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Mitochondrial dysfunction is common to many organ system disorders, including
skeletal muscle. Aging muscle and diseases of muscle are often accompanied by
defective mitochondrial ATP production. This manuscript will focus on the pre-clinical
evidence supporting the use of regular exercise to improve defective mitochondrial
metabolism and function in skeletal muscle, through the stimulation of mitochondrial
turnover. Examples from aging muscle, muscle-specific mutations and cancer cachexia
will be discussed. We will also examine the effects of exercise on the important
mitochondrial regulators PGC-1α, and Parkin, and summarize the effects of exercise
to reverse mitochondrial dysfunction (e.g., ROS production, apoptotic susceptibility,
cardiolipin synthesis) in muscle pathology. This paper will illustrate the breadth and
benefits of exercise to serve as “mitochondrial medicine” with age and disease.
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INTRODUCTION

Mitochondria are the principal organelles tasked with the provision of cellular energy in the form of
ATP, which is supplied in equilibrium with the energy demands placed on the cell. Changes within
the cellular environment also provoke the mitochondrial network to regulate other important
functions, such as initiating mitochondrial-nuclear retrograde signals, maintaining redox and Ca2+

homeostasis, as well as determining cell fate (Hood et al., 2019). The complex and multifaceted

Abbreviations: AMP, adenosine monophosphate; AMPK, AMP-activated protein kinase; ATF4, activating transcription
factor 4; ATF5, activating transcription factor 5; ATP, adenosine triphosphate; BNIP3, BCL2/adenovirus E1B 19 kDa protein-
interacting protein 3; C26, colon-26 adenocarcinoma tumor cells; CaMK, Ca2+/calmodulin-dependent protein kinase;
CHOP, CCAAT/enhancer-binding protein (C/EBP) homologous protein; COX, cytochrome c oxidase; Drp1, dynamin
related protein 1; eIF2α, eukaryotic initiation factor 2α; ERRα, estrogen related receptor α; ETC, electron transport chain;
FGF21, fibroblast growth factor 21; Fis1, mitochondrial fission protein 1; FoxO3a, forkhead box O3a; IFNγ, interferon γ;
IL-1, interleukin 1; IL-6, interleukin 6; IM, inner mitochondrial membrane; IMF, intramyofibrillar; LC3-I/II, microtubule-
associated proteins 1A/1B light chain 3; MD, mitochondrial disorder; MEF2C, myocyte enhancer factor 2C; MELAS,
mitochondrial myopathy, encephalomyopathy, lactic acidosis and stroke-like episodes; Mff, mitochondrial fission factor;
Mfn1/2, mitofusin 1&2; MQC, mitochondrial quality control; mtDNA, mitochondrial DNA; mTOR, mammalian target of
rapamycin; NIX, BNIP3-like protein; NRF-1, nuclear respiratory factor 1; OM, outer mitochondrial membrane; Opa1/2,
optic atrophy 1&2; p38 MAPK, p38 mitogen activated protein kinase; p53, tumor protein 53; p62, ubiquitin-binding protein
p62 aka sequestosome 1; PIM, protein import machinery; PINK1, PTEN-induced kinase 1; PKA, protein kinase A; PRC,
PGC-related co-activator; ROS, reactive oxygen species; PGC-1α/β, PPARγ coactivator, 1α&1β; RRF, ragged red fibers;
SDH, succinate dehydrogenase; Sirt1, sirtuin 1; SS, subsarcolemmal; Tfam, mitochondrial transcription factor A; TFE3,
transcription factor binding to IGHM enhancer 3; TFEB, transcription factor EB; TNFα, tumor necrosis factor α; UPRmt,
mitochondrial unfolded protein response; UPS, ubiquitin proteosome system; VDAC, voltage dependent anion channel.
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influence of mitochondria on cellular functions requires that the
organelle network exist in a constant state of flux that allows for
precise remodeling in order to match morphology and function
of mitochondria to these imposing demands (Eisner et al., 2018;
Guan et al., 2019). An intriguing aspect of mitochondrial biology
is the tissue specificity that these organelles exhibit (Fernández-
Vizarra et al., 2011). Skeletal muscle in particular comprises a
large volume of total body mass (∼40%) and is highly metabolic
with varying concentrations of mitochondria that provide ATP to
the working muscle for locomotion, posture, and the generation
of fine motor skills. Additionally, skeletal muscle displays distinct
mitochondrial characteristics that are dependent on the location
within the cell, and the metabolic requirements within those
cellular compartments. Thus, given the relative proportion of
body mass and the metabolic nature of skeletal muscle, the status
of the mitochondrial pool within this tissue has considerable
ramifications for systemic health.

Within the skeletal muscle myofiber, mitochondria exist in two
distinct locales, which correspond with unique conformations
and roles (Kayar et al., 1988; Cogswell et al., 1993; Ferreira
et al., 2010). Subsarcolemmal (SS) mitochondria appear to be
essential to provide energy for nuclear gene transcription and
transport across the membrane (Kirkwood et al., 1986; Ogata
and Yamasaki, 1997). Intermyofibrillar (IMF) mitochondria,
localized along the sarcomeric proteins of the myofibrils and
exhibit a more elongated appearance forming a reticular network
throughout muscle fibers in close proximity to the transverse
tubules and the sarcoplasmic reticulum (Kirkwood et al., 1986;
Ogata and Yamasaki, 1997; Vincent et al., 2019). As such, these
organelles supply the ATP used by myosin ATPases to achieve
muscle contraction, and also play an important role in Ca2+

signaling (Boncompagni et al., 2009). Glancy et al. (2015) have
further classified mitochondrial subpopulations based on their
morphologies and proximity to various cellular structures. These
uniquely situated mitochondrial structures comprise a network
of interconnected organelles and serve to provide a pathway for
energy distribution throughout the cell in the form of proton-
motive force (PMF) (Glancy et al., 2017). Thus, the extent and
location of the mitochondrial network is determined by the
interplay of various ATP demand pathways, and regulated by
mitochondrial quality control (MQC) machinery, which help to
maintain the viability and quality of the organelle pool.

MITOCHONDRIAL QUALITY CONTROL
(MQC)

One of the most remarkable features of skeletal muscle
mitochondria is the dynamic plasticity that they exhibit. For
instance, prolonged aerobic exercise training is capable of
eliciting improvements in mitochondrial content, mass, and
overall function, whereas chronic muscle disuse produces the
opposite effect (Tryon et al., 2014; Memme et al., 2019).
Mitochondrial synthesis (biogenesis) is a result of increases
in the expression of nuclear and mtDNA genes encoding
mitochondrial proteins, while fusion proteins such as Mfn1/2
and Opa1/2 promote the merger of adjacent organelles,

thus collectively expanding the mitochondrial network while
improving efficiency (Iqbal et al., 2013; Mishra and Chan,
2016). Conversely, mitochondrial segments that malfunction are
selectively removed, first through their segregation by fission
machinery proteins such as Drp1, Fis1 and Mff in order to be
cleared by the lysosome through mitophagy (Iqbal et al., 2013;
Mishra and Chan, 2016). The balance of these opposing processes
is imperative to mitochondrial quality and function, and any loss
of equilibrium in these processes can contribute to mitochondrial
impairments that are detrimental to tissue health. In fact,
conditions such as advancing age, mitochondrial mutations,
and diseases such as cancer are associated with deficiencies
in the MQC machinery, leading to organelle dysfunction and
pathogenesis (Figure 1). Conversely, exercise is perhaps the
most potent stimulus for the activation of both mitochondrial
biogenesis and mitophagy, and the consequent preservation
and improvement of metabolic health within skeletal muscle.
Therefore, it is important to understand how these processes are
regulated at the molecular level.

Mitochondrial Biogenesis and Important
Signaling Proteins
Mitochondrial biogenesis is responsible for the increased
synthesis of mitochondrial proteins that are derived from
both nuclear and mitochondrial genomes. While there
are approximately 1,200 proteins that are localized within
mitochondria, mtDNA contributes a very small, but nonetheless
important fraction, including 13 ETC subunit proteins
synthesized by the organelle’s distinct protein synthesis
machinery (Anderson et al., 1981). Signaling toward
mitochondrial biogenesis is first initiated by kinases such as
AMPK, p38 MAPK, CaMK, and PKA, which become activated
upon the sensing of energetic and redox imbalances, increases
in intracellular Ca2+ levels, or adrenergic signaling, respectively
(Winder et al., 2000; Puigserver et al., 2001; Handschin et al.,
2003; Ojuka et al., 2003; Irrcher et al., 2009; Ristow et al., 2009).
These signaling kinases converge on the master regulator of
mitochondrial biogenesis, PGC-1α, along with related factors
such as PGC-1β and PRC, which bind various transcription
factors on the promotor regions of a multitude of nuclear genes
encoding mitochondrial proteins (NuGEMPs), thus increasing
their expression (Hood, 2001; Handschin and Spiegelman,
2006; Scarpulla, 2011; Scarpulla et al., 2012). Perhaps the most
notable PGC-1α-transcription factor interaction is through
Nuclear Respiratory Factor-1 (NRF1) to promote the expression
of mitochondrial transcription factor A (Tfam), which in
turn mediates mtDNA transcription, thereby connecting
the expression of the mitochondrial and nuclear genomes
(Gordon et al., 2001; Scarpulla, 2011; Figure 1).While PGC-1α

is considered to be the master regulator of mitochondrial
biogenesis, it may not always be necessary to achieving
mitochondrial adaptations following exercise, since training-
induced increases in mitochondrial content (Leick et al., 2008)
and function (Adhihetty et al., 2009; Ballmann et al., 2016) can
be achieved in PGC-1 knockout animals. Indeed, additional
regulators contributing to mitochondrial regulation include
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FIGURE 1 | Skeletal muscle mitochondrial quality control in health and disease. (A) Exercise is a potent promotor of mitochondrial health by eliciting increases in
mitochondrial quality control machinery. Upstream signaling kinases respond to muscle contractile activity leading to activation of PGC-1α and augmented
transcription of nuclear genes encoding mitochondrial proteins (NuGEMPs). Newly translated mitochondrial-targeted proteins are then transported into the
mitochondrion via the protein import machinery (PIM) and are subsequently met by resident chaperones and proteases to facilitate their incorporation within the
organelle. The UPRmt is responsible for regulating the expression of mitochondrial chaperones and proteases in the presence of a stress stimulus such as exercise.
As mitochondrial volume within the myofiber expands, fusion machinery adjoins neighboring organelles’ inner and outer membranes to facilitate transfer of
metabolites, mtDNA, etc. Dysfunctional mitochondrial segments that lose their membrane potential and emit excessive ROS are cleaved from the reticulum by the
fission proteins, thereby allowing mitophagy machinery to selectively encapsulate and degrade these non-functioning organelles for delivery to the lysosome.
Exercise activates both the biogenesis and mitophagy pathways of MQC to promote the health and viability of the mitochondrial pool within muscle.
(B) Mitochondrial dysfunction is a hallmark feature of disease, including cancer, aging and associated mitochondrial disorders. In general, activation of signaling
kinases is impaired and reduces the drive for mitochondrial biogenesis from the nucleus, while mtDNA copy number can be reduced or have a high proportion of
mutated mtDNA, which can serve to blunt mitochondrial expansion. Reductions in fission and fusion machinery impair mitochondrial morphology and shift the
fission:fusion ratio in favor of network fragmentation and organelle ROS production. Further exacerbating the mitochondrial derangements is the impaired
mitochondrial removal via reduced mitophagic clearance by the lysosome, thus contributing to the poor morphology and function of the mitochondrial network. As
described in the text, exercise can reverse many of the pathways that lead to mitochondrial dysfunction, thereby restoring muscle health.
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SirT1 (Menzies et al., 2013), which is capable of activating
PGC-1α through its deacetylase function, as well as p53, another
well-established transcription factor that translocates to both
the nucleus and mitochondria to regulate the expression of
mtDNA- and nDNA-derived transcripts (Heyne et al., 2004;
Park et al., 2009; Saleem et al., 2009; Saleem and Hood, 2013;
Beyfuss et al., 2018). Moreover, the regulatory regions of nuclear
genes encoding mitochondrial proteins are heterogeneous and
therefore, the regulation of organelle synthesis requires multiple
regulators of transcription (Lenka et al., 1998; Hood, 2001).
A number of transcription factors associated with exercise-
induced mitochondrial biogenesis have been established, such
as CREB, the estrogen related receptors (ERRα,β,γ), c-myc,
specificity protein-1 (Sp-1), upstream stimulatory factor-1
(USF-1), as well as nuclear respiratory factors 1 and 2 (NRF1
and NRF2) (see Islam et al., 2020 for review; Hood et al., 2011;
Knudsen et al., 2020). Each transcription factor when bound to
target gene promoter sequences can upregulate the expression of
mitochondrial proteins.

Mitochondrial Turnover—Mitophagy and
the Lysosomes
Equally important to the synthesis of new mitochondrial proteins
is the removal of mitochondria that begin to emit excessive
ROS, or that have lost their membrane potential, therefore
becoming dysfunctional (Ljubicic et al., 2010; Lira et al., 2013;
Kim et al., 2018). Mitophagy is the mitochondrial-specific
form of autophagy whereby a double membrane phagophore
engulfs damaged organelles to form an autophagosome, that
is subsequently broken down by the lysosome and recycled
(Wei et al., 2015). Although several mitophagy pathways have
been elucidated, the most well-established pathway is mediated
by the interaction of PINK1 and the E3-ubiquitin ligase,
Parkin. Under basal conditions, PINK1 is imported into the
mitochondria and degraded, however, as the mitochondrial
membrane potential dissipates, PINK1 import is impaired. As
a result PINK1 stabilizes on the OM and recruits Parkin,
leading to the ubiquitination of OM proteins (Geisler et al.,
2010). The nucleation of the phagophore membrane requires
maturation of LC3-I into its lipidated form, LC3-II and is
initiated by upstream activation of the Beclin1 complex. Various
autophagy (ATG) proteins such as ATG7 conjugate LC3 with
phosphatidylethanolamine, thus allowing for its incorporation
within the membrane structure (Tanida et al., 2004). The adapter
protein p62/SQSTM1 simultaneously binds to ubiquitin bound
to the tagged mitochondrion along with LC3 embedded in
the phagophore membrane, thus forming the autophagosome.
This structure then traverses microtubule tracks to the lysosome
where it can fuse, and the contents are degraded (Geisler et al.,
2010; Vainshtein and Hood, 2016; Figure 1). The transcription
factors TFEB and TFE3 are two critical regulators of genes
involved in lysosomal biogenesis as well as autophagosomal
machinery (Settembre and Ballabio, 2011; Mansueto et al.,
2017). TFEB and TFE3 have been shown to be activated via
common signals (i.e., AMPK, Ca2+) that are known to promote
mitochondrial biogenesis, and they may also play a role in

initiating mitochondrial biogenesis directly, or in concert with
PGC-1α (Kim et al., 2014; Vainshtein and Hood, 2016; Mansueto
et al., 2017; Erlich et al., 2018).

The Mitochondrial Unfolded Protein
Response (UPRmt)
The UPRmt monitors the mitochondrial environment and
appropriately mounts a response in order to either match
an imposed demand, or to mitigate damage to the organelle
network. In this way, the UPRmt provides an intermediate
between synthesis and degradation of mitochondria. Recent
work has identified the transcription factor ATF4, along with
its downstream targets ATF5 and CHOP, as key regulators of
the UPRmt, which are induced by disruptions in mitochondrial
proteostasis and increasing levels of ROS, such as with exercise
when protein import is accelerated (Memme et al., 2016;
Mesbah Moosavi and Hood, 2017; Oliveira and Hood, 2018).
Together, the activation of these transcription factors provides
a mitochondria-to-nucleus retrograde signal, as they translocate
to the nucleus to promote the upregulation of mitochondrial
chaperones and proteases to help nascent polypeptides either
achieve their mature configuration, or degrade terminally
misfolded proteins, respectively (Granata et al., 2017; Melber
and Haynes, 2018). The proteolytic cleavage of misfolded
proteins generates peptide fragments that can directly suppress
organellular import, contributing to PINK1 stabilization on the
outer membrane and the subsequent induction of mitophagy.
Furthermore, evidence suggests that ATF4 is intricately linked to
TFEB/TFE3 signaling in the presence of cellular stress (Martina
et al., 2016). Thus, the UPRmt matches the health status of
the organelle to the appropriate signaling response and is
upregulated in the early stages of an exercise stimulus, preceding
improvements in mitochondrial content and function (Memme
et al., 2016; Mesbah Moosavi and Hood, 2017). However, while
an increasing volume of research suggests the importance of the
UPRmt in the maintenance of mitochondrial health, the influence
of this process in disease, and the activation of the pathway by
exercise remains to be fully understood.

MITOCHONDRIAL HEALTH WITH AGE

The natural process of aging is associated with progressive
reductions in the strength, function and size of muscle, the
defining features of a condition known as sarcopenia (Rosenberg,
2011). Dysfunctional mitochondria are considered to play a
primary role in the development of sarcopenia as they are
important players in regulating many of the aforementioned
processes that become dysregulated (Heber et al., 1996; Rapizzi
et al., 2002; Kujoth et al., 2005; Schaap et al., 2006).

Mitochondrial Content and Function
During Aging
Mitochondrial decline is characteristic of aged muscle, and when
viewed under the microscope, the organelle network maintains
a distinctly fragmented appearance with aberrantly enlarged
organelles, yet considerably thinner SS and IMF regions as
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compared to young muscle (Short et al., 2005; Iqbal et al.,
2013; Leduc-Gaudet et al., 2015). The observed mitochondrial
fragmentation can be accounted for by the reduced expression
of both fission and fusion proteins, resulting in a net increase
in the fission:fusion ratio (Ibebunjo et al., 2013; Iqbal et al.,
2013). Diminished content is explained by reductions in both the
expression of mitochondrial genes and corresponding proteins,
as well as increased rates of mitophagy flux (Baraibar et al.,
2013; Liu et al., 2013; Carter et al., 2015, 2018a; Chen et al.,
2018). Therefore, synthesis of mitochondrial enzymes is reduced,
while concurrently, mitochondrial proteins are being degraded
at a faster rate. PGC-1α is likewise reduced at the transcript
level in older muscle, while mtDNA mutations become more
prevalent with advancing age (Wanagat et al., 2001; Bua et al.,
2006; Conley et al., 2007; Chabi et al., 2008; Koltai et al., 2012;
Carter et al., 2018b). The consequences of these reductions have
functional implications since mitochondrial respiratory function
is commonly found to be reduced, and augmented uncoupling of
O2 consumption to the synthesis of ATP is observed (Boffoli et al.,
1994; Rooyackers et al., 1996; Marcinek et al., 2005). Furthermore,
as strength is correlated to muscle fiber cross sectional area,
the contribution of mitochondrial derangements to muscle
atrophy is considerable. Decreases in PGC-1α allow FoxO3a,
a pro-atrophy gene that is suppressed by PGC-1α, to become
elevated, while it has likewise been observed that atrophy is most
prevalent in fibers harboring > 80% mtDNA defects (Wanagat
et al., 2001; Bua et al., 2006; Sandri et al., 2006). Additionally,
insufficient clearance of maladaptive organelles in aged tissue
leads to overproduction of ROS, activation of apoptosis and
subsequent DNA fragmentation, ultimately promoting regional
atrophy along the myofiber (Bua et al., 2002; Chabi et al., 2008;
Gouspillou et al., 2014).

Exercise for the Preservation of
Mitochondrial Health With Aging
The question of whether the skeletal muscle decline with aging
is a byproduct of increased sedentarism or intrinsic to the aging
process remains to be unequivocally determined experimentally.
However, the merits of adopting a physical activity regimen is
unquestionable, as continuous exercise can promote favorable
organelle health, and mitigate some of the associated declines
in muscle quality seen with age. Indeed, endurance training can
ameliorate the decreased expression observed in many of the
affected proteins that are diminished in aged muscle, such as
those involved in energy metabolism and generation of ATP
(Lanza et al., 2008). While life-long participation in high-level
physical activity is our best means of promoting and preserving
mitochondrial health in aged muscle, adoption of an exercise
routine later in life is nonetheless capable of achieving levels of
mitochondrial content and function that are comparable to those
found in young muscle (Short et al., 2003; Lanza et al., 2008;
Joseph et al., 2012; Carter et al., 2015). However, the sensitivity
of aged muscle to the exercise stimulus appears to be impaired,
as the activation of the important signaling kinases is blunted, as
is the exercise-induced activation of mitochondrial clearance via
mitophagy (Ljubicic et al., 2009; Chen et al., 2018). While basal

mitophagy flux is elevated with age, it is unclear whether this is
intended to be protective, or contributes to the mitochondrial
defect since dysfunction still predominates aged muscle, as
evidenced by increased ROS emission (O’Leary et al., 2013; Carter
et al., 2018a; Chen et al., 2018). Nevertheless, exercise can mitigate
the excessive accumulation of ROS and attenuate activation
of atrophy-inducing apoptosis (Ljubicic et al., 2009; Di Meo
et al., 2019). Exercise also reverses the age-induced reductions
in PGC-1αtranscription, restoring it to levels observed in
younger cohorts (Carter et al., 2018b). In addition to endurance
exercise, resistance type training also promotes muscle health by
promoting muscle hypertrophy while also recruiting the fusion
of satellite cells that do not harbor mtDNA mutations, despite the
reduced stimulus for mitochondrial biogenesis that this training
modality offers (Taivassalo, 1999; Kowald and Kirkwood, 2014;
Carter et al., 2015). Thus, continuous participation in regular
exercise training, whether adopted throughout life, or much
later, is an established and non-pharmacological approach to
maintaining mitochondrial health, leading to improved skeletal
muscle function and overall quality of life.

MUSCLE-SPECIFIC MITOCHONDRIAL
MUTATIONS AND MITOCHONDRIAL
DISORDERS

As mitochondria are integral organelles in the maintenance of
many cellular processes, the pathogenesis of various diseases
can be traced to mitochondrial irregularities that may be
inherent or acquired via lifestyle factors. More than 300 disease-
associated mtDNA mutations have been identified, which can
be attributed to either genetic inheritance, or the vulnerability
of mtDNA and its exposure to high levels of ROS in the
mitochondrial matrix (Li et al., 2019). However, the investigation
of mitochondrial disorders (MD) is complex, and often present
with varied pathological phenotypes that manifest in a range
of tissues including brain, liver, eye, heart, and skeletal muscle
(Alston et al., 2017).

Mutations and Manifestation of
Mitochondrial Disorders
Mutations to either mitochondrial or nuclear-derived genes
can produce mitochondrial defects that most often present
within skeletal muscle, either as the lone affected tissue or
as a predominant feature of a multisystem disorder, thus
making it the tissue of choice for the study of MD (Taylor
et al., 2004; McFarland et al., 2010). Skeletal muscle can be
routinely sampled via the muscle biopsy technique, which
allows full characterization of the functional and morphological
impairments to mitochondria (Phadke, 2017). Mutations of
mtDNA commonly affect mitochondrial tRNAs and protein
encoding regions, and are associated with mtDNA instability
leading to derangements in copy number and quality (Russell
and Turnbull, 2014; Rusecka et al., 2018). The broad range of
mutations can impact various aspects of mitochondrial quality
control, not limited to an effect on ETC function or impaired ATP
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production. Clinical detection of MD can be made histologically
via the presence of ragged red fibers (RRFs), COX-negative
fibers, as well as SDH deficiency (Phadke, 2017). Among the
numerous MDs, common diseases include MELAS, Kearns-Sayre
syndrome, Leigh syndrome, MERRF, and rhabdomyolysis, which
present with weakness, fatigue and severe myopathy among
a spectrum of other symptoms (Taylor and Turnbull, 2005;
Alston et al., 2017; Phadke, 2017; Rusecka et al., 2018; Yan
et al., 2019). Additionally, derangements in nuclear-transcribed
mitochondrial genes can contribute to the etiology of various
other conditions (Li et al., 2019; Sharma and Sampath, 2019).
For instance, mutations in the Tafazzin gene promotes skeletal
muscle and cardiac myopathy associated with Barth Syndrome
due to impaired maturation of the inner membrane phospholipid
cardiolipin that is required for membrane stability (Schlame
and Ren, 2006). Likewise, defects in the mitophagy protein
parkin prevents the clearance of dysfunctional mitochondria,
contributing to the development of Parkinson’s disease (Dawson
and Dawson, 2010). Evidently, the multifaceted regulation
of mitochondrial content, morphology and function presents
numerous opportunities for mutation and the development of
various diseases.

Exercise as Therapy for Mitochondrial
Disorders
The reliance of mitochondria on nuclear-encoded genes that
are essential for mtDNA transcription makes the development
of targeted therapies difficult. However, exercise is a proven
stimulus for the improvement of mitochondrial content and
function within skeletal muscle, and despite a reduced exercise
capacity in patients with MD, evidence suggests that adhering to
a continuous exercise regimen may serve as the most complete
therapeutic intervention for the restoration of mitochondrial
function. Preclinical studies have shown that PGC-1α may
provide a useful therapeutic target as its activation may alleviate
some of the observed myopathy and mitochondrial respiratory
defects that are present (Srivastava et al., 2009; Fiuza-Luces et al.,
2019). As such, the ability of endurance exercise to activate
multiple signaling kinases that converge on PGC-1α suggests that
it is a potent stimulus. Studies have illustrated that exercise is a
viable intervention strategy that is effective in increasing citrate
synthase activity, ETC complexes and overall patient aerobic
fitness (Taivassalo et al., 1999, 2001, 2006; Jeppesen et al., 2006,
2009; Porcelli et al., 2016; Fiuza-Luces et al., 2018). Similar to
the benefits described in aged muscle, strength training may also
aid in promoting muscle mass and strength in MD patients,
while reducing mtDNA heteroplasmy as a result of satellite
cell recruitment, without any observable negative secondary
effects (Kraemer et al., 2002; Murphy et al., 2008; Groennebaek
and Vissing, 2017). Moreover, the combination of resistance
with endurance training promoted significant improvements in
the quality and function of skeletal and respiratory muscle in
MD patients (Fiuza-Luces et al., 2018). Studies employing the
mtDNA mutator mice, which harbor mutations in mitochondrial
polymerase γ, have also suggested a potential role for exercise-
induced p53 localization to the mitochondria to aid in the

restoration of organellular morphological and functional defects
(Safdar et al., 2016). Interestingly, there is evidence to suggest that
endurance training promotes the restoration of mitochondrial
defects associated with mtDNA mutations in the brains of
patients with neurogenerative diseases such as Alzheimer’s
(Picard et al., 2016). Thus, exercise elicits multiple signaling
cascades that improve mitochondrial health, and does so across
a range of affected tissues, which is particularly important given
the multifaceted nature of MD.

CANCER CACHEXIA

While mitochondrial dysfunction is a hallmark feature of cancer
tumorigenesis, in skeletal muscle, mitochondrial dysfunction
contributes to the progressive muscle wasting associated with
cancer cachexia. Approximately 80% of late stage cancer patients
experience cachexia, which impacts morbidity and contributes
to 20–40% of all cancer mortalities (Melstrom et al., 2007;
Tisdale, 2009; Prado et al., 2013). The consensus definition of
cachexia describes three stages of the condition: (1) Precachexia,
involving weight loss < 5% along with signs of anorexia
and impaired glucose tolerance; (2) cachexia, diagnosed when
weight loss exceeds 2–5%; and (3) refractory cachexia, referring
to variable levels of muscle wasting whereby the cancer is
highly pro-catabolic with poor prognosis (Fearon et al., 2011).
Thus, treatments are most effective when administered early,
however, clinical management remains a major challenge as
patient population, stage, type of tumor, and chemotherapies may
contribute to the progression of cachexia.

Signaling for Cancer Cachexia and the
Role of Mitochondria
The prevailing belief is that the progression of cachexia is
the result of tumor-induced immune cell activation leading to
systemic inflammation and the release of potent cytokines TNFα,
IFNγ, IL-1, and IL-6, which promote changes in metabolism,
energy wasting, cancer-induced anorexia, and skeletal muscle
protein catabolism (Dwarkasing et al., 2016; Van Norren et al.,
2017). The progressive nature of cachexia is based on the
convergence of imbalanced proteostasis, myofiber degeneration
and structural remodeling, as well as altered mitochondrial
function (Van Der Ende et al., 2018). Overactivation of the
ubiquitin proteasome system (UPS) and the autophagy-lysosome
system contribute to advanced protein turnover, while impaired
mTOR signaling contributes to impaired synthesis of new
proteins (Llovera et al., 1995; Lorite et al., 1998; Gordon et al.,
2013; Sandri, 2016). A consistent feature of cancer cachexia
is the vast remodeling of the mitochondrial network and the
array of changes in the expression level of regulatory genes
and proteins involved in mitochondrial biogenesis (Cornwell
et al., 2014; Judge et al., 2014; Shum et al., 2015). Most
studies indicate that PGC-1α protein is significantly reduced with
cancer cachexia, while genome-wide transcriptome datasets show
that PGC-1β gene expression is similarly diminished (Fontes-
Oliveira et al., 2013; Puppa et al., 2014; Sheng et al., 2017;
Van Der Ende et al., 2018). Activators of PGC-1α SirT1 and

Frontiers in Physiology | www.frontiersin.org 6 January 2021 | Volume 11 | Article 615038

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-11-615038 January 4, 2021 Time: 15:44 # 7

Memme and Hood Therapeutic Effects of Exercise

MEF2C, are also found to decrease in cachectic muscle, as well
as downstream targets, ERRα and Tfam, altogether indicating
impaired drive for organelle synthesis (White et al., 2011; Shum
et al., 2012; Zhuang et al., 2016; Chen et al., 2017; Van Der
Ende et al., 2018). Indeed, it appears that the suppression of
PGC-1α is a key event in the progression of cancer cachexia
and is directly related to elevations in circulating IL-6 (Baltgalvis
et al., 2008; White et al., 2012). Additionally, morphology
proteins, Drp1, along with Opa1 and Mfn2 are reduced in
cancer- and chemotherapy-induced cachexia, thus leading to
increased organelle toxicity, and reduced organelle efficiency
(Barreto et al., 2016; Van Der Ende et al., 2018). Microscopically,
mitochondria in cachectic tissue appear swollen and are often
contained in vesicle-like structures indicative of their incomplete
clearance by the mitophagy machinery (Fontes-Oliveira et al.,
2013; Tzika et al., 2013; Pin et al., 2015). Coincidentally,
increases in autophagosomal markers such as p62, BNIP3, and
the LC3-II:LC3-I ratio, along with the appearance of undegraded
mitochondria further suggest impairments in the function of the
lysosomes and their ability to fuse with, and digest the fully
formed mitochondria-containing autophagosomes (Pin et al.,
2015; Brown et al., 2017; Segatto et al., 2017).

Although more work is needed in this area, an increasing
volume of evidence suggests that impairments in mitochondrial
function play a causal role in the muscle wasting observed
in cancer. In particular, over a 4 weeks time course following
C26 tumor cell inoculation, one study found that changes in
mitochondrial content and function preceded the corresponding
atrophy, while another reported that mitochondrial dysfunction
directly influenced amino acid metabolism, and diminished
protein synthesis (Brown et al., 2017; Kunzke et al., 2020).
Interestingly, a study in which Drp1 was selectively knocked out
within rodent muscle demonstrated the robust myopathy, fiber
degeneration/regeneration, and mitochondrial impairments that
are characteristic of cachexia (Favaro et al., 2019). Notably, the
corresponding mitochondrial dysfunction in these animals lead
to the activation of ATF4, consequently inducing release of the
myokine FGF21, which largely accounted for the diminished
body mass (Favaro et al., 2019). These reports highlight a
primary role for mitochondria in the pathogenesis of cancer
cachexia and suggest the importance of targeted therapies
that improve the mitochondrial condition, thus helping to
suppress muscle wasting.

Exercise as Mitochondrial Medicine for
Cancer Cachexia
It is clear that mitochondria are highly relevant to not only
tumorigenesis but also the progression of cancer cachexia.
Therefore, it is reasonable to presume that regular exercise,
with its well known effect on improving mitochondrial content
and function, would provide a potent and viable therapeutic
option for cancer patients. Multiple studies in both rodent and
human tissue have reported that continuous exercise training
in cachectic patients is capable of improving muscle mass and
strength (Deuster et al., 1985; Salomão et al., 2010; Penna et al.,
2011). Interestingly, both endurance and resistance type training

modalities are sufficient to elicit these responses (Norton et al.,
1979; Jaweed et al., 1983; Otis et al., 2007; Schmidt et al., 2015;
Ballarò et al., 2019a; Sato et al., 2019). While considerable work
is still required to dissect the molecular mechanisms at play, the
current literature suggest that the signaling events associated with
exercise reverse the pro-cachectic signals that promote skeletal
muscle decline and frailty. Treadmill training has been also
been shown to similarly augment mTOR signaling and augment
mitochondrial quality control in the presence of systemic IL-6
overexpression, a major contributor to the activation of cachexia
in cancer patients (White et al., 2012, 2013). Along with activation
of PGC-1α, exercise also signals improvements in mitochondrial
quality by mediating the expression of mitophagy proteins
such as BNIP3, PINK1, and Parkin, along with fission/fusion
machinery, and reduces ROS via augmented redox homeostasis
(Pigna et al., 2016; Ballarò et al., 2019a,b). Moreover, the
exercise stimulus is capable of enhancing oxidative capacity
in tumor bearing mice, and aerobic fitness was found to be
directly correlated to survival, suggesting the importance of
mitochondrial health in tumor-bearing subjects (Hardee et al.,
2016; Pigna et al., 2016). In addition, patients diagnosed with
p53-mutation cancers, such as soft-tissue sarcomas, or cancers of
the colon, lung, breast, liver, brain, and hemopoietic tissues, are
likely able to improve muscle health through exercise training.
p53 maintains normal mitochondrial content and function in
muscle, but when mutated, leads to reduced mitochondrial
function and causes cancer. Studies initially by Saleem et al.
(2009), and subsequently by Beyfuss et al. (2018) found that
muscle mitochondrial content and function can still adapt to
exercise in the absence of p53, and muscle health benefits are still
possible. However, it should also be noted that in animals studies
involving late stage cachexia, exercise had no beneficial effect, and
in fact reduced their survival. Thus, it appears that exercise is
most effective as an early intervention strategy to either prevent
or to slow down cachexia progression. The optimal exercise
parameters, such as type, duration, intensity and frequency, to
properly prescribe as part of training program to patients remains
to be determined. However, it is clear that exercise provides
a multifactorial treatment option that can be employed early
in a patient’s diagnosis to improve strength, mobility, energy
metabolism and overall quality of life.

SUMMARY AND FUTURE
PERSPECTIVES

As mitochondrial quality control is highly dynamic and relies on
the convergence of multiple processes to regulate the function
of the organelle network, the development of therapeutic
interventions that adequately address all aspects of mitochondrial
remodeling remains a challenge to identify. Moreover, the
metabolic nature of skeletal muscle, and the relative proportion
of body mass that it comprises, make muscle a unique tissue to
study in the context of various diseases. Exercise performed on
a regular basis in either continuous or interval training formats
remains our one true treatment modality capable of augmenting
mitochondrial health in muscle, by coordinately inducing both
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synthesis and recycling of mitochondrial proteins, and therefore
serving as mitochondrial medicine for muscle. Indeed, this
signaling toward mitochondrial turnover begins with the
very first bout of exercise, which triggers the onset of
biogenesis as well as mitophagy (Vainshtein and Hood, 2016).
Ultimately, long-term training-induced adaptations can also
be used to identify specific factors that can potentially be
targeted pharmaceutically as adjuncts to promote mitochondrial
health in the presence of an exercise stimulus, or perhaps
independently for those incapable of adopting a training
program. However, before this can be accomplished, there are
still many aspects of mitochondrial signaling associated with
exercise that remain elusive. For instance, while the balance
of synthesis and degradation is well understood, other key
regulators of mitochondrial remodeling require further analyses,
such as the UPRmt, as well as TFEB and TFE3 as master
regulators of lysosomal biogenesis and autophagy proteins.
The interplay of these processes and their regulators with

exercise warrants considerable research effort to establish a
clear understanding of the mechanistic features that drive
the sustenance of a high quality mitochondrial pool, and the
consequent maintenance of muscle health with age, cancer and
mitochondrial disease.
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