hyperparameters Setting

The CAVE dataset was created by Columbia University Computer Vision Laboratory.
It consists of 32 scenes taken indoor, and the scenes are divided into five sections: real
and fake, stuff, paints, skin and hair, and food and drinks. Each scene is constituted of a
multispectral image with 31 bands and an RGB image with 3 bands. The MSI’s 31 bands
span from 400 nm to 700 nm visible light at 10 nm intervals. Furthermore, each image’s
spatial resolution is 512× 512 pixels [26].

For easy processing and comparison, we first converted the original PNG image
dataset into the NumPy array, which contains 32 rows (scenes), 512× 512 (spatial resolu-
tion), and 34 columns (bands or channels). The 0–30 columns match the 400 nm, 410 nm,
. . . , 700 nm MSI channels. Simultaneously, the 31–33 columns map to the Red, Green, and
Blue channels. Moreover, according to the scene’s row number, we separated the dataset
into two equal-sized parts. Images with even indexes, 0, 2, 4, . . . , 30 were placed into one
group, whereas images, 1, 3, 5, . . . , 31, with odd indexes, were placed into another group.
We rotated to use the odd group and the even group to train and test the model. Generally
speaking, the amount of training data is proportional to the performance of the model.
Figure 7 demonstrates this phenomenon [27]. To achieve better performance, the training
and testing ratio is often set as 80%:20% or 70%:30%. However, increasing the ratio of the
training data unavoidably leads to overfitting results and restricts application domains.

We chose a more challenging method to split the CAVE, half for training, half for
testing, which is the same as in the work of Kin et al. [21]. Moreover, Kin et al.’s conditional
GAN is similar to our TaijiGNN. Both have generative network architecture. Therefore,
their work was selected as the primary baseline. Furthermore, Arad et al. created the ICVL
dataset and declared that they achieved advantage outcomes at that time [15]. Berk et al.
announced that they were the first to successfully reconstruct a multispectral image from
an RGB image taken in unrestricted configuration [20]. Therefore, Arad and Berk’s works
were also selected for comparison.

Moreover, we performed qualitative and quantitative evaluations of the bi-directional
conversion between the RGB image and the multispectral image in the experiment.

Additionally, the detailed training parameter settings were as follows: There were 300
training epochs, and the training and the inferencing batch size was 10,240. We adopted
the Adam optimizer, whose learning rate is 2× 10−4.
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Figure 7. The relevance between the amount of data and the model’s performance [27].

4.2.2. The Qualitative Evaluation

The qualitative evaluation was conducted in two stages: reconstructing multispectral
images from RGB images and the reverse. Compared with related work introduced in
Section 2, one advantage of TaijiGNN is that it can finish the above two spectral translations
simultaneously.

Figure 8 is the qualitative effect of reconstructing the MSI from the RGB with Generator
FMSI . As in [21], five spectral bands of image “beads” were chosen as samples. Additionally,
the ground truth input RGB image was shown in the top-left image of Figure 9. The five
selected bands span from 400 nm to 700 nm with approximate equal intervals. Since the
naked eye cannot identify lights with such subtly different wavelengths, it becomes a
prevalent and standard method to select several bands to present the qualitative spectral
reconstruction results [15,20]. Moreover, in Section 4.2.3, we calculated the RMSE for the
whole spectrum, from 400 nm to 700 nm, and drew the RMSE curve in Figure 10.

Additionally, we use the error map to present the degree of dissimilarity between
the ground truth image and the reconstruction image. The error maps were generated by
subtracting the original image from the forecast image. Additionally, we set the colormap
equaling “jet” to pseudocolor the error images. The blue represents the positive error, the
green signifies the zero error, and the red denotes the negative error. Furthermore, we
noticed that our MSI reconstruction images are clearer than those on the five selected bands
compared to the same qualitative experiment conducted by Kin et al.

Moreover, with Generator GRGB, we can quickly reconstruct RGBs from MSIs. Five
of the same images, “Beads”, “Food”, “Strawberries”, “Sponges”, and “Superballs” were
selected to evaluate the reconstruction quality of GRGB in Figure 9. Since we cannot evaluate
our result and that of Kin et al. by naked eye, we had to calculate every scene’s relative
RMSE and list them under the figure’s bottom line. The result is better than that of Kin
et al. [21].
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Figure 10. The RMSE wavelines of multispectral image restoration with the CAVE database.

4.2.3. The Quantitative Measurement

After a full investigation on the measurements of related research, we decided to
adopt the Structural Similarity Index (SSIM), Peak Signal-to-Noise Ratio (PSNR), and Root
Mean Square Error (RMSE) as the main quantitative metrics.

The dataset processing has been explained previously. We rotated odd position sam-
ples and even position samples to train and test the model. Additionally, the training and
testing were performed three times and the average value was calculated. We conducted
the experiments in two directions, RGB to MSI and MSI to RGB and compared our re-
sults with the following three state-of-the-art works: Berk et al. [20], Kin et al. [21], and
Arad et al. [15]. The final results are listed in Tables 6 and 7, respectively.
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Table 6. The quantitative measurement of converting RGB image to multispectral image [15,20,21].

Berk Kin Arad Ours

Method CNNs cGANs Sparse coding TaijiGNN

Percentage of training and testing - 50%:50% - 50%:50%

RMSE∼(0–255) - 8.0622 5.4 5.656

RMSE∼(0–1) 0.038 - - 0.022

SSIM 0.94 - - 0.975

PSNR 28.78 - - 33.91

Table 7. The quantitative measurement of converting multispectral image to RGB image [20,21].

Berk Kin Ours

Method CNNs cGANs TaijiGNN

Percentage of training and testing - 50%:50% 50%:50%

RMSE∼(0–255) 2.55 5.649 1.727

RMSE∼(0–1) 0.038 - 0.0068

SSIM 0.94 - 0.99

PSNR 28.78 - 45.07

From Table 6, a phenomenon is noticeable, the results of Arad et al. ranked first and
our results ranked second are very close. Our explanations are as follows:

First, Arad et al. did not clearly describe how they split the CAVE dataset for training
and evaluation. According to our speculation, their splitting ratio should be 70–80% for
training and 20–30% for testing. As shown in Figure 7, model training with more data
usually yields a higher performance. Therefore, their splitting ratio gives their model
more advantages.

Second, before training, the method of Arad et al. must first take a hyperspectral prior
sampled from each image. The CAVE dataset’s sampling ratio is 3.8% for every image,
which is equivalent to knowing the answers to some questions before testing. This kind
of method would be helpful to highly improve their model’s effectiveness. However, it
would easily lead to overfitting, causing it to be useless in reconstructing images in the
unknown dataset.

On the contrary, Kin et al. adopted the same splitting dataset ratio as us, which was
half for testing and half for training, and isolated the testing data and the training data
strictly, which indicated that the model during training would not receive any information
from the testing data. Therefore, TaijiGNN would have better performance in the unseen
dataset. Therefore, it is not accurate to conclude that the approach of Arad et al. is superior
to ours.

Moreover, Kin et al. adopted the same dataset splitting ratio as us. Compared
with their RMSE result, TaijiGNN was reduced 30% in converting the RGB image to the
multispectral image and reduced 69% in the reverse direction.

Furthermore, identical to Kin et al., we selected six different scenes, “Food”, “Beads”,
“Sponges”, “Strawberries”, “chart & Stuffed Toy”, and “Superballs”, to investigate the
reconstruction performance changing with the scene and the wavelength. Figure 10 demon-
strates the RMSE changes in the six scenes.

From Figure 10, we can find that the model reconstruction performances have some dif-
ferences in various scenes. However, the shapes of the RMSE curves are similar. Generally,
the generator performs better when reconstructing the band images whose wavelengths
are 450 nm–650 nm. We provide the following reasons for this: From the CIE 1931 color
matching function (Figure 2), we may notice that most red, green, and blue components are
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distributed mainly in the wavelength range of 450 nm–650 nm and allocate scarce elements
to the two ends of the spectrum. One pixel of RGB image comprises three primitive colors,
red, green, and blue, containing limited information about the two ends of the spectrum
that may cause bad reconstructing behavior near the two-end spectral zone.

4.3. The ICVL Dataset
4.3.1. The Dataset Processing and the Hyperparameters Setting

The ICVL dataset was created by the interdisciplinary Computational Vision Lab of
Ben-Gurion University. Its latest version consists of 201 scenes, most of which were taken
outdoors by a Kappa DX4 hyperspectral camera. Additionally, the dimensions of every
multispectral image are 1392 pixel height, 1300 pixel width, and 519 band depth. The
519 bands are distributed from 400 nm to 1000 nm in approximately 1.25 nm increments [15].

In this experiment, we adopted a reduced version of the ICVL dataset, supplied by
the authors [15]. The 519 bands were reduced to the 31 bands with approximately 10 nm
intervals from 400 nm to 700 nm, which has two benefits: decreasing the computation cost
and comparing them to former baselines easily [15]. Moreover, we used the CIE 1964 color
matching function to generate the RGB images from the 519 band MSIs and the 31 band
MSIs. The difference between them is too small to identify. The RMSE of the two kinds of
generated RGB images is approximately 0.00014.

First, we randomized the order of the 201 scenes and divided them into six groups.
Each of the first five groups, 1st, 2nd, 3rd, 4th, and 5th, had 32 samples. However, the 6th
group contains 41 samples. We iterated one of the 1st–5th groups to train the model and
the remaining four groups plus the 6th group to test the model. For instance, when taking
the 3rd group to train the model, the 1st, 2nd, 4th, 5th, and 6th groups were used to test
the model. This kind of dataset processing aims to make the evaluation thorough and non-
overlapping. Meanwhile, the splitting ratio of training and testing for the dataset reached
32:169, which means thirty-two samples to train the model and one-hundred-and-sixty-nine
samples to test the model.

Additionally, as in Section 4.2.1, every 32 image training group was further separated
into two equal-size parts. Images with even indexes, 0, 2, 4, . . . , 30 were placed into one
group, whereas images with odd indexes, 1, 3, 5, . . . , 31 were placed into another group.
We rotated the odd group and the even group to train and test the model.

Additionally, a further challenge was made to decrease the spatial resolution of
training samples from [1392 (height), 1300 (width)] to [512 (height), 512 (width)]. To
achieve the above target, we separate the original sample ([1392,1390]) into four equally
sized ([512, 512]) blocks, top-right, top-left, bottom-right, and bottom-left. For each time
training, we randomly selected one of the four blocks. In our experiment, we performed
the training four times to ensure all four blocks would be chosen. The final training group’s
dimensions became [32 (sample), 512 (height), 512 (width), 34 (MSI+RGB bands)]. However,
to compare the state-of-the-art works equally, the testing group’s dimensions were still
[169, 1392, 1300, 34]. Therefore, the ratio of the training samples and the testing samples
achieved 32:169. As far as we know, until now, no one adopted such a small splitting ratio
of training and testing in the ICVL dataset.

Furthermore, to completely assess the approach, bi-directional conversions between
the multispectral image and the RGB image were performed. Additionally, qualitative
and quantitative assessments were conducted simultaneously. Additionally, the works
of Zhiwei et al. [17], Arad et al.’s [15], and Berk et al.’s [20] were selected as references.
Moreover, Zhiwei et al. declared that their HSCNN’s outcomes surpassed those of other
works [17].

Similarly, the detailed training parameter settings were as follows: the training epochs
were 300, and the training and inferencing batch sizes were both 10,240. We adopted the
Adam optimizer, whose learning rate is 2× 10−4.
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4.3.2. The Qualitative Evaluation

The ICVL dataset reconstruction qualitative evaluation consists of two stages: recon-
structing the MSIs from the RGBs and the reverse. Before the experiment, the training data
and the testing data were effectively processed according to Section 4.3.1.

As the ICVL database was created by Arad et al., who claimed that their approach
obtained superior results [15]. Therefore, the work of Arad et al. was chosen to be the main
baseline. Figure 11 was created with Generator FMSI according to the format of Figure 4 in
the work of Arad et al [15]. Scene “BGU_0403-1419-1” and scene “prk_0328-1025” were
selected as the samples. Moreover, 620 nm, 540 nm, and 460 nm bands were selected to
exhibit the qualitative restoration performance. The top-left 1st RGB-image “prk_0328-1025”
and 2nd RGB-image “BGU_0403-1419-1” in Figure 12 are the two original input RGBs.
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Figure 11. The effects of reconstructing the 3 chosen ICVL spectrum bands from the 2 scenes. (The two original input RGB
images are shown in the top-left 2 images of Figure 12.)
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The error maps were generated by subtracting the original image from the forecast
image. Additionally, we set the colormap “jet” mode to pseudocolor the error images. The
blue represents the positive error, the green signifies the zero error, and the red denotes the
negative error.

Furthermore, when we compare the two ICVL figures [11,12] with the two previous
CAVE figures [8,9], respectively, we may notice that the identical method performs more
effectively on the ICVL scenes than on the CAVE scenes. We think that the main reason
for this is that since most of the CAVE images are taken indoors, only a few bright objects
contain useful information, and the main dark background contains scarce data to train the
model. On the contrary, most of the ICVL images were captured outdoors. In addition to
the objects, the background also includes a large amount of useful information that would
help to improve the model training performance.

4.3.3. The Quantitative Measurement

Similar to the evaluation of the CAVE model, we picked four standard quantitative
measurements, RMSE, PSNR, SSIM, and added relative RMSE (nRMSE or rRMSE) to
evaluate the ICVL model’s performance.

Moreover, we prepared two experiments and several comparisons with the leading
related works to show TaijiGNN’s advantages.

We compared the results of TaijiGNN with those of the two top works, the HSCNN
by Zhiwei et al. and the sparse coding by Arad et al., during the first experiment. To make
the comparison impartial, we adopted an equal or higher level to process the ICVL dataset,
which is described in the following paragraphs.

Arad et al. performed all their experiments on a dataset named “complete set”,
owning 102 scenes. After careful comparison, we noticed that in their supplied dataset,
scene “lst_0408-0924” lost [15]. Therefore, we removed it from the dataset. The final scene
amount of the dataset became one-hundred-and-one. Additionally, they selected 59 scenes
from the dataset and assigned them to 5 domains: Indoor, Park, Rural, Urban, and Plant-life.
Their experiment strategy is domain-specific, selecting a scene from a domain for testing,
and the remaining scenes of the domain were used to train the model. Additionally, the
above steps were repeated until all scenes of that domain had been picked. Finally, Arad et
al. measured the model’s performance by the average relative RMSE (rRMSE). According
to their claim, the model trained by the domain-specific subsets has better results than the
complete dataset model [15].

Zhiwei et al. processed the ICVL dataset more generally when evaluating their
approach, “HSCNN”. Their dataset contains 200 images, including the complete set of
previous images. Their experiment has two phases: In the first phase, they trained the
model with 141 images and tested on the 59 domain-specific images. In the second phase,
they trained the model with the 159 images, excluding the non-domain-specific images in
the complete set, and tested the obtained model on the remaining 41 images. In this way,
the training images and the testing images were precisely isolated, and the domain-specific
restriction was eliminated [17].

We extended the dataset splitting method of Zhiwe et al. First, we updated the total
dataset to 201 images. Second, we reduced the training image number to 100 images and
assessed the neural network on the complete set (101 scenes) of Arad et al., containing the
fifty-nine domain-specific scenes. The training and testing images were rigorously isolated.
Third, in each evaluation, we randomly sampled 32 images from the 100 training images
and decreased their spatial size from [1392 (height), 1390 (width)] to [512 (height), 512
(width)]. The detailed process is as follows: First, we separate the original image ([1392,
1390]) into four equally sized ([512, 512]) frames, top-right, top-left, bottom-right, and
bottom-left, to achieve the above-mentioned spatial size translation. For each time training,
we randomly selected one of the four blocks. Although the training image spatial resolution
was 512× 512, the test images maintained the 1392× 1300 spatial resolution, which is
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one of our approach’s advantages. To thoroughly cover all the images, we performed the
evaluation 5 times and calculated their average values.

Table 8 summarizes the above three approaches’ results of reconstructing MSIs from
RGBs. Our approach, TaijiGNN, surpasses the other two in most subsets and the complete
set. Furthermore, our training and testing ratio is the lowest.

Table 8. The three approach results of reconstructing MSIs from RGBs on the ICVL dataset.

Author Arad et al. [15] Zhiwe et al. [17] Ours

Methods Sparse coding HSCNN TaijiGNN

Percentage of training and testing - 141:59 32(train):68(validation):101(test)

Evaluation metric rRMSE rRMSE rRMSE

Park subset 0.0589 0.0371 0.0347

Urban subset 0.0617 0.0388 0.0335

Indoor subset 0.0507 0.0638 0.0495

Plant-life subset 0.0469 0.0445 0.0434

Rural subset 0.0354 0.0331 0.0369

Subset average 0.0507 0.0435 0.0396

Complete set 0.0756 0.0388 0.0358

We increased the challenge in the second experiment to fully explore TaijiGNN’s
potential. We removed the first experiment dataset splitting method and adopted the
dataset splitting method in Section 4.3.1.

We randomized the order of the 201 scene samples and divided them into six groups.
Each of the first five groups, 1st, 2nd, 3rd, 4th, and 5th, had thirty-two samples. However,
the 6th group contained forty-one samples. We iterated one of the 1st–5th groups to
train the model and the remaining four groups with the 6th group to test the model. For
instance, when taking the 3rd group to train the model, the 1st, 2nd, 4th, 5th and the 6th
groups were used to test the model. This dataset processing aims to make the evaluation
thorough and non-overlapping. Meanwhile, the splitting ratio of training and testing
for the dataset reached 32:169, which means thirty-two samples to train the model and
one-hundred-and-sixty-nine samples to test the model.

Additionally, every 32-image training group was further separated into two equally
sized parts. Images with even indexes, 0, 2, 4, . . . , 30 were placed into one group, whereas
images with odd indexes, 1, 3, 5, . . . , 31 were placed into another group. We rotated the
odd group and the even group to train and test the model.

Additionally, we decreased the spatial resolution of the training samples from [1392
(height), 1300 (width)] to [512 (height), 512 (width)] to increase the training speed, which
unavoidably increased the convergence difficulty. A detailed description of the dataset pro-
cessing is presented in the previous paragraphs. The final training group dimension bacame
[32, 512, 512, 34]. However, the testing group dimension maintained [169, 1392, 1300, 34].
Therefore, the splitting ratio of the training group and the testing group achieved 32:169.
To make the evaluation cover the whole dataset, we conducted four experiments on every
group and calculated their average values.

We present the final bi-directional conversion results between MSIs and RGBs in
Table 9. To the best of our knowledge, such a training and testing experiment with such
a low splitting ratio has not been conducted to date. Compared with the CAVE dataset
outcomes (Tables 6 and 7), we can immediately discover that the performance of TaijiGNN
is much higher in the ICVL database than in the CAVE database, which affirms the previous
analysis in Section 4.3.2.
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Table 9. The bi-directional translation outcomes of TaijiGNN on the ICVL database.

TaijiGNN
Train(32 Samples):Test(169 Samples)

Metrics SSIM PSNR rRMSE RMSE RMSE_INT

MSI to RGB 1.000 54.994 0.004 0.002 0.492

RGB to MSI 0.999 44.665 0.029 0.007 1.700

Moreover, to investigate the rule of RMSE changing with the scenes and the light
wavelength, image “prk_0328-1025”, image “BGU_0403-1419-1”, and image “eve_0331-
1606” were chosen to assess the 31 band multispectral restoration RMSEs, respectively,
and the corresponding RMSE curves were drawn in Figure 13. Additionally, Arad et al.
adopted the image “prk_0328-1025” and image “BGU_0403-1419-1” in their paper [15] and
image “eve_0331-1606” was adopted in the work of Zhiwei et al. as an example [17].
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Figure 13. The RMSE waveline of multispectral image restoration on the ICVL database.

Observing Figure 13, we can notice that the model’s reconstruction performance
performs poorly within the long wavelength spectrum. Our explanation is as follows: Since
the three images were taken outdoor in daylight, the backgrounds and environments may
generate large amounts of thermal noise and long-wave light, disturbing the collection
of useful long-wave light from objects. When we recorded the long-wavelength light
in the daytime, we simultaneously saved a large amount of background noise, mainly
from the sunlight and the background. Too much background noise cuts down the MSI
reconstructing performance.
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5. Limitations

TaijiGNN has four losses,LRGB (5),LMSI (6),Lcycle_MSI (7), andLcycle_RGB (8). We took
advantages of these losses to train Generator GRGB and Generator FMSI . In the experiment
section, we only set a 1:1:1:1 ratio for the four losses. However, we are not confident
that the 1:1:1:1 ratio is the best, as we did not fully understand their roles during the
training process.

To make clear the roles of the four losses, we maintained the values of Lcycle_MSI (7)
and Lcycle_RGB (8), and multiplied parameter β by LMSI (6) and LRGB (5). In this way, we
obtained the total loss formula (9). Moreover, we tuned the β value to observe the RMSE
changing against the β.

LTotally = β× (LMSI + LRGB) + Lcycle_MSI + Lcycle_RGB (9)

We performed two experiments on the CAVE dataset. One is reconstructing MSIs
from RGBs, and the other is reconstructing RGBs from MSIs. The results are listed in
Tables 10 and 11, respectively.

Table 10. The RGB to MSI RMSE changes against the β variations.

β PSNR SSIM RMSE (0–1) RMSE (0–255)

0.01 20.149 0.6944 0.1073 27.368

0.1 33.383 0.9692 0.0247 6.302

0.5 33.821 0.9731 0.0232 5.915

1 33.683 0.9727 0.0234 6.010

2 33.782 0.9728 0.0234 5.957

3 33,767 0.9728 0.0232 5.966

CAVE dataset, train_epoch = 300, batch_size = 10,240

Table 11. The MSI to RGB RMSE changes against the β variations.

β PSNR SSIM RMSE (0–1) RMSE (0–255)

0.01 16.672 0.7793 0.1569 40.013

0.1 38.261 0.9784 0.0136 3.467

0.5 46.318 0.9919 0.0054 1.381

1 46.273 0.9911 0.0056 1.423

2 50.557 0.9924 0.0034 0.875

3 50.955 0.9953 0.0032 0.809

CAVE dataset, train_epoch = 300, batch_size = 10,240

Moreover, the two tables’ contents are shown in lines in Figure 14. From Figure 14, we
can quickly conclude that loss LMSI (6) and loss LRGB (5) play larger roles in the training
process. When we decreased their percentages, the performances of the two generators
decreased quickly.

Moreover, since this is our first time investigating the feasibility of using the cycled
neural network to translate between MSIs and RGBs, we adopted a symmetrical architec-
ture for simplicity. Generator GRGB and Generator FMSI adopt the same neural network
structures. However, we know that reconstructing MSIs from RGBs is much more complex
than reconstructing RGBs from MSIs. It is an asymmetrical problem. The symmetrical struc-
ture may restrict the performance of the neural network. We will investigate asymmetrical
neural network architecture to improve the performance of TaijiGNN in the future.



Sensors 2021, 21, 5394 23 of 25

Furthermore, if the spectral range is above 700 nm, it can be reconstructed by RGB.
However, it needs corresponding multispectral images, which are taken above 700 nm.
Currently, both the CAVE dataset and the ICVL dataset are taken within 400 nm–700 nm.
Since both the datasets do not have any information above 700 nm, it is impossible to
reconstruct the multispectral images above 700 nm from the RGB of the CAVE dataset and
the ICVL dataset. The CAVE and the ICVL datasets are the most popular datasets to verify
spectral super-resolution performance. Since it is not easy to find a suitable dataset above
700 nm, but few related works have done it, it is hard to find a baseline to compare and
verify our approach. We plan to extend this study and evaluate our work above 700 nm
and below 400 nm in the future.
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Figure 14. The RMSE against the β on the CAVE dataset.

6. Conclusions and Future Work

In this paper, we first introduced the two challenges in the bi-directional conversion
between MSIs and RGBs. One challenge is that MSIs and RGBs belong to two different
domains and have different rigid definitions, and direct translation is difficult to accomplish.
The other is that reconstructing MSIs from RGBs is a severely underconstrained process
due to the colossal information entropy gap.

To address the two above-mentioned challenges, we proposed a new approach, “Tai-
jiGNN”, which can convert the problem of comparing different domain images into compar-
ing the same domain images by the cycle neural network architecture. In this way, the two
above-mentioned problems can be solved naturally. In addition, we used a well-designed
multilayer perceptron neural network to substitute the convolutional neural network when
implementing the generators to make them simpler and more efficient. Besides, we cut
off the two traditional CycleGAN identity losses to fit the spectral image translation and
added two consistency losses to enhance the model training.

Finally, several experiments were conducted on the two classical datasets, CAVE and
ICVL, to evaluate our method thoroughly. Under the same validation configuration as the
previous state-of-the-art, much less training data enable our approach to obtain similar
outcomes in the CAVE dataset and gain dramatic improvements in the ICVL dataset.

In the future, we plan to extend our work in the following directions: First, we
will investigate asymmetrical neural network architecture to improve the performance
of TaijiGNN and the impacts of the hyperparameter change. Second, we will extend our
approach to the spectral image dataset above 700 nm and below 400 nm. Third, we will
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use GPU and FPGA to accelerate the training and inferencing processes and investigate the
performance improvements.
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Appendix A. TaijiGNN Performance Summary

Table A1 shows the performance summary of TaijiGNN on the CPU and GPU. From
the table, we can find that the GPU speed is about 10× faster than the CPU.

Table A1. The performance summary of TaijiGNN on the CPU and the GPU. (Batchsize = 10,240).

CAVE (CPU) CAVE (GPU) ICVL (CPU) ICVL (GPU)

Training image size RGB (16, 512, 512, 3)
MSI (16, 512, 512, 31)

RGB (16, 512, 512, 3)
MSI (16, 512, 512, 31)

RGB (16, 512, 512, 3)
MSI (16, 512, 512, 31)

RGB (16, 512, 512, 3)
MSI (16, 512, 512, 31)

Average one epoch
training time (s) 113 8 7 113

Inferencing image size RGB (16, 512, 512, 3)
MSI (16, 512, 512, 31)

RGB (16, 512, 512, 3)
MSI (16, 512, 512, 31)

RGB (1, 1392, 1300, 3)
MSI (1, 1392, 1300, 31)

RGB (1, 1392, 1300, 3)
MSI (1, 1392, 1300, 31)

Average image
inferencing time (s)

RGB2MSI 9.5 1.1 4.1 0.4

MSI2RGB 9.2 1.1 4.1 0.4
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