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ABSTRACT

Alternative splicing is an important mechanism in
eukaryotes that expands the transcriptome and pro-
teome significantly. It plays an important role in a
number of biological processes. Understanding its
regulation is hence an important challenge. Recently,
increasing evidence has been collected that sup-
ports an involvement of intragenic DNA methyla-
tion in the regulation of alternative splicing. The ex-
act mechanisms of regulation, however, are largely
unknown, and speculated to be complex: different
methylation profiles might exist, each of which could
be associated with a different regulation mecha-
nism. We present a computational technique that is
able to determine such stable methylation patterns
and allows to correlate these patterns with inclusion
propensity of exons. Pattern detection is based on
dynamic time warping (DTW) of methylation profiles,
a sophisticated similarity measure for signals that
can be non-trivially transformed. We design a flexi-
ble self-organizing map approach to pattern group-
ing. Exemplary application on available data sets
indicates that stable patterns which correlate non-
trivially with exon inclusion do indeed exist. To im-
prove the reliability of these predictions, further stud-
ies on larger data sets will be required. We have thus
taken great care that our software runs efficiently on
modern hardware, so that it can support future stud-
ies on large-scale data sets.

INTRODUCTION

Alternative splicing (AS) significantly expands the tran-
scriptome and proteome diversity in higher eukaryotic
cells (1). About 95% of human precursor messenger (pre-
mRNA) contains at least one exon that is processed to
yield multiple mRNA isoforms (2). A recent survey of the
Arabidopsis transcriptome has revealed that under normal

growth conditions about 61% of multi-exonic genes are al-
ternatively spliced (3). Furthermore, aberrant splicing can
be associated with a wide spectrum of diseases (4).

Intragenic DNA methylation is an emerging candidate of
a mechanism for exon splicing regulation. A genome-wide
study (5) has reported that human exons are more highly
methylated than introns and methylation differences are
stronger at the exon–intron boundaries. Thus, DNA methy-
lation could play a role in the control of transcript splicing.

A subsequent epigenetic survey of distribution factors
performed on human cell lines (6) has shown differential
association patterns between DNA methylation and vari-
ous AS sites. This suggests that DNA methylation is likely
to play an important role in regulating AS. The genome-
wide association between DNA methylation and AS has
also been observed in Apis mellifera (7). The observed AS
occurs in significantly higher frequency in methylated genes
as compared to un-methylated genes. Furthermore, methy-
lation levels are higher in included exons than in excluded
exons. The enhancement of DNA methylation in exon inclu-
sion has been found to be related to MeCP2 mediated tran-
scription repression (8). DNA methylation has also been re-
ported to inhibit the inclusion enhancement mediated by
CTCF (9). These observations indicate that the regulation
of DNA methylation on AS is complex and involves sev-
eral factors and diverse mechanisms. Therefore, AS exons
with different methylation regulation mechanisms could
have different DNA methylation profiles. For example, a re-
cent study (10) hinted that exons with different GC contents
could be regulated by different splicing mechanisms, which
could be related to different DNA methylation profiles.

In this paper we present a computational approach that
can categorize the relation between AS exons and DNA
methylation using next-generation sequencing (NGS) data.
Specifically, our approach addresses two questions that are
of high importance to genomic research:

(1) Does AS exon DNA methylation form stable profile
patterns that are independent of cell types?

(2) How are DNA methylation and AS exon inclusion
linked with various other properties of exon splicing
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sites taking different methylation profile groupings into
consideration?

Genome-wide categorization of DNA methylation (or
other epigenetic track profiles) is made challenging by the
diversity of epigenetic profiles. For example, DNA methyla-
tion is affected by various factors such as sequence compo-
sition transcriptional factor binding (11) and nucleosome
positioning (12). Thus, epigenetic profiles of regions with
similar function can be globally similar but may have local
differences. These differences could be caused by transfor-
mations such as shrinking, stretching or shifting, leading to
unequal exon and intron lengths. Our developed epigenetic
profile typing algorithm therefore adopts the dynamic time
warping (DTW) method (13) for the measurement of simi-
larity between epigenetic profiles generated from NGS data.
DTW is a symmetric distance measure that does not obey
the triangle inequality (14). This property makes it difficult
to integrate DTW into clustering algorithms that rely on an
averaging method. Thus, we have designed an elastic self-
organizing map (SOM)-based (15) approach for the typing
of epigenetic profiles with varying lengths, which features
an effective DTW-based averaging scheme for cluster con-
sensus representation. We show that this method can cat-
egorize skipping event (SE) exons and retained intron (RI)
events into stable sub-groups independent of the cell and tis-
sue types. This suggests common methylation mechanisms
on the regulation of AS events among different (human) tis-
sues.

MATERIALS AND METHODS

Data preparation

We have tested our algorithm with eight sets of matched
methylation/RNA-seq data from different human tissues
obtained from the NIH Roadmap Epigenomics Map-
ping Consortium (http://www.roadmapepigenomics.org/).
We have selected those data sets for which both RNA-seq
and bisulfite-sequencing have been generated from the same
sample to minimize sample variation effects. Gene Expres-
sion Omnibus (GEO) accession numbers of the data sets are
listed in Table 1.

We mainly focus on SE events for the evaluation of our
method since SEs are the most abundant AS event type.
Nevertheless, we have also tested the RI event type to eval-
uate our method in a rarer AS case (16). For the typing of
SE and RI events based on methylation profiles, we have
expanded +200 bp and −200 bp from the up- and down-
stream borders for each AS event (SE or RI). However, the
uniform expansion of 200 bp to each side of a border can be
problematic, because the expansion can cross the neighbor-
ing exon/intron border. In such cases, we stop the expansion
early, leading to regions of potentially unequal size.

In order to determine the inclusion levels of the SE ex-
ons, RNA-Seq reads are aligned to the human hg19 ref-
erence genome with the splice junction mapper TopHat
v.1.3.2 (17). Only uniquely aligned reads are kept. The
aligned reads are indexed using SAMtools v.0.1.19 (18) and
then AS levels are quantitatively estimated using MISO
v.0.4.9 (19). The fragments per kilobase per million mapped

reads (FPKM) for transcripts are also calculated with cuf-
flinks v2.2.1 (20). For DNA methylation information, we
adopt the author provided data on GEO. For the subse-
quent shape-based epigenetic track typing, we have digi-
tized methylation levels throughout the whole genome in 20
bp resolution and perform a quantile normalization across
all samples.

Dynamic time warping of epigenetic profiles

We use the concept of Dynamic Time Warping (DTW)
(14) for measuring the similarity between two methyla-
tion profiles. Consider two real-valued sequences S1 =
(x0,. . . ,xn−1) and S2 = (y0,. . . ,ym−1) of length n and m
respectively, where xi (yj) represent the read density of
the ith (jth) location on S1 (S2) in our application. Let
I: = dom(S1) and J: = dom(S2) be the index sets of
S1 and S2. The sequence of tuples � : = ((il,jl)∈I×J)l is
called a monotone, continuous and bounded warping path
if and only if min(il+1 − il , jl+1 − jl ) ≥ 0 and max(il+1 −
il , jl+1 − jl ) = 1, ∀l ∈ {1, ..., |γ | − 2}, where (i0,j0) = (0,0)
and (i|γ |−1, j|γ |−1) = (n − 1, m − 1).

The fundamental properties of DTW are derived directly
from this definition.

(1) Continuity. Consecutive nodes in � must be reached by
horizontal, vertical or diagonal steps of length 1. Hence,
DTW matches every index of S1 and S2 without any
gaps.

(2) Monotonicity. Each segment of the warping path � has
to increment at least one index of S1 or S2. As a result,
DTW is not allowed to map an index tuple (il, jl) several
times.

(3) Bounding. The warping path starts at the first index of
S1 and S2. Analogously, ends at the last index. There-
fore, DTW is a global alignment of two real-valued se-
quences (or time series).

The unification of all warping paths is a directed and
acyclic graph (DAG). Non-negative weights are assigned to
all incoming edges of a node (il, jl) by w(il , jl ) := (xil − yjl )

2.
During the further procedure, DTW calculates the optimal
warping path with minimal sum of weights. Figure 1 illus-
trates an example of an optimal warping path during DTW
relaxation of two epigenetic profile signals.

Let � be the set of all monotone, continuous and
bounded warping paths. The optimal warping path γ̂

and its associated measure d̂ with respect to a given
weighting function w : I × J → �+

0 are defined as: γ̂ :=
arg min

γ∈�

∑
(il , jl )∈γ

w(il , jl ) and d̂ := min
γ∈�

∑
(il , jl )∈γ

w(il , jl ).

This optimization problem is equivalent to the calcula-
tion of a shortest path within a DAG. The relaxation of a
cell (i,j) of the penalty matrix M can be written recursively as
M[i,j] = w(i,j) + min{M[i−1,j], M[i,j−1], M[i−1,j−1]}. An
implementation is usually achieved by dynamic program-
ming with O(n×m) runtime.

The described relaxation scheme for DTW determines
the optimal warping path on the whole graph. Empirical
studies (21) suggest that DTW’s quality (in means of kNN-
classification error) can be increased for time series of ap-

http://www.roadmapepigenomics.org/
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Table 1. GEO accession numbers of the methylation and transcription sequencing data sets used in this study

Tissues/cell lines Methylation (BS-Seq) Transcription (RNA-seq)

Adipose GSM1120331 GSM1010958
Esophagus GSM983649 GSM1010956
HUES64 GSM1112840 GSM1112834
Lung GSM983647 GSM1010946
MobCD34 GSM916052 GSM909310
Ovary GSM1120323 GSM1010948
Pancreas GSM983651 GSM1010966
Thymus GSM1120322 GSM1010944

Figure 1. DTW of two methylation profiles (S1 and S2). (A) Dynamic pro-
graming (DP) matrix. The optimal warping path is marked in purple. Sig-
nal insentities are color coded using a green (low) to red (high) scale. The
cumulative cost for each element in the DP matrix is marked from yellow
(low) to blue (high). (B) The alignment corresponding to the optimal warp-
ing path.

proximately equal length by restricting warping paths to the
neighborhood of the main diagonal. The Sakoe-Chiba band
excludes nodes on the upper right and lower left region of
the penalty matrix. As a result, pathological alignments are
excluded which may increase classification quality. Thus, we
have also adapted the banded DTW approach in our im-
plementation. Optimal warping path distances are further
normalized by the path length.

DTW-based self-organizing map

The self-organization map (SOM) (22) is a neural network
model that maps high-dimensional input data onto a topo-

logically organized grid of neurons. Neurons are repre-
sented by weighted vector functions (W). During the train-
ing procedure, each input data item (S) is assigned to the
best matching unit (BMU). Weighted vectors close to the
BMU are incrementally adjusted toward the input data,
where the adjustment force decreases with the grid distance
to the BMU. The impact of the adjustment is iteratively
reduced with each learning epoch (t). Since the general
SOM method is well-known, we will focus on our flexible
weighted vector adjustment strategy. Updating the weight
vector relies on some type of averaging operation. Defin-
ing this averaging operation for our application scenario is
a non-trivial task because it has to be consistent with the
ability of DTW to realign sequences over time (23).

Firstly, for a given methylation profile S = (x0,. . . ,xn−1)
the BMU (U) is determined and the relevant neighboring
neurons within range r = h(U,t) are adjusted. For a neuron
represented by the weighted vector W = (y0,. . . ,ym−1) with
distance r≤R to the BMU we compute the optimal warping
path P = ((il,jl)∈dom(S)×dom(W))l between S and W. For
the simple case (illustrated in Figure 2A) when n = m and
the warping path is along the main diagonal of the DP ma-
trix, the weighted vector can be adjusted by simply comput-
ing y′ jl = yjl + α(t, r )(xil − yjl ) for each warping path index
pair (il,jl) where �(t,r) is the learning force function depend-
ing on the radius r and the learning epoch t.

In the general case, shrinking and expansion between W
and S with respect to P must also be considered. Figure 2
illustrates four possible scenarios. For two consecutive ele-
ments in P, (ik,jk) and (ik+1,jk+1), we define three cases:

(1) Shrinking: ik+1 > ik and jk+1 = jk
(2) Expansion: ik+1 = ik and jk+1 > jk
(3) Diagonal: ik+1 > ik and jk+1 > jk

A possible solution to update the indices of W for Cases
(1) and (2) could be designed by using interpolation of
weighted vector values at integer index locations. Unfortu-
nately, this approach would allow the values of the weighted
vector to become significantly twisted (see Figure 2B). Thus,
a more suitable approach would be to restrict the interpo-
lation within the shrinking and expansion sites and only
make integer shifts of the rest (see Figure 2C and D). Thus,
we restrict the use of interpolation by using an accumula-
tive strategy for index adjustment (called FSOM (Flexible
weighted vector adjustment based SOM)). FSOM accumu-
lates adjustments for each of the elements in the weighted
vector. Index adjustment is only triggered when the accu-
mulated adjustment value reaches a threshold. In this case
the indices at the relevant location (e.g. jk) are shifted by
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Figure 2. Strategies for the adjustment of the weighted vector in the SOM learning process of methylation profiles. (A) Optimal warping path is along the
main diagonal of the DP matrix. In this case, no length adjustment is involved, the adjusted weighted vector (blue dashed line) is simply the weighted average
of the two. (B) The adjusted weighted vector (black dashed line) has non-integer indices (black dots). Element values at integer positions are generated by
interpolation (blue dashed line). Interpolation can severely twist the adjustments. (C) and (D) The FSOM strategy accumulates the index adjustment for
each element of the weighted vector avoiding adjustment of indices for each iteration. The adjustment is only triggered when the accumulator exceeds an
integer-valued threshold. In this case, if the length of the index (dot with arrow) is to be reduced ((C), shrinking) or extended ((D), expansion), the index
of the relevant element is reduced by an integer length (round to integer, indicated by green dots).

one and the accumulator is reset to zero. The same unit of
shifting is also applied to all indices larger than jk but their
accumulator values keep unchanged.

The limited value adjustment caused by index adjustment
occurs when an index shifting is triggered. For the expan-
sion case, new values created by interpolation occupy the
expanded indices (see Figure 2D). For the shrinking case,
index overlapping is caused by shifting, where we average
the values of overlapping elements (see Figure 2C).

Light-weight algorithm for determining the number of clus-
ters

Before applying FSOM it is necessary to determine the
number of subtypes to be trained by FSOM. To be bio-
logically meaningful, this number should reflect the natural
data distribution. The consensus clustering method (24) de-
termines the number of clusters that best fit the data based
on the concept of consensus matrices. A consensus matrix
stores for each pair of objects the proportion of clustering
runs in which this pair is clustered together. The consensus
matrix of a given cluster size can be obtained by averaging
over the connectivity matrices of every perturbed data set
(sub-sample). Thus, clustering has to be performed a large
number of times (for each sub-sample and for each tested
cluster size (or number of groups)). Since this approach is

highly time-consuming for our computationally expensive
DTW-based SOM method, we have designed a faster ap-
proach to address this problem.

The consensus clustering approach scans a range of
group numbers k with 2 ≤ k ≤ K. For each value of k the
algorithm performs a partitioning calculation using m sub-
samples and then calculates a consensus matrix from co-
assignments. The optimal value of k shows maximal intra-
group connectivity/similarity and minimal inter-group con-
nectivity. The quality of a partitioning is measured by the
area under the empirical cumulative distribution function
(CDF) which is calculated from the consensus matrix (24).

Our approach computes the consensus matrix in a more
efficient way. We consider the k-range of 4 ≤ k ≤ K (as the
minimal number of groups for SOM is four). To compute
the co-assignment of data items for several values of k, we
perform the partitioning calculation only once with a grid
of M groups (neurons) making it computationally more ef-
ficient than the original consensus clustering method. Our
approach consists of the following three steps.

(1) Compute the partitioning with a grid setting consisting
of M groups. Record the distance of data items to all
mediods (i.e. the weighted vector for SOM). For each
data item, we rank the mediods by similarity.
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(2) For each k, sample k mediods and assign all the data
items to these k mediods. We can assign each data
item to the nearest mediod according to the ranking
of mediods recorded in Step (1) without the need for
repeatedly computing the distances. The assignment is
repeated m times to compute the co-assignment of the

data item pairs. As
(

M
K

)
> m, we can ensure that it is

possible to sample m sets of mediods for all k ≤ K.
(3) Compute the area under CDF for all 4 ≤ k ≤ K and

determine the optimal value k*.

Cluster validation

Normalized mutual information (NMI) is used as the cri-
terion for evaluating the agreement between two groupings
produced by different SOM runs. The NMI measure returns
a score in the range [0,1]. A random labeling in which the
two groupings are very different results in an NMI score
close to 0.0 while a perfect agreement has a score of 1.0.

Unsupervised random forest learning

In order to determine whether our DTW-based FSOM
method has additional value beyond a simple feature-based
grouping approach, we train an Unsupervised random for-
est (URF) using global properties of SE events, such as aver-
age methylation level, GC-/CpG-ratio and upstream intron
length of I/E and E/I boundaries. URFs are a powerful ap-
proach to perform unsupervised learning tasks (25). Hence,
if our more complex DTW-based approach has additional
value, it should produce more meaningful clusters than a
properly trained URF. The URF model used in our tests
has been trained with the R package randomForest using
the recommended parameters (26).

Statistical tests

For investigating the association between produced AS clus-
ters and various biological properties we test each prop-
erty within each group against the background (which we
define as the entire AS set for each of the tissues) using
the Mann–Whitney U-test. The tested biological proper-
ties include the AS level score �, exon/intron lengths, dis-
tance to TSS, GC and CpG ratios, and expression levels
(FPKM) of host genes. For the GC and CpG ratio test
on the intron–exon (I/E) and exon–intron (E/I) border re-
gions, we divide the regions into 20 bp bins and then test
each of them individually against the background set. Clus-
ters for which more than 80% of those bins show the same
significant trends are marked as significant. For testing of
motif enrichment/depletion in each of the clusters we use a
hypergeometric test. We set the false discovery rate (FDR)
to level 0.05. All statistical tests are performed with the R
package (http://www.r-project.org/).

RESULTS

FSOM typing of Adipose SE based on methylation profiles

We have tested our FSOM method on data from eight
tissues/cell lines (Adipose, Esophagus, HUES64, Lung,

MobCD34, Ovary, Pancreas and Thymus; see also Table 1).
The number of detected SE events ranges from 15 237 to 30
236. We now describe the results obtained on the Adipose
data in detail (Figure 3), while the FSOM clustering results
for the other tissue types are given in the supplement (Sup-
plementary Figures S1–S7).

First, we employ the NMI criteria (see Materials and
Methods) for examining the stability clusters with respect to
the FSOM grid size. The resultant NMI scores are >0.82 for
all the tests on the Adipose data with topological grid set-
tings ranging from 2 × 2 to 3 × 6. We determine the optimal
grid setting with our light-weight algorithm (see Materials
and Methods) resulting in a 3 × 3 grid setting. Figure 3A
shows the resulting nine clusters after FSOM typing based
on the combined methylation profiles on the proximal ±200
bp of the E/I and I/E borders.

As methylation levels can be associated with multiple
factors, e.g. CpG architecture and exon/intron length, the
shape of the methylation profiles can help to find SEs of the
same category. We therefore test multiple factors for asso-
ciation with methylation profiles on the SE borders includ-
ing CpG ratio, GC ratio, residing gene expression, SE exon
length, up-/down-stream intron length, distance to TSS and
inclusion level (� score).

The FSOM method returns clusters that show a gra-
dient from high-to-low methylation levels along rows and
columns of the 3 × 3 grid (see Figure 3A). For most of these
clusters, the methylation profile is condensed to a narrow
band that follows a certain shape pattern characterizing the
cluster. For example, the least methylated cluster (Figure
3A, Clu(2,2)) shows significantly lower methylation levels
on the upstream intron side compared to the downstream
border region suggesting that the low methylation on the
I/E border could be important for splicing regulation of this
cluster. The clustering results for the other seven tissues/cell
lines show similar trends (see Supplementary Figures S1–
S7), whereby the enumeration of the clusters may vary; e.g.
Clu(0,0) and Clu(2,2) in Adipose correspond to Clu(2,0)
and Clu(0,2) in Esophagus.

Furthermore, Figure 3B to E show the other tested prop-
erties per cluster. Even though these properties have not
been used by the clustering procedure, each property show
similar trends along the dimensions of the clustering matrix.

Next, we have tested whether SE methylation profiles are
affected by the lengths of exon and flanking introns. We have
hence tested the association between the SE clusters and the
lengths of exons and up-/down-stream introns with the en-
tire SE event set as background (see Figure 3C). The largest
correlation was found for the upstream intron length, which
changes from significant longer than background (Mann–
Whitney U-test, P < 0.05, FDR 0.05) to significant shorter
than the background. A pronounced association is that the
low methylation cluster Clu(2,2) shows also significant as-
sociation with upstream flanking intron length (Figure 3C)
which further suggests the importance of the upstream in-
tron for the regulation of the SE events contained in this
cluster.

GC and CpG architecture are known to have important
impact on SE E/I and I/E border methylation patterns (10).
We further show that the GC (Figure 3E) and CpG (Fig-
ure3D) ratio has a negative association with the methylation

http://www.r-project.org/
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Figure 3. FSOM typing of Adipose tissue SE events based on methylation profiles. (A) FSOM typing of Adipose tissue SE events based on methylation
levels on an ±200 bp interval for I/E and E/I borders. Methylation profiles for each 20 bp bin of the same cluster are presented by a boxplot. Median
methylation levels are shown as red dashed lines. (B) Inclusion levels (in terms of � score) for each of the clusters (blue) compared to the overall inclusion
background (gray). The inclusion levels vary from significantly high (red asterisk) to significantly low (green asterisk) and follow the same trends as the
methylation levels in (A). (C) Association between SE clusters and up-stream intron lengths with the entire SE events set as background. (D) Average CpG
level of the clusters (blue) along with the background (gray). CpG ratios have a negative association with methylation profile changes. (E) Average GC level
for clusters (purple) compared with background (gray). The GC ratio also has negative association with methylation profile changes.

profile change. Furthermore, our data indicate that clus-
ters with higher overall methylation levels (e.g. Clu(0,0))
show differential CpG and GC ratio on exon and intron
side regions while clusters with lower methylation levels (e.g.
Clu(1,2) and Clu(2,2)) show similar GC and CpG ratio on
exon and intron side regions.

Along with the methylation profile changing, the inclu-
sion level shows positive correlation with overall SE methy-
lation levels (see Figure 3B). However, this does not neces-
sarily mean that, for a specific SE event, when the inclu-
sion level changes, the methylation profile will shift from
one cluster to another. Actually, as it will be discussed in
the next section, by testing all the eight tissues, the group-

ing of AS events is relatively conserved. Thus, the different
splicing regulation mechanism may encode the basal methy-
lation level of these groups.

Conserved SE methylation profile grouping across
tissues/cell lines

We have tested our DTW-based FSOM method on the eight
tissues/cell lines listed in Table 1 to investigate whether the
calculated methylation profile groups share common AS
regulation mechanisms across different tissues/cell lines.

To combine the FSOM results (3 × 3 grid size) from each
tissue, we have computed a complete linkage hierarchical
clustering of the resulting 8 × 9 = 72 methylation clus-
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Figure 4. Stability of FSOM clustering across eight tissues/cell lines. (A) Complete linkage hierarchical clustering of the 8 × 9 = 72 SE methylation clusters.
Each row in the heatmap presents the methylation prototypes for one cluster with methylation levels coded on a green (low) to purple (high) scale. Four
groups (Group I–IV) of SE methylation clusters are defined by cutting the dendrogram at the second level. (B) Analysis of the shared membership between
Group I (low methylation) and Groups III and IV (high methylation). The graph illustrates the pairwise membership sharing by weighted edges (percentage
of total common SEs, edges with <5% of total common SEs are omitted). Groups I and IV have less than 5% members in common among all the tested
tissues. (C) Membership ratio map. From the ratio map we can observe that Group IV represents the most common SE regulation mechanism and that
the highest relative ratio variation is <20%.

ters (see Figure 4A). The hierarchical clustering uses DTW
computed on the median methylation levels of each clus-
ter as distance measure. We then cut the resulting dendro-
gram at the second level to produce four groupings (Groups
I–IV). The four groups show an increase in overall methy-
lation levels from Group I to IV (Figure 4A). Note that
each group contains at least one representative from each
tissue/cell line. Furthermore, the highest relative ratio vari-
ation is <20% (see Figure 4C). From the ratio map in Fig-
ure 4C we can further observe that Group IV represents the
most common SE regulation mechanism.

Membership of SE events is relatively stable in the sense
that shared membership between Group I (low methylation)
and Group IV (high methylation) is rare (<5% of commonly
covered SE event, n = 6125). Shared membership between
Group I and between Group III and IV is shown in Fig-
ure 4B. This observation suggests that the majority of SE

events has a fixed methylation pattern that is resistant to
dramatic changes of methylation among different tissues.

Furthermore, Supplementary Figure S8 shows the cor-
responding hierarchical clustering for the RI methylation
clusters which show similar trends.

Association of SE and RI methylation and various biological
properties

To further validate the performance of our typing method
we have investigated the correlation between several biolog-
ical properties and the produced SE and RI methylation
groupings. Our results for SE methylation are summarized
in Figure 5A. We can observe that SE groups I and II show
higher levels of GC and CpG ratios throughout the border
regions, while Group IV shows lower levels.
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Figure 5. Correlation between several biological properties (CpG ratio, GC ratio, host gene expression, SE exon length, up-/down-stream intron length,
distance to TSS, � score) and produced SE (A) and RI (B) methylation groupings. Each test compares to the background level and is marked as significant
(P < 0.05, FDR 0.05) in either blue (high) or orange (low), or as insignificant (in white).

Gene expression levels are investigated as another factor
that could affect the DNA methylation pattern modeling.
FPKM levels of host genes show indeed an association with
the methylation grouping. This suggests that the methyla-
tion modeling of SE borders reflects both, local exon splic-
ing regulation and the entire gene expression status, which
tunes the methylation profiles on SE borders. The relative
distance of the SE border to the TSS site is a further prop-
erty that we consider to have impact on SE methylation reg-

ulation since methylation’s role in regulating transcription is
well known (5). Group IV shows shorter distance than the
other groups (U-test).

In summary, all eight investigated associations show a de-
gree of conservation across all eight tissues/cell lines (see
Figure 5A). Similar conservation can also be observed in
RI methylation typing across the eight tissues/cell lines (see
Figure 5B), although the smaller data size leads to less sen-
sitivity of the statistical tests.
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Figure 6. Splicing motif enrichment and distribution among different SE
clusters. Motif enrichment and depletion are tested for all of the clusters
(hypergeometric test). Only clusters with significant (P < 0.05, FDR 0.05)
motif enrichment and depletion are shown (see Figures S10 and S11 for all
clusters). Motif enrichment (warm color) and depletion (cold color) are
shown on a −log10(P) color scale. Methylation groupings are shown at
the bottom. Both I/E and E/I border regions are tested.

Splicing motif binding regulated by methylation profiles

Splicing motif binding is a crucial step for regulation of exon
splicing and may also suggest differential splicing regulation
mechanisms. To further characterize the methylation typ-
ing of SE groups, we have tested the enrichment/depletion
of splicing motifs on the SE border regions for all the clus-
ters across the eight tissues/cell lines. We would expect that
the motifs show a conserved enrichment/depletion pattern
for the same categories of SEs across different tissues/cell
lines. We can observe two distinct groups (I versus IV
and III) of SEs that have reversed enrichment/depletion
patterns involving 13 known splicing motifs (see Figure 6
and Supplementary Figure S9). Splicing motifs for QK1,
PTB, SRp20, NOVA1, hnRNPU, PTB and FOX1 are en-

riched in the highly methylated groups (Group III and
Group IV) while depleted from the low methylated SE
group (Group I). On the other hand, motifs for SRp55,
Tra2beta, hnRNPF, SC35, MBNL and hnRNPA1 are en-
riched in Group I while depleted from Group III and Group
IV. The enrichment/depletion pattern is highly consistent
across different tissues/cell lines.

The distinct motif distribution of different SE groups fur-
ther supports the existence of different AS regulation mech-
anisms that are commonly performed in different tissue
types. These mechanisms probably affect a fixed spectrum
of SE exons suggested by the highly conserved membership
of the major methylation typing groups.

Additional value beyond a simple feature-based grouping ap-
proach

We have previously observed that various biological prop-
erties correlate well with the discovered methylation group-
ings. Thus, we have further tested whether meaningful
groupings could also be recovered from these properties
without the use of our DTW-based FSOM approach.

We have thus trained an unsupervised random forest
(URF) (see Materials and Methods) on such properties,
namely average methylation level, GC-/CpG-ratio, and up-
stream intron length of I/E and E/I boundaries. For both
methods (FSOM and URF), we have set the number of clus-
ters to four, corresponding to the four major superclusters
we found. Figure 7, Supplementary Figures S10 and S11
display the clusters resulting from our approach to those
from URF.

The results show that the URF learning model fails to
find common methylation profile patterns of SE groups.
Therefore, it is also not able to detect stable association pat-
terns between methylation profiles and SE inclusion. For ex-
ample in HUES64, MobCD34 and thymus, the URF gener-
ates two groups that show high methylation profiles. How-
ever, the association between these methylation profiles and
the inclusion levels shows no recognizable structure. Instead
the URF clusters with high methylation levels are associ-
ated with both high-and low-inclusion levels (see Supple-
mentary Figures S10 and S11), and hence describe tissue-
specific effects rather than general AS regulation mecha-
nisms.

In contrast, our method considers shape information by
using a flexible DTW-based approach instead of simple
global features. The fact that our method is able to out-
perform methods based on global properties implies that
there is valuable information in the shape of the methyla-
tion profiles of AS events. A possible explanation of the in-
fluence of the methylation shape on AS regulation is the ex-
istence of symphonized mechanisms which leave their ‘foot-
prints’ on the methylation profile. Hence, knowledge about
the shape may be crucial to decipher the original AS regu-
lation groups.

Our experimental results using an FSOM grid of size 2 ×
2 (see Figure 7B) and of size 3 × 3 (see Figure 4A) also in-
dicate that groupings across tissues/cell lines are somewhat
stable with respect to the number of utilized cluster proto-
types.
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Figure 7. (A) Comparison of our FSOM method with a 2 × 2 grid size and an URF learned from global properties with the number of clusters set to
four for Adipose SE events. (B) FSOM clustering of SEs with a 2 × 2 grid setting yields stable typing of methylation groups. The counterpart for the two
distinct groups (Clu(0,1) and Clu(1,1)) of Adipose SEs can be found in all the eight tissues. The significance of SE inclusion levels is also indicated for each
cluster.

DISCUSSION

In this work, we have presented a computational technique
for the study of stable methylation patterns which is a cru-
cial piece of the puzzle in the attempt to understand the in-
fluence of DNA methylation on the regulation of AS.

The idea behind searching for patterns is as follows: an ef-
fect of methylation on AS can either be a result of bulk prop-
erties (such as total GC content), of higher-order effects or
of a combination of the two. For instance, a certain AS event
might require a certain total GC content, but also a certain
shape of the methylation pattern. Studying the effect of bulk
properties is simple: we can just compute them for test ex-
amples and see how they correlate with the outcome. But to
understand the effect of higher-order patterns, we first need
a method to robustly and efficiently detect these from the
data. Then, we can cluster data into instances with similar
methylation profile and study whether the members of the

resulting clusters tend to correlate in similar ways with the
outcome.

Detecting such patterns is a non-trivial challenge: evolu-
tionary changes can stretch, shrink or shift parts of the pat-
tern. Hence, a simple correlation of methylation profiles as a
function of sequence position is likely to be too simplistic as
a measure of methylation similarity. Instead, we propose the
use of the DTW algorithm known from time series analysis,
which can be made invariant with respect to the above trans-
formations. However, integrating DTW into the clustering
schemes that repeatedly need to compute some type of aver-
aging is challenging. We have therefore implemented a flex-
ible weighted vector adjustment SOM approach to group
methylation profiles into clusters of similar global shape, de-
spite potential local differences. These clusters then serve as
methylation patterns, and can be correlated with time-series
data on exon inclusion and intron retention.
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To validate the method, we have applied our program to
publicly available real-world data sets from eight tissues/cell
lines. Our proof-of-concept results indicate the existence of
tissue independent stable patterns which have a non-trivial
correlation with AS events (exon inclusion and intron re-
tention), which would hint at their role as regulators on an
epigenetic level.

Further analysis on large-scale data sets is required to in-
crease confidence in the patterns we found in the data that
was available to us, and to establish further ones and study
their respective roles. In fact, the patterns detected in our ex-
periments are not the main contribution of our work, and
should rather be treated as a proof-of-concept. The empha-
sis of our work is clearly on the method that has been de-
veloped. Nevertheless, as this software is explicitly designed
with computational efficiency in mind, the required experi-
ments can be easily performed in reasonable computational
time. This is especially encouraging, since the amount of se-
quence methylation data is continuously increasing.

Due to the importance of AS events, considerable atten-
tion has been directed toward a better understanding and
characterization of these events. For instance, recent stud-
ies have shown that AS events can be at least partially pre-
dicted from RNA-seq data (27–29). However, studying the
effect of methylation patterns on AS in a tissue-independent
manner computationally has, to the best of our knowledge,
not yet been attempted, even though experiments hint at
interesting non-trivial correlations (6–8,30,31). Thus, our
method allows, for the first time, three kinds of studies: (i)
researchers can use our software to detect novel methylation
patterns and investigate their meaning; e.g. comparisons to
non-alternatively spliced exons might help to unravel reg-
ulatory motifs; (ii) the software can be extended to query
methylation data against a set of pre-computed profiles; (iii)
the approach allows to study time-series data to see whether
changes in AS events correlate with corresponding changes
in methylation prototypes. For all these use cases, it is cru-
cial that the software detects meaningful and stable proto-
types. Our experiments indicate that this hinges upon the
use of the DTW to provide a similarity measure for profiles
that is relatively stable against common evolutionary events
that leave the overall shape of the profile intact.

AVAILABILITY

Our software is written in C/C++. Binaries and source
code of the FSOM typing software for Windows32/64 and
Linux64 are freely downloadable at http://sourceforge.net/
projects/fsom/ (under the GPLv3 license). All tests have
been conducted on a workstation with an Intel R© CoreTM

i7 CPU and 4 GB RAM.
The input data sets to the FSOM software are available at

http://sourceforge.net/projects/fsom/files/Testing data/. An
excel sheet containing the details of the utilized AS events
with inclusion information is available at http://sourceforge.
net/projects/fsom/files/Exon inclusion data/.
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