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The phospholipases A2 (PLA2) superfamily encompasses enzymes commonly found in
mammalian tissues and snake venom. Many of these enzymes have unique tissue
distribution, function, and substrate specificity suggesting distinct biological roles. In the
past, much of the research on secretory PLA2s has analyzed their roles in inflammation,
anti-bacterial actions, and atherosclerosis. In recent studies utilizing a variety of mouse
models, pancreatic islets, and clinical trials, a role for many of these enzymes in the control
of metabolism and insulin action has been revealed. In this review, this research, and the
unique contributions of the PLA2 enzymes in insulin resistance and metabolism.

Keywords: phospholipase A2, metabolism and obesity, Type 2 diabetes, insulin resistance, glucose homeostasis,
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INTRODUCTION

Metabolic syndrome constitutes an array of pathophysiologies, including obesity, glucose
intolerance, and dyslipidemia. The most common feature between these pathophysiologies is
insulin resistance, a condition in which cells fail to respond normally to insulin. One factor
associated with insulin resistance is triacylglycerol accumulation in muscle, liver, and fat (1, 2).
While triacylglycerols are a marker for insulin resistance (3), they may not be causal. Instead,
cellular lipids with signaling roles (diacylglycerols, fatty acids, phospholipids, etc.) may fill this role,
as accumulation of a variety of lipid species can cause insulin resistance (4–6).

One group of enzymes that produce these lipids are secretory phospholipases A2 (sPLA2s), a
protein family found in mammalian tissues and snake venom which hydrolyze glycerophospholipid
sn-2 ester bonds, generating a non-esterified free fatty acid and a lysophospholipid. Secretory
phospholipases A2s are low molecular weight enzymes (~14 kDa), most of which require millimolar
amounts of Ca2+ to function. Twelve sPLA2 isoforms have been identified thus far, of which ten are
catalytically active (IB, IIA, IIC, IID, IIE, IIF, III, V, X, XIIA), and two are dormant (XIIB and
otoconin-90) (7, 8). These enzymes have varied expression patterns and substrate preferences,
signifying diversity in their biological roles. Over the past couple decades of research, the majority of
studies concerning sPLA2s dealt with their roles in cardiovascular disease, inflammation,
antimicrobial actions, and membrane remodeling. However, a discussion on how sPLA2s may
regulate or impact glucose metabolism, insulin signaling, and metabolism is lacking. Recent
research has identified that at least 7 of these sPLA2s modulate glucose metabolism, presumably
by generation of fatty acids or lipoproteins that influence lipid metabolism and mobilization,
alterations in fatty acid oxidation, or other mechanisms involved in insulin signaling and
obesity (Table 1).
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PLA2G1B

The metabolic role of PLA2G1B has been clarified with Pla2g1b
knockout (Pla2g1b-/-) mice or pancreatic acinar cell-specific
PLA2G1B overexpression. PLA2G1B is mainly expressed in
pancreatic acinar cells and the lungs, and only displays its
enzymatic activity after feeding, as this causes the enzyme’s
release into the pancreatic fluid and subsequent secretion into
the intestinal lumen where it is proteolytically cleaved from an
inactive state to its active form (46). Activated PLA2G1B
contributes to l ipid metabolism and absorption of
lysophospholipids, particularly lysophosphatidylcholine (LPC).
Pla2g1b-/- mice on a C57BL/6 background fed a hypercaloric diet
(58.5% fat, 25% sucrose, 16.5% protein) for either 3 or 10 weeks
are resistant to diet-induced obesity (9). Pla2g1b-/-mice showed a
37% reduction in plasma triglyceride (TG) levels primarily due to
a decrease in hepatic VLDL production and an increase in
TG-rich lipoprotein clearance. Pla2g1b-/- mice also displayed a
61% reduction in plasma cholesterol following 10 weeks on the
hypercaloric diet compared to age-matched wild-type controls.
Notably, Pla2g1b-/- Ldlr-/- mice fed the same hypercaloric diet for
10 weeks displayed a similar phenotype, including reductions in
fasting glucose, insulin, and plasma lipids (10). Similarly,
wild-type mice consuming a high-fat, high-carbohydrate diet
supplemented with the general sPLA2 inhibitor, methyl
indoxam, showed a reduction in body weight after 10 weeks
(11). This decrease in body weight was accompanied by
enhanced glucose tolerance and suppression of post-prandial
plasma lysophospholipid levels. Transgenic mice over-expressing
the human PLA2G1B in pancreatic acinar cells gained more
weight when given the hypercaloric high-fat/high-carb diet, and
these mice also had reduced glucose tolerance and insulin
resistance (12).

Given the strong evidence supporting PLA2G1B inhibition as
an avenue for improving metabolic health, a discussion on the
mode of action is warranted. Absorption of LPC into the portal
blood, plasma, and livers was reduced in Pla2g1b-/- mice fasted
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for 12 hours followed by a glucose-lipid mixed meal (13). These
data suggest that phospholipid digestion in the intestinal lumen
and absorption of the digested lysophospholipid product
through the portal blood is caused directly by PLA2G1B
enzymatic activity following a meal (13). While PLA2G1B is
the major enzyme for phospholipid hydrolysis within the
intestinal lumen, other lipolytic enzymes may compensate in
its absence to preserve lipid and cholesterol absorption (14). In
regards to the enhanced glucose tolerance in Pla2g1b-/- mice,
there is evidence that LPC alone has an adverse effect on
hyperglycemia as shown with a glucose tolerance test (GTT)
(13). Furthermore, Pla2g1b-/- mice have elevated fatty acid
oxidation which can be directly suppressed by LPC, suggesting
PLA2G1B enzymatic products reduce fatty acid oxidation (15).

Taken together, studies on the metabolic impact of PLA2G1B
inhibition indicate it has metabolic effects in response to feeding.
Recent experiments provide evidence that the benefits of
PLA2G1B inhibition mimic those seen in response to bariatric
surgery in mice, including prevention of dyslipidemia, and
protection and remission from diet-induced Type 2 diabetes (16).
PLA2G2A

PLA2G2A is induced by several cytokines and second
messengers including interleukins 1 and 6 (IL-1 and IL-6),
tumor necrosis factor (TNFa), lipopolysaccharides (LPS), and
cyclic AMP, suggesting a pro-inflammatory role (47–49). The
Pla2g2a knockout (Pla2g2a-/-) BALB/c mice have less joint
inflammation than their wild-type counterparts under
inflammatory conditions (50). With the focus of PLA2G2A
studies being on its role in inflammation and atherosclerosis,
studies on the actions of PLA2G2A in metabolism are quite
limited. One consistent observation of the metabolic studies
involving PLA2G2A is that its expression is up-regulated
in response to a high-fat diet (17–19). In male Wistar rats,
Pla2g2a expression was elevated 6-fold after 16 weeks on a
TABLE 1 | Metabolic roles of sPLA2 isoforms.

sPLA2

Isoforms
Primary Localization Metabolic Implications Reference

PLA2G1B Pancreas, lung Promotes weight gain; increases TG and cholesterol levels through elevated LPC intestinal
absorption

(9–16)

PLA2G2A Platelets, liver, leukocytes, paneth cells,
adipose tissue

Controversial; promotes weight gain, insulin resistance in rats. Improves metabolic
parameters in mice.

(17–21)

PLA2G2D Lymph tissue dendritic cells Undocumented; May be metabolically beneficial due to release of anti-inflammatory FAs/
lipid mediators

(22–25)

PLA2G2E Adipose Controversial; Pla2g2e-/- male mice display blunted lipolysis and elevated TG storage. Other
experiments using Pla2g2e-/- female mice found reduced lipid accumulation.

(26–29)

PLA2G5 Adipose, bronchial epithelial cells,
hepatocytes, islets, macrophages,
cardiomyocytes

Protective of diet-induced obesity and insulin resistance; pushes adipose tissue
macrophages from M1➔M2 state.

(26)

PLA2G10 Lung, adrenal gland, brain, heart, adipose Protective of diet-induced obesity. Improves TG clearance in adipose and suppresses
glucocorticoid production in adrenal cells

(27, 30–34)

PLA2G12B Liver, small intestine, kidneys Strong regulation over hepatic lipoprotein packaging and VLDL secretion; expression
protects from hepatosteatosis

(8, 35–45)
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high-carbohydrate high-fat (HCHF) diet (17). At 8 weeks of age,
these rats were orally administered the PLA2G2A inhibitor
KH064, which drastically reduced weight gain, fat mass, and
prevented an increase of adipocyte crown formation and
macrophage infiltration seen in the wild-type rats (17).
Inhibition of Pla2g2a by KH064 was also accompanied by an
increase in lipolytic gene expression, attributed to an increase in
hormone-sensitive lipase (HSL) phosphorylation. Lastly,
treatment with KH064 improved glucose tolerance and insulin
sensitivity as assessed by GTTs and ITTs (17).

The metabolic phenotype of male C57BL/6 mice genetically
engineered to overexpress the human PLA2G2A gene has also
been assessed (51). PLA2G2A overexpression improved glucose
clearance and insulin sensitivity in GTTs and ITTs, thereby
alleviating obesogenic symptoms in response to HFD (18, 20).
C57BL/6 mice normally do not express the murine Pla2g2a due
to a frameshift mutation in exon 3 (52). Overexpression of
human PLA2G2A protected mice from weight gain on a high-
fat diet compared to wild-type C57BL/6 mice after 10 weeks.
PLA2G2A expression also enhanced oxygen consumption (VO2)
and energy expenditure. The expression of thermogenic genes in
brown adipose tissue (BAT), including uncoupling protein 1
(UCP1), peroxisome proliferator-activated receptor g coactivator
1a (PGC-1a), and Sirtuin-1 (SIRT1) was elevated (18, 20).
PLA2G2A-expressing primary adipocytes from epididymal and
inguinal white adipose tissue (WAT), and interscapular BAT
showed elevated abundance of several proteins involved in
adaptive thermogenesis compared to C57BL/6 wild-type
adipocytes (20). To accompany this phenotype, mice
expressing PLA2G2A also had reduced 6-hour fasting blood
glucose levels and an increase in glucose transporter type 4
(GLUT4) in BAT suggesting that PLA2G2A enhances BAT
glucose utilization (20).

PLA2G2A contributes to the inflammatory response, but the
enzyme’s role in obesity and metabolism is still unclear.
Contributing to this, current investigations of PLA2G2As
metabolic role used different designs. The human PLA2G2A
gene was expressed in mice, whereas the rat Pla2g2a enzyme was
inhibited pharmacologically (17, 51). Overexpression of
PLA2G2A in mice may alter the expression of other secretory
phospholipases in a variety of tissues, which could influence
metabolism. Similarly, the activity of various sPLA2 isozymes has
not been examined in response to PLA2G2A inhibition by
KH064 . Moreover , f ood in take fo l lowing KH064
administration was not reported in this study, and the impact
of KH064 on intestinal lipid absorption was not assessed.
PLA2G2E

The expression of PLA2G2E is elevated in the white adipose tissue
(WAT) and BAT of female C57BL/6 mice fed a HFD (26).
Conversely, female Pla2g2e-/- mice gain less weight on a HFD
over 18 weeks, with marked reductions in fat mass, hepatic lipid
deposition, plasma aspartate aminotransferase (AST), and alanine
aminotransferase (ALT) levels. Thus, the level of PLA2G2E may
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affect adiposity and liver metabolism. PLA2G2E preferentially
hydrolyzes PE and PS on very low-density lipoprotein (VLDL),
low-density lipoprotein (LDL), and high-density lipoprotein
(HDL), although with weak enzymatic activity compared to other
sPLA2s (27, 28). Mass spectrometry of the lipoprotein particles
from Pla2g2e-/- mice revealed a reduction in phospholipids (PL),
triglyceride (TG), and cholesterol accumulation in VLDL, LDL, and
HDL (26). These data suggest that Pla2g2e may promote obesity
through elevated hepatic lipogenesis and VLDL assembly in the
liver. Anionic phospholipids decrease the affinity for ApoE to bind
the LDL receptor (LDL-r), which could impact lipoprotein particle
clearance (53). Finally, whether lysophosphatidylserine (LPS) or
lysophosphatidylethanolamine (LPE) impacts metabolism has yet
to be determined.

In contrast, another study using male Pla2g2e-/- mice
discovered the enzyme regulates lipolysis in adipocytes, likely
through enhanced ERK1/2 signaling (29). Pla2g2e-/- mice had
increased epididymal fat compared to C57BL/6 wild-type mice
and accumulated more TG in the SVF isolated from adipose
tissue. Over-expression of Pla2g2e in OP9 stem cells or treatment
of 3T3-L1 cells with Pla2g2e protein reduced lipid accumulation
and increased release of free glycerol, indicative of elevated
lipolysis (29). These Pla2g2e-/- animals had reduced ERK1/2
signaling and HSL, the intracellular lipase responsible for
hydrolyzing TG to FFAs. Finally, treatment of adipocytes with
mouse Pla2g2e protein induced ERK1/2 signal ing,
demonstrating that Pla2g2e regulates adipocyte lipolysis
through ERK/HSL signaling (29).

Currently, the understanding of the role of PLA2G2E in
obesity and metabolism is limited to the two studies described
above which report contrasting phenotypes with Pla2g2e-/- mice.
A notable difference between these studies is the use of females
versus males, and the contrasting results suggest sex-specific
differences in Pla2g2e activity and its impact on obesity may
be involved.
PLA2G5

PLA2G5 is mainly expressed in WAT and protects from diet-
induced obesity. PLA2G5 expression is elevated in response to
HFD feeding in female C57BL/6 mice (26). When placed on a
HFD, Pla2g5-/- mice gained a large amount of weight, mainly
from increased visceral fat mass (26). In GTTs and ITTs, the
Pla2g5-/- mice had impaired glucose tolerance and insulin
resistance. Furthermore, there was a striking induction of
plasma ALT levels and hepatic fat deposition, indicating
exacerbated hepatosteatosis (26). PLA2G5 preferentially
hydrolyzes phosphatidylcholine (PC) in low-density
lipoprotein (LDL) (54). In the Pla2g5-/- mice phospholipid,
cholesterol, and TG levels were considerably higher in LDL
(26). When transgenic mice overexpressing PLA2G5 in
adipocytes were put on HFD, they showed better insulin
sensitivity and a decreased expression of pro-inflammatory
genes in WAT (26). These data suggest PLA2G5-mediated
hydrolysis of PC and other phospholipids may reduce local
August 2021 | Volume 12 | Article 732726
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adipose tissue inflammation which appears to have a beneficial
impact on whole-body insulin sensitivity.

PLA2G5 also modulates bone marrow-derived macrophage
(BMDM) polarization. BMDM treated with palmitic acid (PA)
or lipopolysaccharides induces the inflammatory response.
Addition of recombinant PLA2G5 enzyme augments the
expression of M2 markers Arg1 and Cd206 in the BMDM,
suggesting that PLA2G5 has anti-inflammatory effects (26).
The capacity for PLA2G5 to push macrophage polarization
from an M1 to M2 state broadens its impact as the metabolic
benefits of M2 macrophages are well documented (55–57).
Genetic deletion of Th2 or M2 inducers increases the risk for
metabolic disorders (56), and M2 macrophage infusion into
obese mice has proven to be effective in treating obesity and
improving insulin sensitivity (57). In humans, M2 macrophages
are more prevalent in adipose tissue from lean individuals (55).
While additional work needs to be done to elucidate the effects of
PLA2G5 on metabolism, these actions appear to be partly
mediated by the fatty acid and/or PC-released induction of M2
macrophage polarization in adipose tissue.

The role of PLA2G5 in glucose-stimulated insulin secretion
(GSIS) is complex. GSIS is decreased in isolated pancreatic islets
from PLA2G5 knockout mice and in pancreatic MIN6 cells
following siRNA-mediated PLA2G5 knockdown (58).
Additionally, PLA2G5 overexpression in MIN6 cells enhanced
GSIS and increased AA release into the media with no change in
prostaglandin E2 (PGE2) abundance (58). In contrast to the
studies with isolated islets, the GSIS of Pla2g5-/- mice was
increased compared to WT mice (58). The elevated GSIS was
attributed to increased pancreatic islet size and number of
proliferating cells in the pancreatic b-islets of the Pla2g5 KO
mice. The in vivo data from this study suggests a reduction in the
release of AA, a fatty acid contained in over 30% of glycerolipids
in rodent islets (59), is beneficial for insulin secretion and b-cell
proliferation. Amino acids generally induce GSIS, while
inhibition of the release of AA inhibits GSIS (60).
Paradoxically, a major metabolite of AA is PGE2, a well-known
inhibitor of GSIS (61–63). The role of AAmetabolites in GSIS will
be discussed further in the next section regarding Pla2g10. The
data suggest that PLA2G5 regulates insulin secretion and b-cell
proliferation, which may be dependent on the amount of AA
released versus the amount of AA used for PGE2 production.
PLA2G10

Studies with transgenic mice provided evidence that PLA2G10
mediates adipogenesis and has thereby led to the hypothesis that
it protects from diet-induced obesity (30, 31). PLA2G10 binds to
zwitterionic phospholipids such as PC with high affinity,
releasing AA and LPC. PLA2G10 is expressed in a variety of
tissues including the lungs, adrenal glands, pancreas, brain, heart,
and adipose tissue (27, 32–34). Pla2g10-/- mice on a C57BL/6
background gain more weight and adipose mass over 40 weeks
compared to chow-fed wild-type mice (30). The effects of
Pla2g10 deletion are directly on WAT, as there were no
Frontiers in Endocrinology | www.frontiersin.org 4
changes in food intake or respiration. Pre-adipocytes prepared
from WAT of Pla2g10-/- mice accumulated more TG when
induced to differentiate ex vivo, suggesting that PLA2G10 has a
direct effect in adipose tissue to reduce lipid accumulation.
Similarly, when the OP9 cell line was modified to overexpress
PLA2G10, TG accumulation was reduced following
differentiation (30). In addition, the cells had reduced
expression of multiple lipogenic genes including sterol
regulatory element-binding protein 1c (SREBP-1c), stearoyl-
CoA desaturase-1 (SCD-1), and fatty acid synthase (FAS) (31,
64–66). Interestingly, the reduction in lipogenic gene expression
arose from the ability of PLA2G10 to generate lipid products that
suppress liver X receptor (LXR) activity.

PLA2G10 is expressed in adrenal cells and has a regulatory
role in adrenal corticosteroid production. Overexpression of
PLA2G10 in C57BL/6 mice resulted in a 30-40% reduction in
corticosteroid production, and this effect was reversed by methyl
indoxam administration (31). The elevated glucocorticoid level
did not arise from elevated ACTH or ACTH responsiveness.
PLA2G10 overexpression dramatically reduced expression of the
LXR-target gene steroidogenic acute regulatory protein (StAR), a
nuclear-encoded mitochondrial protein that mediates the rate-
limiting step of steroid synthesis (67). As in the adipocytes,
Pla2g10 generated a ligand that reduced LXR activity.

Pla2G10 is also expressed in the pancreatic beta cells and
suppresses GSIS (68). Like Pla2g5, Pla2g10 generates AA.
However, this pool of AA is converted to prostaglandin E2,
which binds to the EP3 receptor. EP3 elevates cAMP leading to
decreased insulin secretion. Why Pla2g5 and Pla2g10 have
opposite effects on GSIS is unclear. However, Pla2g10 has to be
proteolytically activated, and this may give it access to a different
pool of phospholipids. Finally, older Pla2g10 KO mice appear to
be protected from age-related glucose intolerance.

The current data on PLA2G10 indicate it impacts multiple
aspects of metabolism and hormonal action. PLA2G10
expression reduces weight gain and overall adiposity in mice.
Concerning hormone actions, Pla2g10 decreases corticosteroid
production in adrenal cells (31). Excessive use or production of
glucocorticoids will induce insulin resistance, weight gain, and
adiposity while also exacerbating Type 2 diabetes (69–72).
However, Pla2g10 reduces GSIS, giving this phospholipase a
complex contribution to the overall metabolic state.
PLA2G12B

PLA2G12B is the only phospholipase implicated in metabolism
showing no catalytic activity due to a point mutation in its active
site, and thus it is hypothesized to act as a ligand for receptors that
are currently unidentified (8). Using Pla2g12b-/- mice fed an ad
libitum chow diet, knockout of the Pla2g12b gene increased TG,
cholesterol, and free fatty acids in the liver, resulting in severe
hepatosteatosis (35). Hepatocyte nuclear factor-4alpha (HNF-4a)
and its co-activator PGC-1a induce Pla2g12b expression (35, 36),
resulting in the induction of genes involved in lipoprotein
packaging (microsomal triglyceride transfer protein, MTP) and
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VLDL secretion (37, 38). Moreover, liver-specific HNF-4a-/- mice
are phenotypically similar to Pla2g12b-/- mice, as both lines have
reduced serum TG and cholesterol levels and display severe
hepatosteatosis (35, 39). These observations suggest that
PLA2G12B is one gene involved in the control of lipid
metabolism downstream of HNF-4a. Infection of mice with an
adenovirus encoding Pla2g12b into Pla2g12b-/- mice improves
hepatic VLDL secretion and restores the decline in serum TGs
(35). These data indicate that PLA2G12B is under the regulation of
HNF-4a and plays a metabolic role by regulating lipoprotein
packaging and VLDL secretion in the liver. More recent data has
shown that estrogen-related receptor g (ERRg) transcriptionally
regulates PLA2G12B through binding to its promoter region to
regulate hepatic VLDL-TG secretion (73). In Pla2g12b-/- mice,
ERRg fails to regulate VLDL-TG secretion and large hepatic lipid
droplets result. Importantly, ERRg is implicated in a wide range of
physiologic roles including metabolic homeostasis, especially
hepatic glucose metabolism (40). The findings associating
PLA2G12B with ERRg may be one avenue by which ERRg
mediates hepatic glucose production.
Frontiers in Endocrinology | www.frontiersin.org 5
CONCLUSION

The recent studies discussed in this review show that sPLA2s can
influence metabolic diseases such as Type 2 diabetes and obesity,
at least partially through alterations in lipid production and
mobilization (Figure 1); and while controversy exists regarding
whether elevated lipids directly cause insulin resistance, pre-
clinical and clinical data indicate an association between elevated
lipids and lipoproteins with insulin resistance (74–77).
Furthermore, one issue in analyzing the metabolic impact of
sPLA2s is many of the isoforms effect intertwined pathologies
such as atherosclerosis, heart disease, and cancer (41, 55, 57, 64–
67, 69–72). For this reason, future studies on sPLA2s should
consider their roles based on tissue localization, as their distinct
functions may be altered based on the tissue being analyzed.
Furthermore, the expression and compensation of other sPLA2

isoforms in transgenic animal models is another factor that
might result in large phenotypic changes, and thus should also
be observed to advance what we know about sPLA2s in
metabolic diseases.
FIGURE 1 | Metabolic role for PLA2s. PLA2G1B is released by pancreatic acinar cells into the pancreatic juice following a meal and then secreted into the intestinal
lumen, where it eventually becomes activated. Phospholipid digestion by PLA2G1B results in elevated lysophosphatidylcholine (LPC), lysophosphatidic acid (LPA),
and free fatty acids absorption in the portal blood, plasma, and liver, and increases hepatic very-low density lipoprotein (VLDL) production. Elevated enzymatic
activity in the intestinal lumen can progress obesity, reduce glucose tolerance, and exacerbate insulin resistance – most notably due to elevated release/absorption of
LPC and overarching dyslipidemia. PLA2G2E and PLA2G5 are expressed in WAT. 2 studies have contradicting results in PLA2G2Es metabolic role – 1 study
discovered PLA2G2E increases ERK1/2 signaling and HSL phosphorylation to increase lipolysis, whereas Study 2 found PLA2G2E may promote obesity through
hepatic lipogenesis and VLDL production. PLA2G5 preferentially hydrolyzes PC-rich phospholipids and promotes M2 macrophage polarization, which appears to
have a beneficial impact on LDL lipid normalization and whole-body insulin sensitivity.
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