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ABSTRACT

Fanconi Anemia (FA) and Bloom Syndrome share
overlapping phenotypes including spontaneous
chromosomal abnormalities and increased cancer
predisposition. The FA protein pathway comprises
an upstream core complex that mediates recruitment
of two central players, FANCD2 and FANCI, to sites of
stalled replication forks. Successful fork recovery
depends on the Bloom’s helicase BLM that partici-
pates in a larger protein complex (‘BLMcx’) containing
topoisomerase III alpha, RMI1, RMI2 and replication
protein A. We show that FANCD2 is an essential regu-
lator of BLMcx functions: it maintains BLM protein
stability and is crucial for complete BLMcx
assembly; moreover, it recruits BLMcx to replicating
chromatin during normal S-phase and mediates
phosphorylation of BLMcx members in response to
DNA damage. During replication stress, FANCD2
and BLM cooperate to promote restart of stalled rep-
lication forks while suppressing firing of new replica-
tion origins. In contrast, FANCI is dispensable for
FANCD2-dependent BLMcx regulation, demonst-
rating functional separation of FANCD2 from FANCI.

INTRODUCTION

Fanconi anemia (FA) and Bloom syndrome (BS) are
genomic instability diseases that predispose affected indi-
viduals to cancer. FA is characterized by bone marrow
failure, congenital abnormalities and a high risk to
develop leukemia and squamous cell carcinomas. FA
cells are sensitive to DNA interstrand crosslinks (ICLs)
and show spontaneous chromosomal aberrations that
are further exacerbated on treatment with replication-in-
hibiting agents (1,2). Fifteen known FA proteins act in a

common pathway that is activated when the replication
machinery encounters DNA damage. On replication fork
stalling, the upstream FA core complex (composed of
eight FA proteins) is recruited to chromatin by one of
its members, FANCM (3–5). The core complex then
monoubiquitinates the central FA pathway proteins
FANCD2 and FANCI that subsequently localize to chro-
matin and into DNA repair foci (6,7). Monoubiquitinated
FANCD2 (FANCD2Ub) functions to recruit DNA repair
factors FAN1 (Fanconi-associated nuclease 1) (8–11) and
SLX4 (identical to FANCP; a Holliday junction (HJ)
resolvase in complex with SLX1) (12–15), suggesting
that chromatin-bound FANCD2Ub is a docking
platform for certain DNA repair nucleases. Positioned
downstream in the FA pathway are the breast cancer–
associated proteins FANCD1/BRCA2 (breast cancer–
associated protein 2), FANCN/PALB2 (partner and
localizer of BRCA2) and FANCJ (BRIP1, BRCA1-
interacting protein 1) that function in homologous recom-
bination (HR) repair of DNA double-stranded breaks
(DNA DSBs) (16,17). Intriguingly, recent studies
identified a DSB repair-independent function of
BRCA2—in concert with FANCD2—to protect stalled
replication forks from degradation by the MRE11
nuclease (2,18).

BS is closely related to FA, characterized by growth
abnormalities, immunodeficiency and an increased risk
to develop hematological and solid tumors. BS and FA
cells share phenotypical features including DNA ICL sen-
sitivity and spontaneous chromosomal aberrations
(19,20). The single BS protein, BLM, is a RecQ helicase
that participates in a protein complex (‘BLMcx’) contain-
ing topoisomerase III alpha (TOP3a), RMI1, RMI2 and
the replication protein A heterotrimer (RPA1-3) (21–24).
BLMcx promotes dissolution of HJs—mobile DNA cross-
over structures that arise during HR-mediated repair of
DNA DSBs (25–27). Intriguingly, HJ structures also form
during replication fork recovery (28,29), and it was
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recently shown that BLM and RMI1 mediate the restart
of stalled replication forks in vivo (30,31).

Accumulating evidence suggests functional interactions
between the FA and BLM pathways: (i) The upstream FA
core complex and BLMcx can form a larger complex using
FANCM as linker protein (3,24); moreover, the FA core
complex mediates DNA ICL-induced recruitment of BLM
and RPA to DNA and into DNA repair foci (3,32–34). (ii)
The downstream FA pathway protein FANCJ protects
BLM protein stability and cooperates with BLM to
unwind damaged DNA duplex substrates (35). (iii) The
central FA pathway protein FANCD2 co-immunopre-
cipitates with BLM from ICL-treated human cells
(32,33); moreover, BLM and TOP3a are epistatic to
FANCD2 to mediate cellular DNA ICL resistance (20).

Importantly, FANCD2 and BLM also prevent replica-
tion fork collapse during unperturbed S-phase (36,37),
indicating that these proteins communicate in the
context of fork stalling. However, if and how FANCD2
acts in concert with BLM and other BLMcx members to
mediate replication fork recovery, and whether the
FANCD2 dimerization partner FANCI is involved in
these processes, is not known.

We combined Xenopus laevis egg extracts and human
cell-based assays to investigate a putative functional con-
nection between FANCD2, FANCI and BLMcx. Our
results indicate that FANCD2 is an integral stabilizing
member of BLMcx that recruits the entire complex to
replicating chromatin and controls DNA damage-trig-
gered phosphorylation of BLMcx members. Following
replication fork stalling, FANCD2 and BLM cooperate
to promote fork restart. Strikingly, FANCI is not
required for FANCD2-dependent BLMcx regulation, sup-
porting our recent finding that FANCD2 ‘dissociates’
from FANCI on FA pathway activation (38) and
demonstrating a separation of function between
FANCD2 and FANCI.

MATERIALS AND METHODS

Preparation of Xenopus egg extracts

S-phase extracts were prepared from Xenopus eggs as
described (36,39). Where indicated, extracts were treated
with 100 mM MG132.

Preparation of dsDNA substrates

Circular plasmid DNA (pBSKS) was linearized by diges-
tion with EcoRV and used at a concentration of 50 ng/ml
in egg extracts.

Chromosomal replication assay in Xenopus egg extracts

S-phase extracts were supplemented with 1000 X.laevis
sperm nuclei/ml. Reaction aliquots were pulse labeled
with [a-32P]dGTP at the indicated time windows.
Reactions were stopped with 1% SDS/40mM EDTA
(pH 7.8) and digested with proteinase K (1mg/ml) at
37�C for 1 h. DNA was extracted with phenol-chloroform
and electrophoresed on an agarose gel. Gels were dried
and exposed to X-ray film.

Preparation of chromatin fractions from Xenopus egg
extracts

At indicated time points, 50 ml of S-phase egg extracts
containing 1000 sperm nuclei/ml were diluted in chromatin
isolation buffer (40mM HEPES, 100mM KCl, 20mM
MgCl2, 0.2% Triton X-100) and purified by centrifugation
through a 30% (wt/vol) sucrose cushion for 25min at
6000g at 4�C. Chromatin pellets were analyzed by gel elec-
trophoresis and immunoblotting.

Immunofluorescence analysis in Xenopus nuclei

Replicating nuclei were re-isolated from Xenopus egg
extracts following a protocol from the Heald laboratory
(40). Briefly, nuclei were re-isolated from extract/nuclei
mixes via centrifugation through a 40% glycerol cushion
onto coverslips. Nuclei were fixed onto coverslips with
3.7% formaldehyde, permeabilized with PBS containing
0.2% Triton X-100 and blocked with 7.5% BSA.
Primary and secondary antibodies were diluted in PBS
containing 0.5% BSA. Nuclei were incubated in primary
antibody [1:1000 for anti-BLM (rabbit); 1:1000 for anti-
RPA2 (rat); 1:3000 for anti-RPA2S33-P (rabbit) and 1:2000
for anti-FANCD2 (rabbit)] for 1 h at 4�C. Following five
5-min washes with PBS, secondary antibody was added at
1:1000 (Alexa Fluor 594-conjugated goat anti-rabbit or
Alexa Fluor 488-conjugated goat anti-rabbit; Molecular
Probes). Nuclei were stained with Hoechst 33342 dye
(Molecular Probes) and then mounted with anti-fade
mounting solution (Vectashield, Vector Laboratories).
For analysis of nuclear foci formation, wide-field images
were captured using the Axio Imager A1 (Zeiss). Images
were processed using Image J software (NIH). Single
nuclei were scored for BLM foci and RPA2S33-P foci.
Evaluation of foci-containing nuclei was performed
using Microsoft Excel.

Immunodepletion of Xenopus egg extracts

Immunodepletions were performed essentially as previ-
ously described (36). In brief, 200 ml of Sepharose 4B
beads (50% slurry) were coupled to 100 ml of protein-
specific antibody (FANCD2 or FANCI) or corresponding
IgG control serum. Beads were pelleted and washed in
XB-buffer. For depletion, 200 ml of extract was added to
100 ml of dry conjugated beads and incubated on ice for
60min. The extract-bead mix was centrifuged at 1800g for
5min, and the extract was separated from the bead pellet.
For quantitative protein removal, one to two depletion
rounds were performed.

Immunoprecipitation from Xenopus egg extracts

Hundred microliters of Sepharose 4B beads (50% slurry)
were coupled to 10–20ml of affinity-purified protein-
specific BLM antibody or control (IgG) antibody.
Eighty microliters of extracts were diluted in 1200 ml of
immunoprecipitation (IP) buffer (10mM Tris, pH 7.4,
150mM NaCl, 1% NP-40, 0.5% Sodium Deoxycholate,
1mM EDTA, 1mM DTT, 0.5mg/ml pefabloc protease
inhibitor) and centrifuged at 40 000g for 20min.
Antibody-coupled beads were added to the supernatant
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and the mix was rotated overnight at 4�C. IP beads were
washed in IP buffer, boiled in 1� NuPAGE loading buffer
(Invitrogen) and analyzed for bound proteins by SDS-
PAGE and western blotting.

Immunoblotting

Protein samples were separated on gradient gels and
transferred to Immobilon P membranes (Millipore).
After blocking in 5% milk, membranes were incubated
with the following primary antibodies. Xenopus egg
extracts: FANCD2 (1:2000), FANCI (1:1000), BLM
(1:1000), RMI1 (1:250), RPA1-3 (1:2000), histone H3
(1:6000) or Myc (1:1000). Human cells: FANCD2
(1:1000), FANCI (1:1000), BLM (1:1500), TOP3A
(1:1000), RPA1 (1:1000), histone H3 (1:6000), CDA
(1:500) and GAPDH (1:1000). Horseradish peroxidase-
conjugated rabbit secondary antibody (Jackson Labs) or
mouse secondary antibody (Biorad) was used at dilutions
of 1:10 000 and 1:4000, respectively. Protein bands were
visualized using an ECL Plus system (Amersham).

Protein purification

Xenopus laevis recombinant myc-FANCD2WT and myc-
FANCD2K562R proteins were purified as described (38).
Purified proteins are shown in Supplementary Figure S1.

Antibodies

Xenopus laevis. Antibodies against FANCD2 and FANCI
were previously described (38). Polyclonal rabbit
antibodies were raised against the N- and C-termini of
BLM (MAALPQNNLQKQLELFPAKG and
MAPPMPQPNRRFLKPSYSMF). Antibodies against
TOP3a were a gift from W. Dunphy, and antibodies
against RPA subunits 1–3 were a gift from K. Cimprich.
Homo sapiens. Commercial antibodies were used against
human RMI1 (GTX11686; crossreactive with Xenopus
RMI1), Myc (Sigma, C3956; Covance, 14865101),
FANCD2 (abcam, ab2127), FANCI (Bethyl, A300-
213A), BLM (abcam, ab476), TOP3a (Proteintech,
14525-1-AP), RPA1 (Calbiochem, NA-13), CDA
(abcam, ab56053), histone H3 (abcam, ab1791),
GAPDH (Genetex, GTX627408), total RPA2 (Cell
Signaling, 2208) and phospho-RPA2 (phospho-S33;
Bethyl, A300-246) (both RPA2 antibodies are
crossreactive with X.laevis RPA2).

Preparation of whole cell extracts and cell fractions from
human cells

For whole cell extract (WCE) preparation, cells were
washed in PBS, resuspended in lysis buffer (10mM Tris,
pH 7.4, 150mM NaCl, 1% NP-40, 0.5% Sodium
Deoxycholate, 1mM EDTA, 1mM DTT, 0.5mg/ml
pefabloc protease inhibitor) and incubated on ice for
20min. Cell extracts were centrifuged for 5min at
10 000 g, and the supernatant was used for further
analysis. Cytoplasmic and chromatin fractions were
prepared using the Subcellular Protein Fractionation Kit
(Thermo Scientific).

IP from human cells

Untreated or aphidicolin-treated PD20 or PD20+D2 cells
were lysed in buffer containing 10mM Tris, pH 7.4,
150mM NaCl, 1% NP-40, 0.5% Sodium Deoxycholate,
1mM EDTA, 1mM DTT, 0.5mg/ml protease inhibitor
(Boeringer). Lysates were precleared with rabbit IgG
and subjected to IP with FANCD2, BLM or IgG
antibody at 4�C overnight. Hundred microliter of
Sepharose 4B beads (50% slurry) were added and
rotated for 30min at 4�C. Beads were pelleted from
solution, washed in cell lysis buffer, boiled in 1�
NuPAGE buffer (Invitrogen) and analyzed for the
presence of proteins by SDS-PAGE and western blotting.

siRNA experiments

siRNA duplexes were purchased from Dharmacon research
(Thermo Scientific, USA). The sequence of FANCD2
siRNA is CAACAUACCUCGACUCAUUUU (10). For
BLM, siGENOME SMARTpool siRNA consisting of
four siRNA duplexes with target sequences GAGCACAU
CUGUAAAUUAA, GAGAAACUCACUUCAAUAA,
CAGGAUGGCUGUCAGGUUA and CUAAAUCUGU
GGAGGGUUA was used. siGENOME non-targeting
siRNA was used as a control. Transfections were per-
formed using DharmaFECT1 transfection reagent accord-
ing to the manufacturer’s protocol.

DNA fiber assay

We used a previously described DNA fiber protocol (41).
Moving replication forks were labeled with digoxigenin-
dUTPs (DigU) for 25min and then with biotin-dUTPs
(BioU) for 40min. To allow efficient incorporation of
the dUTPs, a hypotonic buffer treatment (10mM
HEPES, 30mM KCl, pH 7.4) preceded each dUTP-
labeling step. To visualize labeled fibers, cells were
mixed with a 10-fold excess of unlabeled cells, fixed and
dropped onto slides. After cell lysis, DNA fibers were
released and extended by tilting the slides. Incorporated
dUTPs were visualized by immunofluorescence detection
using anti-digoxigenin-Rhodamine (Roche) and
streptavidin-Alexa-Fluor-488 (Invitrogen). Images were
captured using a Deltavision microscope (Applied
Precision) and analyzed using Deltavision softWoRx 5.5
software. All shown DNA fiber results are means of three
independent experiments (300 DNA fibers/experiment).
Statistics were calculated using Prism software
(Supplementary Table S1). Error bars show s.e.m.
P values were determined using Mann–Whitney test.

RESULTS

FANCD2 mediates chromatin recruitment of BLMcx
independently of FANCI

Using naturally synchronous Xenopus S-phase extracts, we
and others previously showed that FA and BLM pathway
proteins bind chromatin in a replication-dependent
manner (36,37,42). Comparing chromatin-binding
behavior of FANCD2, FANCI and BLMcx members
BLM, RMI1, TOP3a and RPA1-3 revealed that these
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proteins began to associate with chromatin in early
S-phase and remained bound throughout replication
(Figure 1A). BLMcx members began to dissociate from
chromatin once replication was completed, whereas
FANCD2 and FANCI remained chromatin-bound as pre-
viously described (36,38), hinting that FANCD2 and
FANCI have additional post-replicative functions. Next,
we asked if chromatin recruitment of BLMcx depended on
FANCD2 or FANCI. Because BLM co-immunopre-
cipitates FANCD2 from human cells (32,33), we initially
tested if depletion of FANCD2 or FANCI co-depleted
BLMcx members from egg extracts. As expected, deple-
tion of FANCD2 co-depleted �80% of FANCI and vice
versa (38,42). In contrast, protein levels of BLMcx
members were unaffected in FANCD2 or FANCI-
depleted extracts (Figure 1B), demonstrating that the
majority of FANCD2 and FANCI molecules do not
interact with BLMcx members in DNA-free extracts. To
first test if BLMcx chromatin binding depended on
FANCD2 or FANCI, chromatin was allowed to replicate
in mock- or FANCD2/FANCI double-depleted extracts
and re-isolated at different time points. Chromatin recruit-
ment of all BLMcx members was substantially reduced in
FANCD2/FANCI double-depleted extracts (Figure 1C).
To determine which FA protein was responsible for
BLMcx chromatin recruitment, we took advantage of
our recent finding that recombinant wild-type FANCD2
(myc-FANCD2WT) binds replicating chromatin in
absence of FANCI, whereas the reverse is not the case
(38). Addition of myc-FANCD2WT to FANCD2/
FANCI double-depleted extracts restored chromatin
binding of all BLMcx members (Figure 1C, lanes 5 and
6), indicating that FANCD2 alone is sufficient to recruit
BLMcx to replicating chromatin. In further support,
FANCD2-depleted extracts (containing 20% residual
FANCI) failed to recruit BLMcx to chromatin
(Figure 1D), but were rescued by adding myc-
FANCD2WT. Moreover, FANCI-depleted extracts
(containing 20% residual FANCD2 that still partially
associates with chromatin) showed a much less
pronounced reduction in chromatin-bound BLMcx levels
that was again rescued by adding myc-FANCD2WT

(Supplementary Figure S2). Thus, FANCD2 mediates
chromatin recruitment of BLMcx independently of
FANCI.

In human cells, BLM and a RPA2 isoform
phosphorylated at serine 33 (RPA2S33-P) colocalize in late
S-phase nuclear foci, likely at unresolved replication inter-
mediates (43). We tested if FANCD2 was responsible for
recruiting BLM and RPA2S33-P to late S-phase nuclear foci.
Like their human counterparts, Xenopus BLM and RPA2
colocalized in chromatin foci in replicating nuclei, particu-
larly during late replication; moreover, FANCD2
colocalized with RPA2 in late S-phase foci as well
(Supplementary Figure S3A). BLM and RPA2S33-P foci
formation was inhibited in FANCD2-depleted extracts
and restored by adding myc-FANCD2WT (Supplementary
Figure S3B–D). Thus, FANCD2 recruits BLM and
RPA2S33-P to late S-phase foci, possibly at sites of unre-
solved replication structures.

FANCD2 monoubiquitination is dispensable for BLMcx
chromatin recruitment

FANCI-depleted extracts support chromatin recruitment
of residual endogenous FANCD2, as well as recombinant
myc-FANCD2WT, although FANCD2 is not mono-
ubiquitinated in absence of FANCI (38). Importantly,
myc-FANCD2WT added to FANCD2-depleted extracts
is not monoubiquitinated either, likely because the
residual FANCI levels (20%) in these extracts are not
sufficient to promote monoubiquitination of myc-
FANCD2WT (Figure 1D, inset). Thus, the fact that myc-
FANCD2WT restored BLMcx chromatin binding in
FANCD2 and FANCD2/FANCI double-depleted
extracts (see Figure 1C and D) indicated that
FANCD2Ub formation is dispensable for BLMcx recruit-
ment to chromatin and into nuclear foci. For further in-
vestigation, we compared chromatin recruitment and foci
formation of BLMcx members in FANCD2-depleted
extracts reconstituted with myc-FANCD2WT or with a
monoubiquitination-dead FANCD2 mutant (myc-
FANCD2K562R). Interestingly, unlike chromatin-bound
‘non-ubiquitinated’ FANCD2WT, the chromatin-bound
myc-FANCD2K562R mutant did not fully restore chroma-
tin recruitment of BLMcx (Figure 1D), or foci formation
of BLM and RPA2S33-P (Supplementary Figure S3B–D).
We also noticed that myc-FANCD2K562R bound chroma-
tin strongly during early S-phase, but failed to remain
stably associated with replicating chromatin at later
stages (Figure 1D, compare ‘lanes 5 and 6’ with ‘lanes 7
and 8’). Thus, the aberrant chromatin recruitment
dynamics and reduced chromatin retention of
FANCD2K562R—and possibly additional functional
abnormalities of this mutant—may be caused by defects
other than its inability to become monoubiquitinated.
Together, these data indicate that FANCD2 mediates
chromatin recruitment and foci formation of BLMcx
members during normal replication independently of
FANCD2Ub formation.

Defective BLMcx chromatin recruitment in
FANCD2-depleted extracts is not caused by
replication delay

Chromosomal replication depends on the presence of
RPA (44,45). The fact that FANCD2-depleted extracts
showed decreased RPA chromatin loading (Figure 1C
and D) raised the question whether replication efficiency
was reduced in these extracts. If so, reduced replication
efficiency—rather than absence of chromatin-bound
FANCD2 per se—may interfere with chromatin loading
of BLMcx members BLM, RMI1 and TOP3a in
FANCD2-depleted extracts. We therefore analyzed effi-
ciency and timing of chromosomal replication in
FANCD2-depleted extracts and found that these
extracts exhibited a 1-h delay in replication onset
(Figure 2A). Adding recombinant FANCD2—but not
FANCI—to FANCD2/FANCI double-depleted extracts
restored timely replication onset (Figure 2B), indicating
that FANCD2 regulates replication onset independently
of FANCI. Once initiated, replication progression and ef-
ficiency were unaffected in FANCD2-depleted extracts
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(Figure 2A), supporting recent findings that FANCD2
may be involved in replication initiation but not elong-
ation (46). Because BLMcx binds chromatin in a replica-
tion-dependent manner, these results hinted that BLMcx

chromatin recruitment might be merely ‘delayed’ in
absence of FANCD2. We therefore followed chromatin
binding of BLMcx members in mock- and FANCD2-
depleted extracts over an extended period (0–4 h instead

A

C D

B

Figure 1. FANCD2 recruits BLMcx to replicating chromatin independently of FANCI. (A) FANCD2, FANCI and BLMcx members exhibit
overlapping chromatin-binding patterns in S-phase. Sperm chromatin was replicated in Xenopus S-phase extracts and re-isolated at the indicated
time points. Chromatin fractions (lanes 2–8) were analyzed for bound FANCD2, FANCI and BLMcx members. Lane 1: 1 ml extract (loading
control). Inset: replication assay. Replication was monitored by pulsing replicating extract aliquots with [a-32P]dGTP at the indicated time windows.
(B) Immunodepletion of FANCD2 or FANCI from S-phase extracts does not co-deplete BLMcx proteins. S-phase extracts were mock-, FANCD2
or FANCI-depleted and analyzed for the presence of FANCD2, FANCI and BLMcx members. (C) Recombinant FANCD2WT restores BLMcx
recruitment to replicating chromatin in FANCD2/FANCI double-depleted extracts. S-phase extracts were mock depleted (lanes 1 and 2), FANCD2/
FANCI depleted (lanes 3 and 4) or FANCD2/FANCI depleted and reconstituted with myc–FANCD2WT (lanes 5 and 6). Sperm chromatin was
allowed to replicate in the different extracts, isolated at the indicated time points and analyzed for bound FANCD2, FANCI and BLMcx members.
(D) Recombinant FANCD2WT—but not FANCD2K562R—restores BLMcx recruitment to replicating chromatin in FANCD2-depleted extracts.
S-phase extracts were mock depleted (lanes 1 and 2), FANCD2 depleted (lanes 3 and 4) or FANCD2 depleted and reconstituted with either
myc–FANCD2WT (lanes 5 and 6) or myc-FANCD2K562R (lanes 7 and 8). Sperm chromatin was replicated in the different extracts, re-isolated at
indicated time points and analyzed for bound FANCD2, FANCI and BLMcx members. Inset: FANCD2-depleted extracts fail to promote
monoubiquitination of supplemented myc-FANCD2WT (owing to low residual FANCI levels) but support chromatin recruitment of non-
ubiquitinated myc-FANCD2WT and myc-FANCD2K562R. Chromatin fractions isolated from mock-depleted (lane 1) or FANCD2-depleted
(lane 2) extracts, or from FANCD2-depleted extracts supplemented with myc-FANCD2WT (lane 3) or myc-FANCD2K562R (lane 4) were run on
a low-percentage gel to distinguish non-ubiquitinated from monoubiquitinated FANCD2 isoforms.
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of 0–2 h in previous assays). Chromatin loading of all
BLMcx members was reduced throughout replication
and after replication in FANCD2-depleted extracts
(Figure 2C). We conclude that physical absence of chro-
matin-bound FANCD2 per se, and not delayed replication
onset caused by FANCD2-depletion, is responsible for
defective BLMcx chromatin loading.

FANCD2 mediates DNA damage-induced assembly
of BLMcx

In human cells, BLMcx is constitutively present (24). In
contrast, BLMcx members BLM and TOP3a do not
interact in Xenopus S-phase extracts that are initially
DNA-free on preparation. Instead, the BLM–TOP3a
interaction is inducible by adding a variety of small
DNA substrates such as forked DNA structures
(mimicking stalled replication forks) or dsDNA fragments
(mimicking dsDNA containing DNA DSBs), indicating
that complete BLMcx assembly is DNA (damage) depend-
ent (37). We tested if interactions between BLM and other
BLMcx members occurred in a DNA-dependent manner
as well. BLM and RMI1 interacted in absence or presence
of dsDNA fragments, indicating that the BLM/RMI1
complex forms constitutively (Figure 3B). In contrast,
interactions of BLM with TOP3a and RPA occurred
only in presence of dsDNA fragments, indicating that
the full BLM complex does indeed assemble in a DNA
(damage)-dependent manner. Interestingly, FANCD2—
but not FANCI—co-immunoprecipitated with BLM
from DNA-free and DNA-containing extracts indicating

that FANCD2 and BLM form a constitutive subcomplex.
This subcomplex exists independently of FANCD2Ub for-
mation, as FANCD2 is not monoubiquitinated in DNA-
free extracts (Figure 3A) (38,47). To determine if
FANCD2 is involved in BLMcx assembly, we analyzed
interactions between BLMcx members in mock- or
FANCD2-depleted, DNA-free or dsDNA-containing
extracts. The interaction between BLM and RMI1 was
unaffected in absence of FANCD2, whereas DNA-
dependent interactions of BLM with TOP3a and RPA1-
3 were blocked (Figure 3B). Thus, full BLMcx assembly
occurs only in presence of DNA and is FANCD2
dependent.

FANCD2 promotes BLM protein stability independently
of FANCI

The BLMcx member RMI1 interacts directly with BLM
and TOP3a and stabilizes both proteins (23,27,48).
Because FANCD2 associated with BLMcx, we asked if
FANCD2 regulated protein stability of BLMcx members
as well. We found that BLM protein levels decreased
steadily in FANCD2-depleted replicating extracts,
whereas levels of RMI1, TOP3a and RPA remained
stable (Figure 4A). Supplementing these extracts with a
proteasome inhibitor, MG132, restored BLM protein sta-
bility (Figure 4A), indicating proteasome-mediated BLM
degradation in absence of FANCD2. Importantly,
reconstituting FANCD2-depleted extracts with myc-
FANCD2WT stabilized BLM protein levels (Figure 4C),
demonstrating that FANCD2 itself (and not a co-depleted

A

C

B

Figure 2. Defective BLMcx chromatin recruitment in FANCD2-depleted extracts is not caused by replication delay. (A) FANCD2-depleted S-phase
extracts exhibit a delay of replication onset. S-phase extracts were mock depleted (lanes 1–4) or FANCD2 depleted (lanes 5–8). Sperm chromatin was
added to extracts and replication was monitored by pulsing replicating extract aliquots with [a-32P]dGTP at the indicated time windows. (B)
FANCD2—but not FANCI—is responsible for timely replication onset. S-phase extracts were mock depleted (lanes 7 and 8), FANCD2/FANCI
depleted (lanes 1 and 2) or FANCD2/FANCI depleted and supplemented with myc-FANCD2WT (lanes 3 and 4) or Flag-FANCIWT (lanes 5 and 6).
Sperm chromatin was replicated in the different extracts, and replication was monitored by pulsing extract aliquots with [a-32P]dGTP at the indicated
time windows. (C) Parallel to the replication assay shown in Figure 2A, replicating chromatin was re-isolated at indicated time points from mock-
depleted extracts (lanes 1–5) or FANCD2-depleted extracts (lanes 6–9), and chromatin fractions were analyzed for bound FANCD2, FANCI and
BLMcx members.
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protein) maintains BLM protein stability. In contrast,
BLM protein levels were unaffected in FANCI-depleted
extracts (Figure 4D), suggesting that residual FANCD2
levels (20%) in FANCI-depleted extracts are sufficient to
stabilize BLM.

In our previous BLMcx chromatin recruitment assays,
we had tested BLMcx protein levels immediately after
FANCD2 depletion (Figure 1B), but did not continue to
monitor BLMcx protein levels in parallel with the time
points (1 and 2 h) at which chromatin samples were
isolated from extracts. Our finding that BLM was
unstable in absence of FANCD2 raised the possibility
that reduced chromatin-bound BLM levels in FANCD2-
depleted extracts were due to BLM protein degradation,
which in turn would decrease chromatin-bound levels of
other BLMcx members as well (31). To investigate this
possibility, we analyzed chromatin binding of BLMcx in
mock- and FANCD2-depleted extracts in absence and
presence of MG132. FANCD2-depleted extracts contain-
ing MG132-stabilized, wild-type-like BLM protein levels
remained unable to support chromatin recruitment of
BLMcx (Figure 4B), demonstrating that FANCD2 does
not only promote BLM protein stability, but also func-
tions to recruit BLMcx to replicating chromatin.

FANCD2 regulates DNA damage-induced phosphorylation
of BLM and RPA2 independently of FANCI

Following cellular treatment with replication inhibitors or
DNA DSB inducers, human BLM and RPA2 are
hyperphosphorylated (BLMPPP and RPA2PPP; RPA2PPP

includes phosphorylation at serine 33) by the checkpoint
kinases ATR (Ataxia telangiectasia and Rad3-related) and
ATM (Ataxia telangiectasia mutated) (30,33,43,49–51).
Similarly, Xenopus BLM and RPA2 are
hyperphosphorylated in egg extracts containing DNA
DSBs [(37) and Figure 5]. Depletion of FANCD2—but
not FANCI—from egg extracts completely abrogated
DNA DSB-induced BLMPPP and RPAPPP formation
(Figure 5), indicating that FANCD2 regulates phosphor-
ylation of BLM and RPA independently of FANCI.
Moreover, since monoubiquitination of FANCD2 is
blocked in FANCI-depleted extracts (Figure 5),
FANCD2Ub formation is dispensable for DNA DSB-
induced BLMPPP and RPAPPP formation.

Regulation of BLMcx by FANCD2 is evolutionarily
conserved

Our Xenopus egg extract-derived results indicated that
FANCD2 is a functional regulator of BLMcx that (i) con-
stitutively associates with BLM, (ii) promotes BLM
protein stability, (iii) controls BLM chromatin binding
and (iv) mediates interactions of BLM with TOP3a and
RPA. To test if these functions are conserved in humans,
we used the FANCD2-deficient patient fibroblast cell line
PD20 and its isogenic complemented counterpart
PD20+D2. As previously described (32,33), we found
that a small subpopulation of FANCD2 co-immunopre-
cipitated with BLM from wild-type (PD20+D2) cells;
moreover, we were able to show the reverse co-
immunoprecipitation of cellular BLM with FANCD2

(Figure 6A, left panel). The FANCD2-BLM interaction
occurred regardless of the presence or absence of the rep-
lication inhibitor aphidicolin (APH), a potent inducer of
FANCD2Ub formation (Figure 6A), hinting that this
interaction does not require FANCD2
monoubiquitination. To further investigate this, we
reanalyzed the samples shown in Figure 6A (left panel)
by comparing migration patterns of FANCD2 isoforms
between WCEs, FANCD2 immunoprecipitates and
BLM immunoprecipitates that were volume-adjusted to
contain ‘equal amounts of FANCD2’. As shown in
Figure 6A (right panel), the anti-FANCD2 antibody
immunoprecipitated both FANCD2 isoforms, whereas
the anti-BLM antibody co-immunoprecipitated predomin-
antly non-ubiquitinated FANCD2 even from APH-
treated PD20+D2 cells. Thus, human FANCD2 and
BLM interact constitutively in a DNA damage- and
FANCD2Ub-independent manner, mirroring the
behavior of their Xenopus homologs (see Figure 3). In
addition, the human FANCD2–BLM complex did not
contain FANCI (Figure 6A, right panel), similar to our
observation in Xenopus extracts (see Figure 3). Further
analysis revealed that BLM protein levels—but not
TOP3a or RPA protein levels—were reduced in PD20
cells compared with PD20+D2 cells and this phenotype
became more pronounced in response to cellular treatment
with APH (Figure 6B, left panel; also shown in Figure
7A). Consequently, chromatin-bound BLM and TOP3a
protein levels were reduced in untreated or APH-treated
PD20 cells compared with PD20+D2 cells (Figure 6B,
middle panel). Lastly, we tested if human BLMcx forma-
tion was FANCD2-dependent. Importantly, despite lower
BLM levels in PD20 cells (Figure 6B, left panel), we were
able to immunoprecipitate equal BLM protein amounts
from PD20 and PD20+D2 cells (Figure 6B, right
panel). Strikingly, BLM immunoprecipitates from PD20
cells contained significantly less TOP3a and RPA than
those from PD20+D2 cells, indicating that complete
BLMcx assembly is indeed FANCD2-dependent in
human cells. Together, these findings indicate that
FANCD2 regulates BLMcx functions in both frogs and
humans.
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Figure 5. FANCD2 regulates DNA DSB-triggered
hyperphosphorylation of BLM and RPA2 independently of FANCI.
S-phase egg extracts were mock depleted (lanes 1–3), FANCD2
depleted (lanes 4–6) or FANCI depleted (lanes 7–9), and supplemented
with 50 ng/ml dsDNA fragments. Extract aliquots were taken at the
indicated time points and analyzed for FANCD2, FANCI, BLM and
RPA2.
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FANCD2 and BLM act in concert to restart stalled
replication forks

Human BLMmediates replication fork recovery following
cellular treatment with replication inhibitors such as APH
or hydroxyurea (HU). In BS cells, <40% of all stalled
replication forks are able to restart and consequently,
global replication is rescued by new origin firing (30).
BLMcx members RMI1 and RPA also contribute to rep-
lication fork restart (31,43), indicating that BLMcx acts as
functional entity to support replication fork recovery.
Because our results described above showed that
Xenopus FANCD2 regulates the BLM pathway in
S-phase, we asked if human FANCD2 was essential for
BLM-mediated replication fork restart. For our assay, we
used PD20 and PD20+D2 cells. In addition, we generated
BLM-deficient and FANCD2/BLM double-deficient cells
via siRNA-mediated BLM knockdown in PD20+D2 cells
and PD20 cells, respectively (Figure 7A). Replication
events on individual chromosomes were monitored with
a dual-labeling DNA fiber assay. Cells were pulsed
with DigU (red label) for 25min, then untreated or
treated with 30 mM APH for 6 h, followed by a pulse
with BioU (green label) for 40min (Figure 7B). Because
stalled replication forks are progressively inactivated over
time (52), we first confirmed that the wild-type-like
PD20+D2 cells used in our study were able to restart

the majority of stalled replication forks (�80%), and did
not significantly upregulate new origin firing after 6 h of
APH-treatment, comparable with other wild-type cells
treated with APH or HU for 1–6 h (Supplementary
Figure S4A and B) (30,52). Strikingly different from effi-
cient fork restart in the wild-type cells, the proportion of
replication forks competent for restart was severely—and
equally—reduced in FANCD2 and BLM-deficient cells
(26.6 and 27.6%, P< 0.0001). Moreover, this defect in
replication restart was not further exacerbated in
FANCD2/BLM double-depleted cells (28.6%,
P< 0.0001) (Figure 7C), indicating that FANCD2 and
BLM cooperate to restart replication forks. In parallel,
the proportion of newly originated replication tracts
(BioU label only) increased significantly and equally
(�5-fold; P< 0.0001) in FANCD2-, BLM- and
FANCD2/BLM double-deficient cells compared with
wild-type cells (Figure 7D). In a reverse approach,
siRNA-mediated knockdown of FANCD2 in a BLM-de-
ficient patient cell line, GM08505 (Supplementary Figure
S5A), exacerbated neither the level of stalled replication
forks nor the upregulation of newly fired origins observed
in these cells (Supplementary Figure S5B and C) (30).
These data indicate that FANCD2 and BLM act in a
common pathway to mediate replication fork restart and
to suppress firing of new replication origins following
APH-triggered fork stalling.
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In addition to its role in replication fork recovery, BLM
maintains replication fork velocity in unperturbed S-phase
(53) and following replication fork stalling (2). We asked if
human FANCD2 was required for these functions.
Replication fork progression was analyzed by measuring

BioU tract lengths on DigU!BioU double-labeled tracts.
Replication speed was comparable between wild-type and
FANCD2-deficient cells (Figure 8A, 11.23mm and
11.59 mm; P=0.3392). In contrast, replication tracts
were shorter in BLM-deficient and BLM/FANCD2
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double-deficient cells (Figure 8A, 9.18 and 9.09mm;
P< 0.001), indicating that BLM—but not FANCD2—
maintains replication speed in normal conditions.
Next, we asked if the velocity of ‘restarted’ replication

forks depended on FANCD2 and/or BLM. Importantly,
as most APH-stalled forks cannot restart in absence of
FANCD2 or BLM (Figure 7C and Supplementary
Figure S5B), the majority of replication tracts formed
after APH treatment stem from newly originated forks
in FANCD2 or BLM-deficient cells. However, analyzing
BioU replication tract lengths selectively on DigU!BioU
double-labeled fibers after APH treatment allowed us to
distinguish restarted forks from newly originated forks.
The length of restarted replication tracts was significantly
shorter than replication tract lengths in untreated condi-
tions, but equally so in wild-type and FANCD2-deficient
cells [Figure 8B, wild type: 11.23 ! 6.43 mm (43%
reduction); FANCD2 deficient: 11.59 ! 6.37 mm (45%
reduction). In contrast, BLM- and FANCD2/BLM
double-deficient cells that already presented with shorter
replication tracts in untreated conditions (see Figure 8A),
exhibited even further shortening of restarted replication
tracts [Figure 8C, BLM deficient: 9.18 ! 4.08mm (66%
reduction); Figure 8D, FANCD2/BLM double deficient:
9.09 ! 4.14 mm (65% reduction)]. Thus, human BLM
maintains the velocity of normally progressing forks and
of restarted replication forks independently of FANCD2.
Supported by the fact that FANCD2-depleted cells

allowed residual BLM chromatin binding (Figure 6B,
middle panel), this finding indicated that the BLM
pathway retains partial functionality in absence of
FANCD2. Interestingly, the reduced replication fork
velocity in BLM-deficient cells is caused by a severe pyr-
imidine pool imbalance due to significantly reduced
cytidine deaminase (CDA) expression levels (54). We
found that CDA protein levels were diminished in BLM-
deficient cells but normal in FANCD2-deficient cells
(Supplementary Figure S6), indicating that BLM-depend-
ent CDA expression—and thus maintenance of replication
fork speed—remains functional in absence of FANCD2.
Intriguingly, a recent study reported that FANCD2—

but not BLM—acted to protect nascent DNA strands at
stalled replication forks against degradation by the
MRE11 nuclease (2). The authors used single-label
DNA fiber analysis to determine the length of already
replicated tracts before and after HU treatment in
FANCD2-deficient human cells and BLM-deficient
mouse embryonic stem cells. In support of this study, we
observed a significant difference in DigU-labeled replica-
tion tract lengths before versus after APH treatment in
human FANCD2-deficient cells (Figure 9A, 8.01 and
4.04mm; P< 0.001) as well as in FANCD2/BLM double-
deficient cells (Figure 9B, 7.33 and 4.13mm; P< 0.001). In
contrast, DigU tract lengths were comparable before
versus after APH-treatment in wild-type cells
(Figure 9C, 8.12 and 8.02 mm; P=0.5386) and BLM
singly deficient cells (Figure 9C, 7.11 and 7.17mm;
P=0.8463). Thus, FANCD2 protects stalled replication
forks independently of BLM in human cells.
In summary, our results demonstrate that the human

FANCD2 and BLM proteins have partially overlapping

functions during replication fork stalling: they act in
concert to mediate replication fork recovery and to
suppress new origin firing; at the same time, FANCD2
acts independently of BLM to protect stalled replication
forks from degradation, whereas BLM functions inde-
pendently of FANCD2 to support normal replication
speed on fork restart.

DISCUSSION

Accumulating evidence indicates that functional inter-
actions of upstream and downstream FA pathway
proteins with BLMcx members promote repair of replica-
tion-stalling DNA lesions. Adding another piece to the
emerging puzzle of the FA/BLM pathway, we show that
the central FANCD2 protein is an essential regulator of
BLMcx and acts in concert with BLM to promote repli-
cation fork recovery. In addition, we show that
FANCD2’s dimerization partner FANCI is not involved
in controlling BLMcx, demonstrating functional separ-
ation of FANCD2 from FANCI.

Our results indicate that FANCD2 controls BLMcx
on several levels: it protects BLM protein stability and
mediates formation, chromatin recruitment and
DNA damage-triggered phosphorylation of BLMcx.
Importantly, these functions are essentially conserved
between Xenopus and humans. FANCD2 shares its role
as BLM stabilizer with RMI1 and FANCJ, both of which
interact directly with BLM, hinting that FANCD2 and
BLM may physically interact as well. Our discovery that
FANCD2 mediates BLM complex assembly is unexpected
because all hitherto known BLMcx members are highly
conserved, whereas no FANCD2 homologs exist in
lower organisms. Moreover, most BLMcx members
interact directly in vitro (55) without relying on accessory
factors. However, BLM complex assembly may be more
tightly regulated in vivo and involve helper proteins such
as FANCD2.

Why did original cell-based studies not identify
FANCD2 as BLMcx member? One reason may be that
only a subset of FANCD2 molecules is complexed with
BLM both in Xenopus and humans. Nevertheless, two
recent studies reported FANCD2 to co-immuno-
precipitate with BLM from human cells (32,33). While
our findings support these studies regarding the existence
of a BLM–FANCD2 complex, they simultaneously
oppose another conclusion made by both studies that
BLM interacts only with FANCD2Ub. This conclusion
was based on gel electrophoresis results showing co-
migration of the FANCD2 isoform present in BLM
immunoprecipitates with FANCD2Ub in WCEs. In
our hands, however, the migration patterns of FANCD2
isoforms differ between IP and WCE samples. In
regular gel electrophoresis, immunoprecipitated ‘non-
ubiquitinated’ FANCD2 migrates at a similar rate as
FANCD2Ub in WCEs (see Figure 6A, left panel). This
can be overcome by extended electrophoresis times: here,
a comparison of FANCD2 isoforms between WCEs and
directly (anti-FANCD2) or indirectly (anti-BLM) immu-
noprecipitated samples reproducibly shows that human
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Figure 9. Human FANCD2 acts independently of BLM to protect replication forks from degradation. Lengths of nascent replication fork tracts
indicating fork stability (labeled with DigU only) were measured before (NT) and after 6 h of APH treatment. Preformed DigU tract lengths shorten
during APH-treatment in (A) FANCD2-deficient (PD20) cells compared with wild-type (PD20+D2) cells and in (B) FANCD2/BLM double-deficient
(PD20, siBLM) cells compared with wild-type (PD20+D2) cells. (C) Preformed DigU tract lengths do not shorten during APH-treatment in BLM-
deficient (PD20+D2, siBLM). Median tract lengths are indicated below each panel. Insets: Cumulative distributions (top) and plotted median tract
lengths (bottom).
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BLM preferably pulls down the non-ubiquitinated
isoform of FANCD2 (Figure 6A, right panel).

Previous studies disagreed whether FANCD2 recruited
BLM to sites of DNA damage (32,33). Our findings
suggest an essential role for FANCD2 in recruiting the
entire BLM complex to chromatin even in undamaged
conditions. Interestingly, recruitment of human BLM to
replication stress-induced chromatin foci also depends on
FANCM (3), hinting that FANCM and FANCD2 co-
operate to recruit BLMcx to stalled replication forks.

Beyond assembly and recruitment of BLMcx to chroma-
tin, FANCD2 also regulates the ATR/ATM-dependent
phosphorylation of BLMcx members BLM and RPA2, at
least in Xenopus. Combined with results from the Gautier
laboratory that FANCD2 regulates DNA ICL-induced
Chk1 phosphorylation (34), these data indicate a broader
role for FANCD2 in mediating phosphorylation events
during the DNA damage response. Phosphorylation of
human BLM at threonine 99 is crucial for its role in repli-
cation restart (30), and similarly RPA2 phosphorylation at
serine 33 promotes replicative DNA synthesis after fork
stalling (43). Thus, FANCD2 may modulate those
BLMcx phosphorylation events that contribute to success-
ful fork restart.

Remarkably, FANCI is not part of the BLM complex
and dispensable for its chromatin recruitment and phos-
phorylation, supporting our recently proposed model of
distinct roles for FANCD2 and FANCI based on dissoci-
ation of the FANCD2/FANCI heterodimer on FA
pathway activation (38). Unfortunately, confirming these
findings in human cells is complicated by the fact that
FANCD2 is unstable in FANCI-deficient cell lines (6),
hampering the usefulness of these cells in discerning func-
tions of FANCI from those of FANCD2.

Because FANCI is crucial for FANCD2 mono-
ubiquitination (6,38), our findings also demonstrate that
FANCD2Ub formation is dispensable for BLMcx regula-
tion. Nevertheless, chromatin-bound FANCD2 is predom-
inantly in its monoubiquitinated state (36,56). We thus
predict that FANCD2 is a multitasking molecular
platform, coordinating proteins like BLMcx that dock
onto FANCD2 regardless of its monoubiquitination status
with those that exclusively bind FANCD2Ub such as FAN1
or SLX4. Notably, a number of previous studies predicted
monoubiquitination of FANCD2 to be essential for all of its
functions because the non-ubiquitinatable FANCD2
mutant (human FANCD2K561R; Xenopus FANCD2K562R)
was not detectable on chromatin and did not rescue the FA
phenotype of FANCD2-deficient cells. Our observation that
non-ubiquitinated FANCD2WT binds chromatin normally
while FANCD2K562R exhibits different chromatin-binding
dynamics and fails to remain stably associated with chro-
matin over time, hints that at least some of this mutant’s
defects are caused by factors other than absence of an ubi-
quitin moiety at the target lysine (e.g. structural
abnormalities). Thus, caution should be used when predict-
ing monoubiquitination-dependent FANCD2 functions
based solely on protein behavior of this particular
FANCD2 mutant.

Interestingly, a subpopulation of BLMcx members
binds chromatin independently of FANCD2, and in this

regard, FANCD2-deficient cells differ from BLM-defi-
cient cells in that they maintain appropriate replication
fork velocity. In striking contrast, FANCD2 and BLM-
deficient cells exhibit identical defects in replication restart
indicating that merely ‘reduced’ BLM chromatin loading
interferes with replication fork recovery.
Our discovery that FANCD2 and BLM cooperate to

achieve replication restart seemingly contradicts conclu-
sions made in a recent study by Schlacher et al. (2012).
These authors proposed that FANCD2 (in concert with
BRCA2 and RAD51) protected stalled replication forks
from MRE11-mediated degradation, but was dispensable
for replication fork restart and thus functionally distinct
from BLM. However, this is likely due to experimental
differences between the two studies: We used the same
single-label DNA fiber assay as Schlacher et al. to
confirm that FANCD2—but not BLM—protects stalled
replication forks against degradation in human cells
(Figure 9). However, to analyze replication fork restart,
we used dual DNA fiber labeling (30) that distinguishes
between stalled, restarted and newly originated replication
forks and allows to determine actual fork restart
efficiencies. In contrast, Schlacher et al. used single
(second) labeling of DNA fibers that assesses the
velocity of moving replication forks (restarted and newly
originated forks combined) and interpreted the fact that
overall replication fork velocity after HU treatment was
reduced in BLM- but not in FANCD2-deficient cells as
indicator that FANCD2 was not involved in replication
fork restart per se. Our results indicate a different scenario
where FANCD2 and BLM coordinate their functions to
promote replication fork restart while suppressing new
origin firing; at the same time, FANCD2 and BLM have
non-overlapping roles in protecting replication forks from
degradation and in promoting the velocity of restarted
forks, respectively.
Consequently, we suggest a new extended FA

pathway model that encompasses the dual role of
FANCD2 at stalled replication forks: (i) regulation of
the BRCA2 pathway to protect stalled forks from degrad-
ation (2), and (ii) regulation of the BLM helicase pathway
to mediate replication fork restart while preventing
initiation of new replication tracts (Supplementary
Figure S7).
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Supplementary Table 1 and Supplementary Figures 1–7.
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