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Abstract
Network controllability is an important topic in wide-ranging research fields. However, the

relationship between controllability and network structure is poorly understood, although

degree heterogeneity is known to determine the controllability. We focus on the size of a

minimum dominating set (MDS), a measure of network controllability, and investigate the

effect of degree-degree correlation, which is universally observed in real-world networks, on

the size of an MDS. We show that disassortativity or negative degree-degree correlation

reduces the size of an MDS using analytical treatments and numerical simulation, whereas

positive correlations hardly affect the size of an MDS. This result suggests that disassorta-

tivity enhances network controllability. Furthermore, apart from the controllability issue, the

developed techniques provide new ways of analyzing complex networks with degree-

degree correlations.

Introduction
Controlling complex systems is a central challenge in a wide range of research fields (e.g.,
molecular networks and brains in biology, the Internet and WiFi communication in telecom-
munications engineering, and economic science). Since complex systems are often represented
as networks, a network perspective is helpful for understanding the control and design of the
systems [1, 2], especially on networks with a scale-free property (i.e., a power-law distribution
of degree k: P(k)/ k−γ) [1].

Liu et al. [3] proposed network controllability characterized by the minimum set of driver
nodes (so-called structural controllability), which is sufficient to control the whole-system
dynamics and is identified based on the maximum matching of the network. They found that
network controllability is mainly determined by degree distributions; in particular, they
showed that real-world networks, which are generally sparse and heterogeneous, are difficult to
control.
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It is also important to consider assortativity or degree-degree correlation [4], a structural
property widely observed in real-world networks, when discussing the relationship between
network structure and system dynamics because assortativity influences the system dynamics.
For example, a negative degree-degree correlation (i.e., disassortativity) protects networks
against the spread of viruses [5]. Disassortativity enhances synchronization [6], and it pro-
motes observability [7]. Degree-degree correlation indicates the relationship between the node
degrees, and it is often defined as the Pearson correlation coefficient of degrees between a con-
nected node pair [4] (i.e., assortative coefficient ra). In particular, a negative and a positive ra
indicate the disassortativity and assortativity of networks, respectively. Pósfai et al. [8] investi-
gated the effect of degree-degree correlation on network controllability in the context of driver
nodes or maximummatching, and they showed that positive and negative degree-degree corre-
lations tend to increase the number of driver nodes (i.e., they reduce network controllability);
however, degree correlation coefficients have quadratic or no relationship with the number of
driver nodes, depending on the nature of the underlying correlations.

However, more careful examinations are required to conclude the effect of degree-degree
correlation because network controllability is also investigated in the context of minimum
dominating sets (MDSs) [9–16] whose approach is conceptually similar to the controlling link
dynamics [17]. In this context, network controllability is defined as the proportion of the MDS
to network size. In particular, heterogeneous networks are known to show relatively small
MDS sizes (i.e., they are easy to control) [10, 11]; however, this result does not conflict with the
conclusion obtained by Liu et al. [3] because the MDS-based approach employs a stronger
assumption that each node in an MDS can control its outgoing edges independently, although
it also considers structural controllability under linear dynamics. Apart from the traditional
control theory based on continuous/discrete dynamics, the MDS is important in the control of
discrete engineering systems. The MDS is a well-known concept in graph theory and has
already been applied to the design and/or control of various types of discrete engineering sys-
tems, which include mobile ad hoc networks (MANET) [18–20], transportation routing [21],
and computer communication networks [21, 22].

Molnár et al. studied the relation between degree-degree correlation and MDS size [13].
They employed a probabilistic approach developed by Alon and Spencer and analyzed the
expected size of a random dominating set (RDS) and a cutoff dominating set (CDS) under
degree-degree correlations, where RDS is a dominating set (DS) obtained by randomly select-
ing nodes with some specified probability and adding the nodes not dominated by these nodes,
and CDS is a dominating set obtained by selecting nodes above a degree threshold and adding
the nodes not dominated by these nodes (see Ref [13] for details). Note that RDS and CDS pro-
vide the upper bounds of the size of an MDS (i.e., they are dominating sets but are not neces-
sarily the minimum ones), with CDS giving better estimates in general than RDS does.
Although their analytical methods provide accurate estimates of the size of an RDS and a CDS,
they also showed experimentally that there is a large gap between the sizes of an MDS and an
RDS (respectively, a CDS). Therefore, an accurate estimate of the size of an MDS under
degree-degree correlation remains an unsolved problem.

In this study, therefore, we investigated the impact of degree-degree correlation on the size
of an MDS both analytically and numerically, and showed that disassortativity, which indicates
that high-degree nodes tend to connect to low-degree nodes, reduces the size of an MDS. To
fill the known gap between the sizes of an MDS and an RDS, we developed two novel tech-
niques: (i) decomposition of assortative (respectively, disassortative) networks, (ii) use of recur-
sive probabilistic estimation methods for analyzing the size of an MDS in k-regular random
graphs and (h, k)-regular random bipartite graphs. The former one is based on the proper
understanding of assortative and disassortative network structures. The latter one is considered
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as a recursive application of the analysis technique used in Ref [13]. Although we applied both
of them to the analysis of the size of an MDS, they are general and thus might become useful
theoretical tools for analyzing various properties of assortative or disassortative networks.

Methods
We used network models to show the validity of the theoretical results and to perform numeri-
cal simulations. In particular, the Chung—Lu (CL) model [23] was used to generate undirected
scale-free (SF) networks with N nodes and L edges (i.e., average degree hki = 2L/N). In the CL
model, edges are drawn between nodes randomly selected according to node weight (i + i0 − 1)ξ,
where ξ 2 [0, 1) and i denote the node index (i.e., i = 1, . . ., N), where the constant i0 is consid-
ered to eliminate the finite-size effects (assortativity, in particular) [24]. A generated network
shows that P(k)/ k−γ, where γ = 1 + 1/ξ [23, 24] and P(k) indicates the degree distribution.
When generating SF networks with γ< 3, i0 is chosen appropriately to satisfy that the maxi-

mum degree kmax <
ffiffiffiffiffiffiffiffiffiffihkiNp

; on the other hand, i0 = 1 when γ� 3. When i0 = 1, the CL model is
equivalent to the Goh—Kahng—Kim (GKK) model [25]. In this study, we avoided the emer-
gence of self-loops and multiple edges. Specifically, SF networks were generated using the static.
power.law.game function in the igraph package (version 0.7.1) of the R software (version 3.1.1;
http://www.r-project.org). In the case of γ =1, we also considered the Erdős—Rényi (ER) ran-
dom networks [1], in which the node degree follows a Poisson distribution whose mean is hki.

A simulated annealing (SA) method [8] was used to adjust the degree-degree correlation,
measured using the assortative coefficient ra [4] (see also S1 File). In particular, we minimized an
energy E ¼ jra � robja j, where robja is the objective ra, through network modifications. In this SA
method, a network is modified using degree-preserving rewiring [26], in which two randomly
selected edges are rewired until 1% of the edges are rewired. For example, we consider two edges,
A—B and C—D, where the letters and lines are the nodes and edges, respectively. Through this
edge-rewiring algorithm, the edges A—D and C—B are obtained (see Ref [26] for details). A
modified network, obtained as above, is accepted with the probability p = min[1, exp(E0 − E1)/T],
where E0 and E1 are the energies obtained from the current network and the modified network,
respectively, and T is the temperature. We started with T = 1000 and reduced T by updating as
follows: T 0.995 × T. The above procedures were continued until E< 0.001 or T< 10−16.

Finding an MDS is NP-hard [21]; in particular, although it is considered as a binary integer
programming problem, it is time consuming. Thus, we searched for an MDS in a network
using linear programming relaxation as a binary integer programming problem, although it is
possible to compute an MDS for moderate-sized networks [10, 11, 27]. We have confirmed
that this relaxation does not affect the conclusions. In this study, the lp function in the R pack-
age lpSolve (version 5.6.10), a linear programming solver, was used. The size of an MDS was
averaged over 100 realizations.

Results

Theoretical results
We analytically investigated the effect of degree-degree correlation (i.e., ra) on Γ, where Γ is the
MDS size. However, it was difficult to mathematically reveal the relationship between Γ and
arbitrary ra. Thus, we only evaluated the Γ of maximally assortative (respectively, maximally
disassortative) networks, in which the exchange of any pair of edges does not increase (respec-
tively, decrease) ra (see “Assortative coefficient” in the S1 File).

The case of maximally assortative networks. Since a maximally assortative network has
connections between nodes with similar degrees, it is considered as a collection of k-regular
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random graphs (k = kmin, . . ., kmax, where kmin and kmax are the minimum and maximum
degrees, respectively, excluding degree 0 nodes). Let nk be the number of nodes with degree k.
Since the size of the MDS, Γ, of a k-regular random graph is approximately nk/(k + 1) (see
“MDS in a k-regular random graph” in the S1 File), the Γ of a maximally assortative network
(MAN) is derived as

GMAN ¼
Xkmax

k¼0

nk

kþ 1
: ð1Þ

Eq (1) is in excellent agreement with the numerical results (Fig 1). Maximally assortative
networks were obtained using the SA method by setting robja ¼ 1, according to the CL and ER
model networks. Γ/ N and the increase rate (slope) decreases with hki. This fact can be

expected from the size of the MDS, GERRG
MAN , in a maximally assortative ER random graph

(ERRG). GERRG
MAN is approximately described as

GERRG
MAN ¼

N
hki ð1� e�hkiÞ ð2Þ

when hki/[N − 1]< 0.5 and N� 0 (see “Size of an MDS in a maximally assortative Erdős—
Rényi random graph” in the S1 File). The theoretical prediction based on Eq (2) is in excellent
agreement with numerical results (Fig 1B); in addition to this, there is little difference in predic-
tion accuracy between Eqs (1) and (2).

The case of maximally disassortative networks. In light of the characteristics of disassor-
tativity (i.e., higher-degree nodes connect to lower-degree nodes), a maximally disassortative
network is considered as a collection of regular random bipartite graphs (see “Maximally disas-
sortative networks” in the S1 File). In particular, when considering an (h, k)-regular random

Fig 1. Network size dependency of the size of an MDS, Γ(N), in maximally assortative networks. (A) SF networks with γ = 2.5.
(B) ER random networks. The cross symbols denote the numerical results. The open squares and solid lines are the theoretical
estimations; in particular, they were obtained using Eqs (1) and (2), respectively.

doi:10.1371/journal.pone.0157868.g001
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bipartite graph (h> k) G(V1, V2, E), where each node in V1 has degree h, each node in V2 has
degree k, and each edge connects a node in V1 and a node in V2, the maximally disassortative
network is represented as

Bh1 ;k1
[ Bh2 ;k2

[ � � � [ Bhl ;kl
; ð3Þ

where Bhi, ki is an (hi, ki)-regular bipartite graph withMhi top nodes with degree hi and Nki bot-
tom nodes with degree ki. Note that h1� h2� . . .� hl and k1� k2� . . .� kl. Actual structures
will deviate from this form to some extent.

In short, the Γ of an (h, k)-regular random bipartite graph is useful for estimating the Γ of a
maximally disassortative network. Let α =m/n, wherem = |V1| and n = |V2|; an upper bound
of the Γ of an (h, k)-regular random bipartite graph is approximately estimated as (see “MDS
in a regular random bipartite graph” in the S1 File)

f ðbÞ ¼ a
1þ k=ðabÞ þ

1

1þ kb

� �
n; ð4Þ

where β is the ratio of the proportion of randomly selected nodes to the current top nodes to
the proportion of randomly selected nodes to the current bottom nodes at each iteration in the
recursive application of a probabilistic method (see “Size of an MDS in a maximally disassorta-
tive network” in the S1 File). The Γ of a regular random bipartite graph is obtained by minimiz-
ing Eq (4):

GRRGB ¼ gða; k; nÞ ¼ min
b

f ðbÞ ¼ f ðb0Þ: ð5Þ

The size of a maximally disassortative network is estimated by summing up g(α, k, n) for all
decomposed regular random bipartite graphs. Since nk� nk0 is expected for k� k0, nodes
(bottom nodes) with degree kmay correspond to nodes (top nodes) with several degrees in
each bipartite graph. We usem(k) to denote the number of the top nodes corresponding to the
bottom nodes with degree k, where the definition ofm(k) is given in the subsection “Size of an
MDS in a maximally disassortative network” in the S1 File. Using thism(k), we redefine α by
α(k) =m(k)/nk.

We also need to add some other factors: nodes with degree 0, and other nodes not counted
by regular random bipartite graphs. To this end, we define H and K by

H ¼ max hjPh
d¼kmin

dnd �
Pkmax

d¼hþ1 dnd

n o
and K ¼ max kjPH

d¼kmin
dnd �

Pkmax
d¼k dnd

n o
,

respectively. Then, the size of a maximally disassortative network (MDN) is estimated as

GMDN ¼ n0 þ
XH
k¼kmin

gðaðkÞ; k; nkÞ þ
XK

k¼Hþ1

nk

kþ 1
; ð6Þ

where we let g(α(k), k, nk) =m(k) if k = 1 and g(α, k, n) = 0 if α = 0 or n = 0. The third term
reflects the effect of the nodes (with degree>0) not included in regular random bipartite
graphs (“Size of an MDS in a maximally disassortative network” in the S1 File).

Eq (6) is in good agreement with the numerical results (Fig 2). As expected from the analysis
[e.g., Eq (4)], Γ/ N and the increase rate (slope) declines with hki. However, the difference
between numerical and estimated values becomes large in maximally disassortative networks
of ER random networks and dense SF networks. This is because of the assumption of the theo-
retical estimation: we assumed that disassortative networks are completely decomposed into a
collection of (h, k)-regular bipartite graphs and that the intermediate network structures of an
(h, k)-regular graph are also regular, which are not necessarily true. Maximally disassortative
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networks were obtained using the SA method by setting robja ¼ �1, according to the CL model
networks and ER random networks; thus, the networks may be almost maximally disassorta-
tive. This fact may cause the difference between actual and estimated values.

Numerical simulation
We performed numerical simulations to investigate the relationship between Γ and arbitrary
ra, and found that Γ declines with decreasing ra (Fig 3), whereas it is almost independent from
ra when rs > 0. Similar results were observed in both SF networks and ER random networks;

Fig 2. Network size dependency of the size of an MDS, Γ(N), in maximally disassortative networks. (A) SF networks with γ =
2.5. (B) ER random networks. The theoretical estimations (open squares) were obtained using Eq (6).

doi:10.1371/journal.pone.0157868.g002

Fig 3. Relationship between the size of an MDS, Γ(ra), and assortative coefficient ra in networks withN = 500. (A) Scale-free
networks with γ = 2.5. (B) ER random networks. Note that the vertical axes of the main figure and the inset indicate relative Γ(ra)/Γ(0)
and Γ(ra), respectively.

doi:10.1371/journal.pone.0157868.g003
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however, the effect of (dis)assortativity on Γ in SF networks is more significant than that in ER
random networks.

The observed decrease in Γ with a negative ra is due to the repulsion between high-degree
nodes (i.e., hubs), which indicates disassortativity. Networks with higher-degree nodes (i.e.,
more heterogeneous networks) show smaller Γ [10, 11] because the trivial upper bound of Γ is
described as N − kmax, where kmax is the highest degree in a network. In a heterogeneous net-
work (e.g., SF network), Γ becomes smaller when hubs are separated (i.e., high-degree nodes
tend to connect to low-degree nodes) because hubs independently dominate many of the other
(low-degree) nodes. In assortative networks, on the other hand, since high-degree nodes tend
to connect to high-degree nodes, one hub dominates the other hubs. Thus, Γ hardly decreases
because many low-degree nodes need to dominate the other nodes.

These results indicate that the degree exponent γ (or degree heterogeneity) influences the
difference between ΓMAN and ΓMDN; in particular, they predict that more heterogeneous net-
works have smaller ΓMDN because of the above reasons, whereas ΓMAN is almost independent
of γ. In fact, the difference becomes larger when γ is smaller (i.e., the degree heterogeneity
becomes larger) (Fig 4). The accuracy of our theoretical estimation for ΓMDN (i.e., Eq (6))
decreases with increasing γ. We discuss the reason in Discussion and conclusions.

Except for degree distributions, the SA method does not preserve the structural properties
in networks; thus, it remains possible that the other properties mainly determine Γ. For exam-
ple, clustering and modularity, which suggest community structure in complex networks [28],
also influence system dynamics (e.g., epidemic dynamics [29]). To avoid this possibility, Pósfai
et al. [8] evaluated these network parameters when investigating the effect of assortativity on
maximum matching-based network controllability. Thus, we also investigated the relationship
of Γ with clustering and modularity.

The clustering coefficient C is defined as the average ratio of the number of edges among
the neighbors to the number of all possible connections among the neighbors [1]. The network
modularity measure Q is defined as the fraction of edges that lie within modules rather than
between modules, relative to that expected by chance [30]. We computed C and Q according to
Refs. [1] and [30], respectively. In particular, the functions transitivity and leading.eigenvector.

Fig 4. Degree exponent dependency of the difference between ΓMAN and ΓMDN in SF networks with
N = 500 and hki = 4. The symbols denote the numerical results. The solid lines are the theoretical predictions
of ΓMAN (i.e., Eq (1)) and ΓMDN (i.e., Eq (6)). ΓMAN (ΓMDN) is normalized by the size of the MDS in the
uncorrelated network (i.e., network with ra = 0).

doi:10.1371/journal.pone.0157868.g004
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community in the R package igraph (version 0.7.1) were used for calculating C and Q,
respectively.

No clear relationship of Γ with C and Q was observed (Fig 5). This result indicates that ra is
the main factor in determining Γ.

Discussion and Conclusions
In summary, we showed that disassortativity reduces the size of an MDS. This finding implies
that disassortativity enhances network controllability. Whalen et al. [31] showed that the pres-
ence of symmetry in a network can decrease controllability, using small nonlinear systems.
Our result strongly supports their claim because assortativity can be considered as a definition
of symmetry; in particular, it suggests that the impact of disassortativity on network controlla-
bility can be generally concluded. Moreover, the results suggest that biological networks are rel-
atively easy to control, compared with social networks, because biological networks (e.g.,
protein interaction networks) are disassortative, whereas social networks are assortative [4].
Liu et al. [3] suggested the difficulty in controlling social networks because it is necessary to
control most individuals separately to control the whole system. Their observation and sugges-
tion may be consistent with our theoretical predictions.

This result does not contradict a previous study [8], which showed that (dis-)assortativity
does not increase network controllability in terms of structural controllability [3] because the
model of control adopted in the MDS-based approach is different from the standard one. A
relationship between an MDS and structural controllability is discussed in Ref [10], which
states that, if every edge in a network is bi-directional and every node in an MDS can control
all of its outgoing edge values independently, then the network is structurally controllable
under a linear dynamic model. It should be noted that this MDS-based model employs a much
stronger assumption than that used by the standard structural controllability model [3] in
which only the values of driver nodes can be controlled. Thus, the MDS-based model may not
be directly applicable to the control of typical dynamic systems. However, as mentioned in the
Introduction, the MDS is a well-known concept in graph theory and has been applied to the
design and control of various engineering systems. In addition, it is reported in several studies
that nodes in an MDS and its variants tend to have important biological roles [9, 14–16]. For
example, Wuchty [14] showed that proteins in an MDS are enriched with cancer-related and
virus-targeted genes in protein interaction networks; furthermore, they found that such pro-
teins have a higher impact on network resilience.

Fig 5. Correlation of the size of MDSs with the clustering coefficient (A) andmodularity (B) in SF
networks withN = 500 and γ = 2.5.

doi:10.1371/journal.pone.0157868.g005
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However, more careful examinations may be required to conclude the effect of degree-
degree correlation on the size of an MDS. Specifically, we may need to consider the effect of
other network properties on the size of an MDS. For example, Bianchin et al. [32] showed the
importance of diameter in the controllability of complex networks, although the definition of
network controllability in Ref [32] is different from that in our study. Disassortative networks
may show a larger diameter than random networks do because of the repulsion between high-
degree nodes.

Recent studies pointed out that the minimum number of driver nodes is not necessarily
appropriate as a measure of the degree of controllability because the use of a few driver nodes
may need a forbiddingly high amount of energy [32–36]. Instead, these studies focus on the
energy needed to control network systems. In general, the minimum and maximum energies
can be determined by evaluating the eigenvalues of the Gramian matrix: the minimum and
maximum normalized energy costs are given by the reciprocal of the maximum and minimum
eigenvalues [33]. By analyzing the Gramian matrix, researchers were able to perform various
studies on the control energy, which include scaling laws with respect to control time [33],
trade-off between the control energy and the number of control nodes [34], relationships
between the control energy and the network diameter [32], algorithms for selecting a set of
minimal control nodes under a given energy constraint [35], and relationships between the
control energy and the number of control nodes in scale-free networks [36].

In particular, Yan et al. showed that, for a linear and continuous network control model
with the power-law degree distribution P(k)/ k−γ and self-loops, the maximum control energy
scales sublinearly as N1/(γ−1) when ND = N, whereas it scales exponentially as eN when ND = 1,
where N and ND denote the number of network nodes and driver nodes, respectively [36]. In
the MDS-based control model, it is assumed that each node in an MDS can control itself and
its connecting edges independently [10]. On the other hand, by the definition of the MDS, each
node in the network must be in an MDS or have at least one edge connecting to a node in the
MDS. Therefore, it is meant that each node has an independent control input (if multiple con-
trol inputs are assigned to a node, we can use only the one that gives 0 values to the other
inputs). This corresponds to the case of ND = N in Ref [36], which suggests that the MDS-
based control model requires relatively low energy costs, although it must control edges con-
necting to nodes in an MDS independently.

We proposed a method for estimating the size of an MDS in maximally (dis-)assortative
networks from degree distributions. Although the estimation of MDS size or domination num-
ber is a central topic in graph theory, it has been limited in the context of random graphs with-
out degree-degree correlations such as ER random networks [37], k-regular random graphs
[38], and Barabási-Albert networks [39]. Our analytical approach is applicable to the estima-
tion of the domination number of a network with a given degree distribution. However, our
theoretical estimations (i.e., Eqs (1) and (6)) have limitations. In particular, the estimation in
ER random networks is better than that in SF networks in the maximally assortative case; on
the other hand, the opposite tendency was observed in the maximally disassortative case. This
is because of the difference in degree heterogeneity between ER random networks and SF net-
works. The theoretical estimation in the maximally assortative case (i.e., Eq (1)) assumes a col-
lection of k-regular random graphs. The assumption of k-regular random graphs is
appropriate in ER random networks because node degree is almost similar. For a large k, how-
ever, this assumption is hardly satisfied in SF networks because of the existence of a few high-
degree nodes (i.e., hubs) due to heterogeneous (power-law) degree distributions. Thus, Eq (1)
shows a lower prediction accuracy in SF networks. On the other hand, the theoretical estima-
tion in the maximally disassortative case (i.e., Eq (6)) considers the assumption of a group of
(h, k)-regular random bipartite graphs. This assumption is not appropriate in ER random
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networks when the difference between h and k is large (i.e., the maximally disassortative case),
although it is relatively suitable in SF networks because of the hubs. In particular, it is difficult
to obtain (h, k)-regular random bipartite graphs in such a case (i.e., h� k) because node degree
is almost similar in ER random networks; thus, Eq (6) exhibits a lower accuracy.

In this study, we focused on the MDS in maximally assortative and disassortative networks.
However, the proposed methodology may be extended to the general degree-degree correlation
case by making use of a weighted mixture of (h, k)-regular bipartite networks. The proposed
methodology (i.e., combination of network decomposition and recursive application of a prob-
abilistic method) may also be applied to the analysis of other graph theoretic properties (e.g.,
maximum matching, independent set) in assortative/disassortative networks. Our study could
lead to a deeper understanding of network controllability and other properties of complex
networks.

Supporting Information
S1 File. Supplementary information.
(PDF)

Author Contributions
Conceived and designed the experiments: KT TA. Performed the experiments: KT TA. Ana-
lyzed the data: KT. Wrote the paper: KT TA.

References
1. Albert R, Barabási A-L. Statistical mechanics of complex networks. Rev Mod Phys. 2002; 74(1): 47–

97. doi: 10.1103/RevModPhys.74.47

2. Takemoto K, Oosawa C. Modeling for evolving biological networks. in: Dehmer M, Basak SC, editors.
Statistical and Machine Learning Approaches for Network Analysis. New York: JohnWiley & Sons;
2012. pp. 77–108.

3. Liu Y, Slotine J, Barabási A-L. Controllability of complex networks. Nature 2011; 473(7346): 167–173.

4. NewmanMEJ, Assortative mixing in networks. Phys Rev Lett. 2002; 89(20): 208701. doi: 10.1103/
PhysRevLett.89.208701 PMID: 12443515

5. Egúıluz VM, Klemm K. Epidemic threshold in structured scale-free networks. Phys Rev Lett. 2002; 89
(10) 108701. doi: 10.1103/PhysRevLett.89.108701 PMID: 12225235

6. Wang B, Zhou T, Xiu ZL, Kim BJ. Optimal synchronizability of networks. Eur Phys J B. 2007; 60(1):89–
95. doi: 10.1140/epjb/e2007-00324-y

7. Hasegawa T, Takaguchi T, Masuda N. Observability transitions in correlated networks. Phys Rev E.
2013; 88(4): 042809. doi: 10.1103/PhysRevE.88.042809

8. Pósfai M, Liu Y-Y, Slotine J-J, Barabási A-L. Effect of correlations on network controllability. Sci Rep.
2013; 3: 1067.

9. Milenković T, Memišević V, Bonato A, Pržulj N. Dominating biological networks. PLoS One. 2011; 6(8):
e23016. doi: 10.1371/journal.pone.0023016 PMID: 21887225

10. Nacher JC, Akutsu T. Dominating scale-free networks with variable scaling exponent: Heterogeneous
networks are not difficult to control. New J Phys. 2012; 14(7): 073003. doi: 10.1088/1367-2630/14/7/
073005

11. Nacher JC, Akutsu T. Analysis on controlling complex networks based on dominating sets. J Phys.
2013; 410: 012104.

12. Molnár Jr F, Sreenivasan S, Szymanski BK, Korniss G. Minimum dominating sets in scale-free network
ensembles. Sci Rep. 2013; 3: 1736.

13. Molnár Jr F, Derzsy N, Czabarka É, Székely L, Szymanski BK, Korniss G. Dominating scale-free net-
works using generalized probabilistic methods. Sci Rep. 2014; 4: 6308.

14. Wuchty S. Controllability in protein interaction networks. Proc. Natl. Acad. Sci. USA. 2014; 111(19):
7156–7160. doi: 10.1073/pnas.1311231111 PMID: 24778220

Effect of Degree Correlation on Domination Number in Complex Networks

PLOS ONE | DOI:10.1371/journal.pone.0157868 June 21, 2016 10 / 11

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0157868.s001
http://dx.doi.org/10.1103/RevModPhys.74.47
http://dx.doi.org/10.1103/PhysRevLett.89.208701
http://dx.doi.org/10.1103/PhysRevLett.89.208701
http://www.ncbi.nlm.nih.gov/pubmed/12443515
http://dx.doi.org/10.1103/PhysRevLett.89.108701
http://www.ncbi.nlm.nih.gov/pubmed/12225235
http://dx.doi.org/10.1140/epjb/e2007-00324-y
http://dx.doi.org/10.1103/PhysRevE.88.042809
http://dx.doi.org/10.1371/journal.pone.0023016
http://www.ncbi.nlm.nih.gov/pubmed/21887225
http://dx.doi.org/10.1088/1367-2630/14/7/073005
http://dx.doi.org/10.1088/1367-2630/14/7/073005
http://dx.doi.org/10.1073/pnas.1311231111
http://www.ncbi.nlm.nih.gov/pubmed/24778220


15. Khuri S, Wuchty S. Essentiality and centrality in protein interaction networks revisited. BMC Bioinfor-
matics. 2015; 16(1): 109. doi: 10.1186/s12859-015-0536-x PMID: 25880655

16. Zhang X-F, Ou-Yang L, Zhu T, WuM-Y, Dai D-Q. Determining minimum set of driver nodes in protein-
protein interaction networks. BMC Bioinformatics. 2015; 16(1): 146. doi: 10.1186/s12859-015-0591-3
PMID: 25947063

17. Nepusz T, Vicsek T. Controlling edge dynamics in complex networks. Nat Phys. 2012; 8(7): 568–573.

18. Alzoubi K, Wan PJ, Frieder O, Message-optimal connected dominating sets in mobile ad hoc networks.
Proc. 3rd Int. Symp. on Mobile ad hoc Networks and Computing. 2002: 157–164.

19. Stojmenovic I, Seddigh M, Zunic J. Dominating sets and neighbor elimination-based broadcasting algo-
rithms in wireless networks. IEEE Trans. Parallel Distrib. Syst. 2012; 13(1): 14–25. doi: 10.1109/71.
980024

20. Cokuslu D, Erciyes K, Dagdeviren O, A dominating set based clustering algorithm for mobile ad hoc
networks. Proc. Int. Conf. on Computational Science (Lecture Notes in Computer Science vol. 3991).
2006: 571–578.

21. Haynes TW, Hedetniemi ST, Slater PJ. Fundamentals of domination in graphs. New York: Chapman
and HallCRC; 1998.

22. Sampath A, Thampi SM. An ACO algorithm for effective cluster head selection. J Adv Inf Technol.
2011; 2(1): 50–56.

23. Chung F, Lu L. Connected components in random graphs with given expected degree sequences. Ann
Comb. 2002; 6(2): 125–145. doi: 10.1007/PL00012580

24. Cho YS, Kim JS, Park J, Kahng B, Kim D. Percolation transitions in scale-free networks under the
Achlioptas process. Phys Rev Lett. 2009; 103(13): 135702. doi: 10.1103/PhysRevLett.103.135702
PMID: 19905523

25. Goh K-I, Kahng B, Kim D. Universal behavior of load distribution in scale-free networks. Phys Rev Lett.
2001; 87(27): 278701. doi: 10.1103/PhysRevLett.87.278701 PMID: 11800921

26. Maslov S, Sneppen K. Specificity and stability in topology of protein networks. Science. 2002; 296
(2002), 910–913. doi: 10.1126/science.1065103 PMID: 11988575

27. Zhao J-H, Habibulla Y, Zhou H-J. Statistical mechanics of the minimum dominating set problem. J Stat
Phys. 2015; 159: 1154–1174. doi: 10.1007/s10955-015-1220-2

28. Fortunato S. Community detection in graphs. Phys Rep. 2010; 486(3–5): 75–174. doi: 10.1016/j.
physrep.2009.11.002

29. Ritchie M, Berthouze L, House T, Kiss IZ. Higher-order structure and epidemic dynamics in clustered
networks. J Theor Biol. 2014; 348: 21–32. doi: 10.1016/j.jtbi.2014.01.025 PMID: 24486653

30. NewmanMEJ. Modularity and community structure in networks. Proc. Natl. Acad. Sci. USA. 2006; 103
(23): 8577–8582. doi: 10.1073/pnas.0601602103 PMID: 16723398

31. Whalen AJ, Brennan SN, Sauer TD, Schiff SJ. Observability and controllability of nonlinear networks:
The role of symmetry. Phys Rev X, 2015; 5: 011005.

32. Bianchin G, Pasqualetti F, Zampieri S. The role of diameter in the controllability of complex networks.
IEEE Conf. on Decision and Control. 2015: 980–985.

33. Yan G, Ren J, Lai Y-C, Lai C-H, Li B. Controlling complex networks: Howmuch energy is needed?
Phys Rev Lett. 2012; 108(21): 218703. PMID: 23003312

34. Pasqualetti F, Zampieri S, Bullo F. Controllability metrics, limitations and algorithms for complex net-
works. IEEE Trans Control Netw Syst. 2014; 1(1): 40–52.

35. Tzoumas, V, Rahimian, MA, Pappas, GJ, Jadbabaie, A. Minimal actuator placement with bounds on
control effort. IEEE Trans Control Netw Syst. in press.

36. Yan G, Tsekenis G, Barze B, Slotine J-J, Liu Y-Y, Barabási A-L. Spectrum of controlling and observing
complex networks. Nat Phys. 2015; 11: 779–786.

37. Henning MA, Yeo A. The domination number of a random graph. Util Math. 2014; 94: 315–328.

38. Molloy M, Reed B. The dominating number of a random cubic graph. Random Struct Algorithms. 1995;
7(3): 209–222. doi: 10.1002/rsa.3240070303

39. Cooper C, Klasing R, Zito M. Lower bounds and algorithms for dominating sets in web graphs. Internet
Math. 2005; 2(3): 275–300. doi: 10.1080/15427951.2005.10129105

Effect of Degree Correlation on Domination Number in Complex Networks

PLOS ONE | DOI:10.1371/journal.pone.0157868 June 21, 2016 11 / 11

http://dx.doi.org/10.1186/s12859-015-0536-x
http://www.ncbi.nlm.nih.gov/pubmed/25880655
http://dx.doi.org/10.1186/s12859-015-0591-3
http://www.ncbi.nlm.nih.gov/pubmed/25947063
http://dx.doi.org/10.1109/71.980024
http://dx.doi.org/10.1109/71.980024
http://dx.doi.org/10.1007/PL00012580
http://dx.doi.org/10.1103/PhysRevLett.103.135702
http://www.ncbi.nlm.nih.gov/pubmed/19905523
http://dx.doi.org/10.1103/PhysRevLett.87.278701
http://www.ncbi.nlm.nih.gov/pubmed/11800921
http://dx.doi.org/10.1126/science.1065103
http://www.ncbi.nlm.nih.gov/pubmed/11988575
http://dx.doi.org/10.1007/s10955-015-1220-2
http://dx.doi.org/10.1016/j.physrep.2009.11.002
http://dx.doi.org/10.1016/j.physrep.2009.11.002
http://dx.doi.org/10.1016/j.jtbi.2014.01.025
http://www.ncbi.nlm.nih.gov/pubmed/24486653
http://dx.doi.org/10.1073/pnas.0601602103
http://www.ncbi.nlm.nih.gov/pubmed/16723398
http://www.ncbi.nlm.nih.gov/pubmed/23003312
http://dx.doi.org/10.1002/rsa.3240070303
http://dx.doi.org/10.1080/15427951.2005.10129105

