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Abstract

Growth curves are monotonically increasing functions that measure repeatedly the same subjects over time. The classical
growth curve model in the statistical literature is the Generalized Multivariate Analysis of Variance (GMANOVA) model. In
order to model the tree trunk radius (r) over time (t) of trees on different sites, GMANOVA is combined here with the
adapted PL regression model Q = A?T+E, where for b=0 : Q~Ei½{b:r�{Ei½{b:r1� and for b~0 : Q~Ln½r=r1�, A = initial
relative growth to be estimated, T~t{t1, and E is an error term for each tree and time point. Furthermore, Ei[–b?r]
=
Ð

(Exp½{b:r�=r)dr, b~{1=TPR, with TPR being the turning point radius in a sigmoid curve, and r1 at t1 is an estimated
calibrating time-radius point. Advantages of the approach are that growth rates can be compared among growth curves
with different turning point radiuses and different starting points, hidden outliers are easily detectable, the method is
statistically robust, and heteroscedasticity of the residuals among time points is allowed. The model was implemented with
dendrochronological data of 235 Pinus montezumae trees on ten Mexican volcano sites to calculate comparison intervals for

the estimated initial relative growth ÂA. One site (at the Popocatépetl volcano) stood out, with ÂA being 3.9 times the value of
the site with the slowest-growing trees. Calculating variance components for the initial relative growth, 34% of the growth
variation was found among sites, 31% among trees, and 35% over time. Without the Popocatépetl site, the numbers
changed to 7%, 42%, and 51%. Further explanation of differences in growth would need to focus on factors that vary within
sites and over time.
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Introduction

Growth curves are monotonically increasing functions that

measure repeatedly the same subjects over time. Statistical growth

curve modeling of trees continues to be basic to forest science

(Chapter 6 in [1]): Where are the best sites for production of

timber or other products from trees? What factors explain growth

variation? Can those factors be influenced by management? What

is the commercial value of a timber plantation, for example in 30

years? How long does it take to reforest a given site?

Considering the relationship between quantity and time, there

are at least three fundamental variables involved in determining

the mathematical form of a growth function: the curve’s shape, its

growth rate, and its starting quantity (or more generally the curve’s

positioning quantity). Many different functions have been used or

at least suggested [2,3], but none is accurate over the whole

lifespan of a tree; for that purpose, the curve has generally to be

segmented with some form of spline modeling. An important

reason is that tree growth curves vary not only according to the

species, but also in response to environmental circumstances that

may suddenly change. For example, a tree may be suppressed for a

time by competition, and then released by a gap opening, which

may result in two joined sigmoid growth curves.

Ricker and del Rı́o [4] presented a new tree growth model that

employs piecewise linear regression to relate logarithmic relative

growth of the tree trunk diameter with the diameter itself. The

objective was to apply it for tropical trees, for which annual tree

growth rings could not be identified. This model, which they called

PL (piecewise linear) model, has some interesting mathematical

properties, such as straightforward interpretation of the regression

coefficients and high flexibility to model sigmoid, exponential or

over-exponential growth.

The second model employed here is the GMANOVA

(generalized multivariate analysis-of-variance) model. It is also

called ‘‘Potthoff-Roy model’’, according to its formulation by

Potthoff and Roy in 1964 [5], or the ‘‘classical growth curve model

of statistics’’, because many articles about it have been published in

journals of statistics (for reviews see [6–13]). The term ‘‘GMA-

NOVA model’’ describes the model much better than the in the

statistics literature widely used term ‘‘growth curve model’’,

because many other approaches to analyze growth curves exist:
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see, for example, [14] in the context of plant growth analysis, [1]

or [15] in forest science, [16] in econometrics, and [17] in the

social sciences. To our knowledge, the GMANOVA model has

never entered the literature of tree growth modeling, possibly

because of its relatively mathematical and theoretical treatment in

the statistics literature.

Here we take a new approach to employ the PL model in

combination with the GMANOVA model. We call the combina-

tion the PL-GMANOVA model (pronounce ‘‘P’’-‘‘L’’-‘‘G’’-

‘‘MANOVA’’). After developing the model in the methods section,

we apply it to dendrochronological data of 235 trees on ten

different Mexican volcano sites.

Methods

The basic idea is to use the growth function of the PL model,

which has some interesting mathematical features, together with

the GMANOVA model, which compares growth statistically

among different groups. First, the PL model is used individually for

each tree with nonlinear regression, in order to reduce the growth

curve to three regression coefficients. Then, two of those three

regression coefficients per tree are employed in a linearized version

of the PL model’s growth curve formula, which enters the linear

GMANOVA model to compare relative growth of individual

trees, grouped for sites.

The PL Model
The PL (piecewise linear) model was originally published by

Ricker and del Rı́o in 2004 [4], to relate logarithmic relative

growth with quantity in one or several piecewise linear segments

when tree ages are unknown. The basic formula for a single

segment is Ln½(dr=dt)i=ri�~azb:ri, where (dr=dt)i refers to the

(instantaneous) annual increment of tree trunk radius ri. This

formula can be converted mathematically into the following

equation to model the time it takes to grow from tree trunk radius

r1 at time t1 to ri at time ti of data point i (page 217 in [4]):

for b=0 : ti~t1z(Ei½{b:ri�{Ei½{b:r1�)=Exp½a�zEi

for b~0 : ti~t1zLn½ri=r1�)=Exp½a�zEi

ð1Þ

Here, ti is time, age, or date of data point i; r1 at t1 is the tree

trunk radius at given time or age for positioning the overall growth

curve (either r1 or t1 can be used as regression coefficient); Ei is the

exponential integral Ei[–b?r] =
Ð

(Exp½{b:r�=r)dr; Exp refers to

the exponential function; b is a regression coefficient, representing

the negative inverse of the turning point radius (TPR) in a sigmoid

curve; ri is the tree trunk radius at time ti of data point i; a is a

regression coefficient, representing initial logarithmic relative

growth, with Exp[a] = A = initial relative growth (see Figure 1

why it is called ‘‘initial’’); Ei is the error term for data point i; and

Ln refers to the natural logarithm.

The term Ei[–b?r] represents the integral of Exp[–b?r]/r over r,

and is dimensionless (see page 164 in [18] or Appendix 3 in [4] for

additional references and a relatively easy method for numerical

calculation). For b = 0, the term Exp[–b?r]/r simplifies to 1=r, and

its integral is not Ei[–b?r] anymore, but simply Ln[r].

Equation (1) is employed here directly in nonlinear regression.

The growth function t = t1+ (Ei[–b?r] – Ei[–b?r1])/Exp[a],

however, cannot be solved in closed form for r as a function of t
(as one would ideally like); for applying regression analysis one has

to use the inverse function, with t being the dependent variable

(with the corresponding residuals), for given r as the independent

variable. Therefore, we model time as a function of radius, rather

radius as a function of time.

We introduce here both a and Exp[a] = A, because a is a

coefficient in [4] and works numerically better for nonlinear

regression with (1); however, subsequently our whole discussion

will focus on the estimated initial relative growth ÂA, determined

directly by GMANOVA. The parameter A can also be more

intuitively interpreted and expressed in percent per year (by

multiplying with 100%). Figure 1 bottom illustrates that initial

relative growth represents a standardized parameter, when relative

growth changes with radius.

Note that in Figure 1 bottom, the PL model relates relative

growth with radius, not time. There is a high correlation between

time (age) and radius for data in the case of single trees. When

calculating with our data the 235 correlation coefficients between

time and radius for each 30-years segment, these range from 0.919

to 0.9996, the median being 0.994. On the other hand, when not

distinguishing individual trees, the correlation coefficient is 0.05,

Figure 1. Growth of tree #52 from the Chichinautzin site.
Above: Regression line {137:80z80:70:Ei½0:06255:r� from nonlinear

regression with (1) and fixed b~{0:0622 cm21 to find ÂA = 1.24% per
year and radius r1 = 15.98 cm at time t1 = 15 years (1989; R2 = 0.9998).

Below: Initial relative growth (here ÂA = 1.24% per year) represents a
standardized measure for comparing relative growth (dr/dt)/r, even
though the data points may be at different radiuses: The mean growth
path is projected backward to a radius infinitesimally close to zero;
when b,0, b determines the change of relative growth with increasing
radius as a negative exponential function (Relative growth = A?Exp[b?r]).
Note that the graph does not show an extrapolation, but a standardized
characterization of relative growth at the Y-intercept.
doi:10.1371/journal.pone.0112396.g001
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i.e., not significantly different from zero. Consequently, tree radius

is a good proxy variable for tree age in individual trees, but does

not serve to infer the age of individual trees in a group of trees, i.e.,

a small tree can be old and a large tree can be young.

Consequently, (1) with nonlinear regression should be applied to

individual trees. Figure 1 (top) shows also in the example that

autocorrelation of the residuals is of little concern, because the

residuals are very small in relation to the estimated radius.

Below, we will convert the nonlinear relationship in (1) into a

linear relationship that can be used in the GMANOVA model.

The GMANOVA Model
The generalized multivariate analysis of variance (GMANOVA)

model attempts to explain variation of the dependent variables

(e.g., tree trunk radius) for different individuals (e.g., trees) in

different groups (e.g., trees per site) at different time points (e.g.,

years). One can also analyze a single group (page 308 in [12]).

Originally designed for observations taken always at the same time

points and without missing data, some authors have also

considered the more complicated cases of irregular time points

[19] or incomplete data [20], though this will not be applied here.

The GMANOVA is fundamentally a multidimensional, linear

matrix model. We use the following notations for matrices and

their operators: X: r|c is a matrix (therefore in bold) of r rows and

c columns; X :Y multiplies matrices (or vectors) X: i|j and Y:

j|h; X 0 is the transpose of matrix X; X{1 is the inverse of a

nonsingular matrix X; X:Y is the Kronecker product between

matrices X and Y; and I i is an identity matrix with i rows as well as

i columns. Furthermore, it is useful to define the ‘‘mean’’ as the

expected value or ‘‘centre of mass’’ (location) of a probability

distribution, or more formally as the sum of all possible values of a

random variable, each multiplied by its probability. On the other

hand, ‘‘average’’ refers to the arithmetic mean. The term ‘‘error’’

refers to the difference between the parametric mean of the model

and the true value of an observation, while the term ‘‘residual’’

refers to the difference between the estimated mean of the model

and the measured value of an observation.

An exposition with derivations of several formula in this section

can be found in [9] and Chapter 4 in [13], though the notation

and some formulas are adapted here; also, for example (8) is new

in our context, and some relationships are not stated explicitly in

the literature. The basic formula of the GMANOVA model is the

following equation:

Q~T:A:GzE

The matrix Q: p|n is the data matrix of quantities to be

explained for p time points (rows) and all n individuals in all

groups combined (columns). Each individual (here tree) is

represented with a complete data curve over all p time points.

The letter ‘‘Q‘‘ stands for ‘‘quantity’’ (here Ei[–b?r] – Ei[–b?r], as

explained in the next section about the PL-GMANOVA model).

How to arrange the data points in the matrix Q depends on the

design matrix G. The matrix T: p|1 is the within-individuals

design matrix for p time points (and here q = 1 polynomial term for

determining only the slope of a regression line through the origin).

The letter ‘‘T’’ stands for ‘‘time’’, being here data points of the

time intervals ti{t1. The vector A: 1|k contains the regression

coefficients A1 to Ak (here mean initial relative growth per site) for

the k treatment groups (here sites). The matrix G: k|n is the

among-individuals design matrix for k treatment groups (rows) and

n individuals (columns). The letter ‘‘G’’ stands for ‘‘groups’’ (here

of trees on different volcano sites). The error matrix E: p|n
contains columns that are independent p-variate normal with

mean vector 0 and commonly unknown covariance matrix among

the p time points S.0; S (‘‘sigma’’) is estimated with (4). The letter

‘‘E‘‘ stands for ‘‘error’’ of the Q data. The matrix S is assumed to

be the same for each individual of a given group. In other words,

the errors may be heteroscedastic over time, but should be

homoscedastic among groups at a given time point. Furthermore,

the covariance among trees over time is assumed to be zero, i.e.,

their growth paths are not linearly dependent on each other.

The mathematical form of the growth curve model that has

been used in the statistical literature, is a polynomial of a degree

that provides a good fit to model the mean growth, such as tree

trunk radius as a function of time for a given group (for example,

of degree two: Q~d0zd1
:Tzd2

:T2zE, with d0 to d2 being

regression coefficients). Matrix T has to be designed according to

the chosen polynomial degree; in our application, we use a straight

line through the origin, which simplifies the model to

Q~d1
:TzE. Some of the following matrix formulas also simplify

a little bit, and some of the matrices, such as T and A, reduce to

vectors. To get a more intuitive idea what the potentially large

matrices Q, T, G, and A look like, an example is given for p = 6

time points and n = 12 trees in k = 3 groups:

Q~

Q1,1 Q1,2::: Q1,12

Q1,2 Q2,2::: Q2,12

Q1,3 Q3,2::: Q3,12

Q1,4 Q4,2::: Q4,12

Q1,5 Q5,2::: Q5,12

Q1,6 Q6,2::: Q6,12

0
BBBBBBBB@

1
CCCCCCCCA

T~

T1

T2

T3

T4

T5

T6

0
BBBBBBBB@

1
CCCCCCCCA

G~

1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 0 0 0 0 0

0 0 0 0 0 0 0 1 1 1 1 1

0
B@

1
CA

With the data in Q and T, and the groups defined by G, the to-

be-estimated parameters are ÂA~(ÂA1ÂA2ÂA3).

There are several methods of estimation available for the

GMANOVA model, the most common ones being maximum

likelihood estimation and the least squares estimation. Both

estimators refer here to the mean initial relative growth ÂA per

site, as explained in Figure 1. The first step for maximum

likelihood estimation is to calculate the sum-of-squares matrix

among p time points:

S : p|p~Q:(In{G 0:(G :G 0){1:G):Q0

It is assumed that G :G 0 is invertible. The sum-of-squares matrix

S has to be non-singular, i.e., reflect variation rather than linear

dependencies. Its determinant should therefore differ from zero.

Note, however, that a well-conditioned matrix can have a very

small determinant (page 82 in [21]). If the matrix is so ill-

conditioned that the determinant of S is numerically indistin-

guishable from zero (which depends in turn on the software used),

one can use the (generalized) Moore-Penrose inverse of S in the

subsequent formulas. This can happen when the measurements of

Q at T contain a lot of repetitive information. The Moore-Penrose

Growth Curve Analysis with the PL-GMANOVA Model
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inverse solves technically the estimation of the inverse in that case,

while it is identical to the standard inverse otherwise.

The Maximum Likelihood Estimator ÂAMLE for the k treatment

groups is calculated as:

ÂAMLE : 1|k~(T 0:S{1:T){1:T 0:S{1:Q:G 0:(G:G 0){1 ð2Þ

Alternatively, the Least Squares Estimator equals:

ÂALSE : 1|k~(T 0:T){1:T 0:Q:G 0:(G :G 0){1 ð3Þ

Pan and Fang [9] refer to ÂALSE as the ‘‘generalized least squares

estimator’’, because it minimizes the trace of

(Q{T:ÂA:G):(Q{T:ÂA:G)0, but a generalized least squares

estimator is usually a special type of weighted estimator;

consequently the term ‘‘least squares estimator’’ seems more

appropriate for ÂALSE .

The difference between the maximum likelihood estimator and

the least squares estimator is the weighting by the sum-of-squares

matrix S in case of the maximum likelihood estimator. Only for

certain covariance structures, the two estimators do give the same

results (pages 77–78 in [9]). Usually, the numerical results are

rather similar. Both estimators are unbiased. The estimator ÂALSE

is normally distributed if Q is normally distributed, while this is not

the case for ÂAMLE , which has an unknown distribution that is

never completely normal for a finite number of observations

(because S is a random matrix). However, ÂAMLE is asymptotically

(with increasing number n of individuals) the best estimator, in

terms of having the lowest possible variance, and its distribution is

also asymptotically normal. The literature has largely focused on

the maximum likelihood estimator, also for statistical inference

[22]. In our application, the maximum likelihood estimator is

much more sensitive to non-normal data than the least squares

estimator, which has to do with the mirror image of the data in the

I. and III. quadrants (in the Cartesian coordinate system). In

forestry data, the presence of outliers and mixed distributions is

common, causing such non-normality, and the maximum

likelihood estimator gives unreasonable results in that case.

Therefore, we use first the least squares estimator to detect

outliers, and subsequently the maximum likelihood estimator of

the (potentially transformed) data without outliers.

The estimated covariance (or dispersion) matrix ŜS reflects the

data variation; the square root of its leading-diagonal values is the

standard deviation at each time points. The formula is the same

for both estimators (with ÂA depending on the estimator):

ŜSMLE : p|p~ŜSLSE~(Q{T:ÂA:G):(Q{T:ÂA:G)0=n ð4Þ

Both estimators require a minimum of independent observa-

tions n: The maximum likelihood estimator requires

nMLE§pzRank½G �, in order to avoid a singular sum-of-squares

matrix S, and being able to take its inverse in (2). The least squares

estimator requires nLSE§Rank½G�, in order to avoid singularity of

G :G 0, and being able to take its inverse in (3). For example, with

10 groups and 30 time points, nMLE§40 and nLSE§10. In the

case of the least squares estimator it makes sense that with 10

groups one needs at each time point at least 10 independent

observations, one per group, though the covariance matrix of (4)

cannot be estimated with one observation per group. With 40

independent observations at each time point (on average four per

group), the maximum likelihood estimator is much more

demanding to get the estimator for A, but the same number of

observations is required for estimating the covariance matrix of the

least squares estimator. For that reason, the growth curve model is

generally applied for short time series, where ‘‘short’’ in this

context means 4 to 40 time points as a reasonable range. For

longer time series with insufficient n, one needs to put a structure

(model) on the covariance matrix (see [9]), though this has not to

be done here.

The estimated covariance (or dispersion) matrix of the mean

estimator D̂D½ÂA� reflects the variation of ÂA, and will serve us to

calculate the standard errors of the mean initial relative growth

parameters per site as:

D̂D½ÂAMLE � : k|k~

(n{k{1):(G:G 0){1
6(T 0:ŜS{1

MLE :T){1=(n{k{p)
ð5Þ

Note that T 0:ŜS{1
MLE :T~T 0:S{1:T, which shows that the

variances and covariances are independent of the mean estimator.

The corresponding formula for the least squares estimator is:

D̂D½ÂALSE � : k|k~(G :G 0){1
6(T 0:T){1:T 0:ŜSLSE :T:(T

0:T){1

Even though D̂D½ÂAMLE � presents asymptotically the lower

variance, one cannot generalize for a given finite data set which

of the two estimators has lower variance. The diagonal elements

correspond to the error mean squares in analysis of variance, and

the vector of estimated standard errors of ÂA can be calculated for

both estimators as follows:

ŜSE½ÂA� : 1|k~(Diagonal½D̂D½ÂA��)1=2 ð6Þ

Diagonal refers to the values on the leading diagonal of matrix

D̂D½ÂA�, and the square root is taken of each value. The standard

errors vary only according to differences in the number of data

points per group, and in a completely balanced design such

standard errors are the same for each group.

An assumption of the GMANOVA model is that the errors at

each time point and within each group are normally distributed.

In particular skewness of the errors causes a poor prediction of the

mean path of the growth curve. After deleting obvious outliers (see

below), a transformation may still be needed. A both-sides power

transformation works well for the PL-GMANOVA model (see the

section on transformation below for details).

Finally, we are interested to calculate residuals of the

unexplained variance of Q, for evaluating the model fit. The

usual raw residuals (observed minus predicted values) are:

R0 : p|n~Q{T:ÂA:G ð7Þ

These are the raw residuals around the regression line that

should be symmetrically distributed (only asymptotically normally

in maximum likelihood estimation), or the data should be

transformed. In addition to checking normality, they can be used

to calculate the coefficient of determination for the model fit. The

Growth Curve Analysis with the PL-GMANOVA Model
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total variance of the data is the variance of all data entries in

Q = (Qcr), where c is the column index and r is the row index. The

unexplained variance is the sample variance of all entries in

R0 = (R0,cr). Taking one minus the computational formula of the

unexplained variance, dividing by the total variance, and

simplifying, results in:

R2~1{½
Xn

c~1

Xp

r~1
R2

0,cr{(
Xn

c~1

Xp

r~1
R0,cr)

2=(n:p)�

=½
Xn

c~1

Xp

r~1
Q2

cr{(
Xn

c~1

Xp

r~1
Qcr)

2=(n:p)�
ð8Þ

While heteroscedasticity of the raw residuals in R0 is allowed

among time points, homoscedasticity is an assumption among

groups for a given time point T. This can be analyzed by

calculating the variance of the residuals for each group, calculated

with the usual sample variance formula. Heteroscedasticty among

groups affects the standard errors of the estimates of A, and

consequently statistical inference.

Finally, for the maximum likelihood estimator von Rosen [23]

derived three subtypes of residuals (components of the raw

residuals) that serve to analyze the model fit:

R1 : p|n~T:(T 0:S{1:T){1:T 0:S{1:Q:(In{G 0:(G:G 0){1:G)

R2 : p|n~(Ip{T:(T 0:S{1:T){1:T 0:S{1):Q:

(In{G 0:(G :G 0){1:G)

R3 : p|n~(Ip{T:(T 0:S{1:T){1:T 0:S{1):Q:(G 0:(G :G 0){1:G)

ð9a� cÞ

The sum R1zR2 is the matrix of the residuals between a

group’s observations (Q) and the group’s arithmetic mean; R3 is

the matrix with the residuals of the difference between the group’s

arithmetic mean and the estimated regression model T:ÂA:G ; the

sum R1zR2 could be calculated directly as Q:(In{G 0:

(G :G 0){1:G), but it is recommended to calculate R1 and R2

separately, because elements in these matrices may appear with

opposite signs and of the same size, causing their sums to be very

close to zero (page 131 in [23]). The relationship between the

different types of residuals for an individual residual is

R0~R1zR2zR3; furthermore, for the matrices the relationship

R0:R0
0~R1:R1

0zR2:R2
0zR3:R3

0 holds.

Ideally the regression line should go through the arithmetic

means of the group’s observations (Q) at each time point (T). The

residuals R3 represent deviation from that ideal situation. As a

general criterion of a satisfactory model fit we like to see that the

absolute values of the residuals R3 are smaller than the absolute

values of R1zR2, i.e., the observation’s dispersion due to factors

other than a deficient model fit. If R3 residuals dominate the

model, then it is more important to look for a better model than

trying to explain nature’s growth variation.

We use the absolute values (Abs), because negative residuals of

one type and positive residuals of another type would mask each

other. The absolute values of the residuals, however, are not

normally distributed, but at best represent the positive half of a

normal distribution. Therefore one can calculate the ratio

Median[All Abs[R3]]/Median[All Abs[R1zR2]], where All
means k?p residuals of R3 (after deleting repeated R3 for each

group and time point), and n?p residuals of R1zR2. The ratio of

the medians should be smaller than 1, and is 0 with a perfect

model. One can test the (un)equality of the two medians with a

modified, non-parametric Mann-Whitney U-test [24].

Autocorrelations of the means of Q among time points in a

given group show up as an imperfect model. Left-over skewness

after a global transformation may cause such autocorrelation. The

above criterion is useful to decide if autocorrelation is too severe to

be acceptable.

Construction of the new model: Combination of the PL
Model and the GMANOVA model into the PL-GMANOVA
model

Using polynomials in GMANOVA has been a convenient way

to model nonlinear growth curves with a model that is linear in its

parameters, when not knowing anything about the functional

relationship between time and the modeled variable. Using here a

functional form of the PL model in the GMANOVA model is a

different way to model nonlinear growth curves with a linear

model, but with two major advantages:

1) The estimated vector A has a clear interpretation, being the

initial relative growth parameters for the k groups (see

Figure 1).

2) The 2–3 polynomial terms that are typically applied in

GMANOVA reduce to a single term, i.e., a straight line

through the origin, simplifying the model fit and its

interpretation.

In order to combine the GMANOVA model with the PL

model, define:

for bj=0 : Qij~Ei½{bj
:rij �{Ei½{bj

:r1j �

for bj~0 : Qij~Ln½rij=r1j �

Ti~ti{t1

Then, (1) can be transformed into the following linear

relationship:

Qij~Ag
:TizEij ð10Þ

The variable Qij represents a dimensionless quantity at time

point i for tree j, and each tree j pertains to a group g; Ag is the

mean initial relative growth of the trees in group g; Ti is the time

(interval) point i; and Eij is the error term for untransformed data

of tree j at time point i.
The quantities Q = Ei[–b?r] – Ei[–b?r1] are the data points to be

explained by time periods and tree groups per site; Q is the

fundamental variable to be modeled with GMANOVA. It has no

physical dimension and is somewhat difficult to interpret: For

given b and r1, Ei[–b? r1] is constant, causing the growth curves to

go through a given (calibrating) tree trunk radius r1. Therefore, for

interpretation we can just look at the integral term Ei[–b?r] as a

function of the radius r. The integral represents the area under the

curve of Exp[–b?r]/r. With negative b, i.e., a sigmoid growth curve

of the radius with time, the function Exp[–b?r]/r decreases from

infinity at r = 0, has a minimum at the turning point radius of a

sigmoid curve (TPR = 21/b), and subsequently increases again

towards infinity at r = infinity (the derivative of Exp[–b?r]/r
towards r, set equal to 0, results in r = 21/b). The turning point

radius is where the (instantaneous) increment of the radius is

Growth Curve Analysis with the PL-GMANOVA Model
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largest. With increasing radius, Ei[–b?r] increases rapidly at first,

slows down until it reaches the turning point, and subsequently

increases ever faster. Recall from (1) that (Ei[–b?r] – Ei[–b?r1])/A
adds the time needed to reach a certain radius, and Ei[–b?r]
divided by the initial relative growth rate A has the dimension of

time (years). Given an initial relative growth rate A, the term (Ei[–
b?r] – Ei[–b? r1])/A develops the time it takes to get a certain

radius r. With negative b, the time it takes to reach a certain

increment is ever smaller, until reaching the growth curve’s

turning point radius, after which the time becomes ever larger

again. In case of exponential growth (b = 0), the term Exp[–b?r]/r
becomes 1/r and its integral over r becomes Ln[r]. Correspond-

ingly, Ln[r/r1]/A evolves time as the inverse function of the

exponential growth function of the radius.

In the linear form of (10), the Qij and Ti data can be used as

input for the GMANOVA model, in order to calculate all Ag

coefficients in a single model, rather than individually per tree.

The GMANOVA model is used here for calculating linear

regression through the origin for statistical comparison of several

groups (sites), with residuals that may be heteroscedastic among

time points. The origin corresponds to the calibrating point of the

modeled mean growth curve for the group g (r1g at t1), because

Ei½{bg
:rig�{Ei½{bg

:r1g�~0 results in rig~r1g. Note, however,

that r1g cannot be determined numerically from the regression

with (10), because one would need to solve Qig~Ei½{bg
:rig�{

Ei½{bg
:r1g� for r1g, but the groups’ bg remain also unknown.

For the final regression it is recommended to delete the data

column for T = 0. The regression goes necessarily through the

origin, i.e., Q = 0 at T = 0. Therefore the data points at T = 0 have

no influence on the results, cannot be transformed in a meaningful

way (see the section on transformation below), and may distort the

analysis of residuals.

When estimating first with (1) for each tree individually r̂r1 (and

potentially also b̂b, though not here), and use it subsequently for

calculating Qij in (10), the errors Eij remain independent of the

independent variable Ti~ti{t1. We therefore do not need to

address the issue of estimation in two stages (two-stage least

squares method or 2SLS; see chapter 9 in [25]). Rather, Qij is a

composite term with an error that is due to model inexactness as

well as measurement and estimation error of r̂r1.

We can use (10) for calculating variance components of the

variation of the slope parameters A among groups, among

individuals, and among repeated measurements. Developing a

matrix with the same dimensions as Q, the new elements are:

Acr~Qcr =Tr ð11Þ

Here, Acr is the corresponding initial relative growth of data

point Qcr in column c and row r, and Tr is the corresponding time

value of row r. If the data was transformed, then the transformed

Qcr and Tr should be used, in order to allow the interpretation of

slope data being distributed symmetrically around arithmetic

means. The conversion of a data point Q at T with (11) can be

thought of as drawing a line from the origin to each data point,

and calculating the slope.

Note that the estimation of variance components carried out in

this way does not depend on the regression slopes (ÂA) from the

GMANOVA model, and can be calculated apart from the

GMANOVA. Following pages 279-286 in [26], we define the

model for calculating variance components as ATree~mzCgz

CizE, where ATree is the initial relative growth of a given tree, m
represents the parametric mean of the initial relative growth values

ATree of all trees, Cg is a random contribution for the group (site)

to the initial relative growth of a given tree, Ci is a random

contribution for the individual (tree) of a given site, and E is the

error term, resulting from repeating the measurements at different

times. Cg, Ci, and E are assumed to have each a mean of zero, and

the variances s2
g, s2

i , and s2, respectively. See pages 281–283 in

[26] for the calculations, where a½26� is here k (the number of sites),

b½26� = n/k (the average number of trees per site), and n½26� = p (the

number of measurements over time). The expected mean squares

are consequently s2zp:s2
i zp:n=k:s2

g for sites, s2zp:s2
i for trees,

and s2 for time. It is assumed that there is no covariance among

sites, trees, and time, and that there is no varying effect of time on

trees. We are using here the procedure for a completely balanced

design, even though our design with 16–27 trees per site is

unbalanced on the intermediate level (being converted in the

procedure here to an average number of trees per site). This could

cause some bias in the estimates. We therefore verified our simple-

to-calculate estimates with the more complex algorithms of the

VARCOMP procedure in SAS (Statistical Analysis System). It

turned out that our estimates for the variance components were in

between the maximum likelihood estimates and the MIVQUE

estimates from the SAS software.

Data Transformation for the PL-GMANOVA Model
Ideally, one would like to have normally distributed Q values at

each T value, and the residuals separately for each group (site)

should at least be symmetrically distributed. With a total of 2,220

data points, each subgroup has on average 22.2 data points,

pertaining to one of 10 groups and 30 time points. If the data of

each such subgroup is at least symmetrically distributed, and a

linear relationship over time is the right model, then the residuals
will be symmetrically distributed. Therefore, we transform the

data without subsequently analyzing the distribution of the

residuals.

There is some trade-off between eliminating skewness and

eliminating kurtosis, but focusing only on skewness, the both-sides

power transformation is very effective to eliminate any level of

skewness of a distribution, and maintains the linear relationship

between time T and quantity Q in (10). Skewness is the major

concern, because it causes bias of the mean growth path; kurtosis

may affect ‘‘only’’ the statistical inference. Note that there are two

different definitions of skewness and kurtosis in use: Pearson’s

‘‘
ffiffiffiffiffi
b1

p
’’ and ‘‘b2’’, and Fisher’s ‘‘g1‘‘ and ‘‘g2’’; for formulas and

conversion into each other see [27]. In a normal distribution,ffiffiffiffiffi
b1

p
~0, b2 = 3, g1 = 0, and g2 = 0. We used Pearson’s

ffiffiffiffiffi
b1

p
in our

algorithm below.

A limitation for our application is that not only the Q values

have to be transformed, but also the T values, and the

GMANOVA model does not allow different T values for different

groups. This in turn implies that one cannot use Tz1 for one

group, and Tz2 for another; only a global transformation can be

applied to all groups, and consequently skewness cannot be

eliminated completely for all groups, as different groups would

require different power transformation. Nevertheless, in our case a

global transformation remedies substantially non-normality.

Following, the separate treatment of negative T and Q is

necessary to allow for negative non-integer numbers as z in the

power transformation, without creating complex numbers. From

(10) we get then:
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for Qw0 and Tw0 : Qz~Z:TzzE

for Qv0 and Tv0 : {(({Q)z)~Z:({(({T)z))zE

ð12a� bÞ

Here, z is the power exponent that results from a systematic

search to eliminate skewness within groups and time points; Z is

the estimated regression coefficient that results with the trans-

formed data; and E is the error term for the transformed data. In

our application, the data points are almost only in the quadrants

with both positive T and Q, or both negative T and Q. The only

exception can be groups of data points that are typically found

close to the origin. When used for an analysis with transformed

data, these groups cause problems as influential outliers, because

the positive data points move upwards, while the negative data

points move downwards. To understand why this situation occurs

close to the origin, consider the term of the Y-axis from (10),

Q~Ei½{b:r�{Ei½{b:r1�: The term is negative for given b and

radius r when rvr1 (going to minus infinity at zero and plus

infinity when r goes to infinity). If the data points for a negative

time interval T will result in negative Q, and the data points for

positive T in positive Q, depends on b and r1 of the given tree, as

well as how far r is away from r1 (which in turn depends on t).
We applied the following remedy, which keeps the problematic

data points at a distance from the group’s mean that is constant in

terms of standard errors, and achieves that all data points are

either in quadrants I or III after transformation:

1) Calculate the means and standard errors of all the Q in the

groups, defined by given T, with mixed positive and negative

Q.

2) Calculate in each group the distance from the mean in terms

of standard error units of the opposite data points (positive Q
at negative T, i.e., found in the upper left quadrant II;

negative Q at positive T, i.e., found in the lower right

quadrant IV).

3) Transform the data points with negative Q at positive T, as

well as the data points with positive Q at negative T. Calculate

the new means and standard errors in each group.

4) Calculate the distance of the opposite data points in terms of

the new standard errors from the new means.

The procedure can be summarized in a formula that applies for

the quantities at a given group and time point (e.g., for the

Malacatépetl site the 24 quantities at T = 215):

QNew~Mean½All Qz
NO�z (QOld{Mean½All Q�):

SE½All Qz
NO� =SE½All Q�

Here, QNew is the new quantity of the opposite data point after

transformation; Mean is the arithmetic mean; All Qz
NO are the

quantities of all non-opposite, transformed data points in the

group at the time point Ti; QOld is the quantity of the opposite

data point to be transformed; All Q are the quantities of all data

points in the group at the time point Ti; and SE is the sample

standard error of Mean. In addition to its effectiveness to eliminate

skewness, the advantage of the both-sides power transformation in

cases of a linear regression through the origin is that Z can easily

be back-transformed:

A~Z1=z ð13Þ

This results from putting Q = A?T into Qz~Z:Tz, and solving

for A. It shows also the important advantage that the linear

relationship between T and Q is conserved, as the back-

transformation to A in (13) does not depend on T or Q, while

on the transformed scale the slopes are corrected for a better

distribution of the residuals. Consequently, the idea of carrying out

a linear regression, in order to get the slope parameters, is not

affected by the transformation. To find the globally best z, we used

the following algorithm:

a) Convert the negative Q values of quadrant III to positive

values by taking their absolute value. This is necessary to

capture the positive skewness of the data in quadrant I as well

as the negative skewness in quadrant III, when joining the

data. Once the exponent for the power transformation is

found for the joined absolute data values, (12b) is used to

convert the formerly negative values again into negative

values after transformation.

b) For each group and each time point calculate the skewness

from z~{20:01 to 20:01, in steps of 0.5, resulting in 81

skewness values. Find the preliminary zpre, the z-value with

the skewness being closest to zero. The shift of 0.01 avoids

trying z = 0, which would result in 1 of all values and is non-

sensical here.

c) For a range from zpre – 5.0001 to zpre + 5.0001 calculate

again the skewness on a finer scale in steps of 0.005. This

results in 201 skewness values. Again, find the z with the

skewness being closest to zero. This z is taken as the optimal

one for the time point within the group.

d) Gather all optimal z: For 10 groups and 30 time points, there

will be 300 optimal z. Use the median z as the global one.

Confidence and comparison limits have to be calculated on the

transformed scale, because they imply a normal distribution of the

residuals. The numerical values of the limits can subsequently be

back-transformed, resulting in confidence or comparison intervals

on the original scale. The standard errors cannot be back-

transformed, and thus have to be calculated on the original,

untransformed scale, by using the original input data: Employing

(13), with ÂA, T, and Q on the original scale, one re-calculates ŜS

with (4) and subsequently D̂D½ÂAMLE � with (5) and ŜSE½ÂA� with (6).

Standard errors derived in this way should not be used to calculate

confidence or comparison intervals, and if one does, they will not

coincide with the back-transformed intervals, because on the

original scale the residuals are not distributed normally anymore.

Calculation of Comparison Intervals for the Initial Relative
Growth Estimates

Comparison intervals for the initial relative growth estimates ÂA
of the k groups can be calculated according to [28] (see also page

262 in [26]). If the data was transformed (like here), comparison

intervals have to be calculated for the estimates from the

transformed data (called ẐZ). They can subsequently be back-

transformed, as explained below, with (13):

Comparison limits ~ ẐZ + (1=2)1=2:ma½k�,df �:SE½ẐZ�

Growth Curve Analysis with the PL-GMANOVA Model
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Here, ma½k�,df � is the critical value of the studentized maximum

modulus; a is the experiment-wide type I error rate (here 0.05);

k* = (k2-k)/2 = k!/(k-2)!/2, the number of pairwise comparisons

among k groups (here with k = 10, k* = 45); df ~n{p{k, the

degrees of freedom of all groups together; and SE = standard

error for the group in question from (6). While Miller [29] still

hoped for more extensive tabled values of ma½k�,df �, we calculated

ma½k�,df � without any problem with Mathematica. The cumulative

distribution function (CDF) of the studentized maximum modulus

distribution in its correct form is difficult to find in the literature

(here adapted from page 75 in [29]):

Term1~(2:CDF ½NormDist,u:x�{1)k�

Term2~df df =2 =(Gamma½df =2�:2df =2{1):udf {1:Exp½{df :u2=2�

CDF ½x�~
ð?

u~0

(Term1
:Term2)du

The cumulative distribution function CDF ½NormDist,u:x� gives

the probability value of the normal distribution (with mean = 0

and standard deviation = 1) that results from a value of u?x;

Gamma is the gamma function. The integral has to be taken

numerically, and there is no closed form of the inverse cumulative

distribution function. Therefore, one has to vary x until CDF(x)

equals 1-a, i.e., here CDF(x) = 0.95. The resulting x is ma½k�, df �. In

our case, m0:05½45, 182� is 3.2983. Note that the integral has not to be

taken to infinity, but only until there is no change anymore in the

desired accuracy. Indeed, in our case an upper bound of u = 1.3

was already sufficient to stabilize x = 3.2983. The value was

confirmed as intermediate of tabled values in [30].

Field Data Collection and Processing for an Application
of the PL-GMANOVA model

Trees were measured by the second author for his doctoral

thesis [31]. The tree species Pinus montezumae A.B. Lambert

(‘‘Montezuma pine’’) was found on ten sites at eight Mexican

volcanos, at approximately 3,100 m above sea level and each

about 500 times 500 m in size. The trees of this species grow up to

30 m in height, with a trunk diameter of up to 1 m. This pine

species is widely distributed in Mexico and also in Guatemala, and

not endangered. Here, the study sites were distributed in an area

of 96 km661 km (for details see Table 1). Herbarium specimens

and core samples of 5 mm diameter were taken non-destructively

from the trunks of the trees, after the authorities of the communal

land had given their consent (in the case of the Popocatépetl site

the office of the national park). In addition, the SEMARNAT (i.e.,

the federal environmental agency) had extended a permit to collect

plant samples for scientific purposes.

The sites represent landscapes with geologically different ages

and corresponding different soil charateristics: The eight volcanoes

are the Popocatépetl (1,000 years BP [ = Before ‘‘Present’’ in

geology = before 1950]), Chichinautzin (1,835 years BP),

Guespalapa (two sites; 3,800 years BP), Tláloc (6,200 years BP),

Cuauhtzin (8,000 years BP), Pelado (two sites; 10,000 years BP),

Malacatépetl (30,500 years BP), and Catedral (100,000 years BP).

The geological ages were estimates with 14C and K/Ar

radiometric data.
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Data collection and measurement followed standard dendro-

chronological procedures [32]. A total of 250 trees were measured,

though only 235 trees at the end had data for 1974–2004 (16–28

trees per site). Two core samples per tree were taken at around

1 m trunk height with a Pressler increment borer of 5.15640 cm,

and the better sample of the two processed. Tree rings were cross-

dated with a skeleton plot, spanning among all trees a range from

1824 to 2006. Core samples were mounted, polished, and

measured on a movable stage under a stereozoom microscope

(0.01 mm precision). The programs Verify5 (web.utk.edu/,gris-

sino/software.htm) and COFECHA (www.ncdc.noaa.gov/paleo/

treering/cofecha/cofecha.html) were used to verify the measure-

ments and the dating, respectively, of the 22,433 annual

increments. Tree radiuses for the 30 years from 1974 to 2004

ranged from 9.5 to 43.8 cm, with per-tree average annual

increments ranging from 0.04 to 0.86 cm. Tree ages varied

between 32 and 181 years in 2004 (Table 1).

One way to calculate relative growth is to divide increment data by

the corresponding intermediate quantity. For example, an annual

radius increment of 0.3 cm divided by (10.1+10.4 cm)/2 is 0.029268

or 29.3% in a one-year period. A theoretically better formula [33]

for calculating the mean growth rate is calculating (Ln[10.4] –

Ln[10.1])/(1 year) = Ln[10.4/10.1] = 0.029270 = 29.3% again,

when rounded. The formula is derived from the exponential function

(10.1 cm)?Exp[(growth rate)?(1 year)] = 10.4 cm. The difference is a

constant growth rate that reflects ‘‘growth over growth’’ throughout

the year, rather than assuming the relative growth at half the year to

be representative for the whole year. The latter type of relative growth

is employed here.

All statistical and mathematical calculations were carried out

with several Mathematica 10.0 notebooks (www.wolfram.com),

written by the first author (MR).

Results from Applying the PL-GMANOVA Model

Nonlinear Regression with the PL Model for Individual
Trees

For each tree we used 31 data pairs of annual trunk radius (ri)

and the corresponding annual ti from 1 to 31 years (1974–2004),

to apply the PL model with one segment individually. The

nonlinear regression with (1) and t1 = 15 years resulted to be quick

and stable with Mathematica, without problems of convergence.

Table 2 summarizes the results. First, all three coefficients âa, b̂b,

and r̂r1 (with t1 = 15 years in 1989) were determined by nonlinear

regression (upper half of the table with ‘‘b free’’). The complete set

of parameters, represented in Table 2, consists of 1,880 param-

eters, corresponding to eight variables and 235 trees. For each of

the eight variables the minimum, maximum, quartiles, and mean

is given. The coefficient of determination ranges from 0.84 to

0.9998, and for half of the trees the fit is even between 0.9978 and

0.9993. As expected, the standardized residuals present statistically

significant autocorrelation (‘‘Probability of independent residuals’’

in Table 2). As mentioned in the methods, this autocorrelation is

of no concern here for determining r̂r1, because the residuals are

very small, relative to the corresponding radius (see Figure 1 top).

The regression coefficient r̂r1 at t1 = 15 years varies widely from

4.6 to 37.5 cm among trees, corresponding to a wide range of the

outer radiuses among trees (Table 1). On the other hand, the

ranges of the regression coefficients âa and b̂b are exceedingly wide,

for âa from 215.7 (ÂA = 0.000015% per year initial relative growth)

to 95.0 (1.9?1043 % per year), and for b̂b from 22.6544 (turning

point radius = 0.38 cm) to 0.6125 cm21 (over-exponential

growth). One would expect âa to fall into a range from

approximately 28 to 0, and for b̂b from approximately 20.5 to

0. An initial logarithmic relative growth of a = 0 represents 100%

per year relative growth for the radius to start with (formally at a

radius of 0 cm), and b = 0 cm21 represents an exponential (instead

of sigmoid) growth curve. The reason for the extreme parameter

range here is caused by the rather linear growth curves in the 30-

year segment. A straight line is determined by two coefficients,

causing three coefficients in the nonlinear regression to be highly

correlated. The range of the Pearson correlation coefficients

between r̂r1 and âa, as well as r̂r1 and b̂b, covers the whole possible

range from 21 to 1. Furthermore, in the case of âa and b̂b the

correlation coefficients tend to be consistently close to 21.

To eliminate the correlation among regression coefficients for

this data, b was fixed for each tree individually, such that the

turning point radius (of a sigmoid curve) was at its midpoint radius,

i.e., b~{1=(midpointradius). As can be seen at the bottom of

Table 2 (‘‘b fixed according to midpoint radius’’), the remaining

possible correlations between r̂r1 and âa are basically zero. All three

coefficients are now within reasonable ranges: Depending on the

tree, the regression coefficient r̂r1 ranges from 8.25 cm to

37.50 cm, âa from 25.2 (ÂA = 0.53% per year) to 21.5 (21.33%

per year), and the fixed b from 20.121 to 20.027 (i.e., the turning

point radius from 8.3 to 37.0 cm).

A further simplification (not carried out here) could be to fix not

only b, but b and r1 as b?r1 = 21. If one calculates the estimated

bfixed
:̂rr1 for each of the 235 trees, the range is from 21.1172 to

20.8170, and the mean is 21.0096 (the median 21.0056). This

shows that in a segment of time as a function of the radius, where

no curvature has to be taken into account, the growth curve can be

symmetrically developed around the (in that case hardly recog-

nizable) turning point radius TPR = {1=b, which then coincides

with r1. Therefore, one could set r1~{1=b, so that Qij in (10)

becomes Ei½rij=r1j �{Ei½1�, where r1j is the midpoint radius of tree

j, and Ei[1] = 1.89512. Consequently, if the segment in all trees is

very close to a straight line, the nonlinear regression with (1) could

be avoided altogether.

Employing the PL-GMANOVA Model and Outlier
Detection

Turning to the GMANOVA, the parameters of r̂r1 and fixed b
for 235 trees were used to calculate Qij~Ei½{bj

:rij �{Ei½{bj
:̂rr1j �

for each of the 235 trees as input for (10). In addition, with t1 = 15

years, the 31 time values ti were converted into Ti~ti – 15 years.

This is the data that entered into the GMANOVA. Going through

the mathematical steps described in the methods, one gets the

values for ÂAOutl (‘‘Outl’’ for inclusion of outliers) given in the third

column of Table 3, together with the standard errors taken from

the diagonal of the matrix D̂D½ÂAOutl �.
Figure 2 presents on the left the data points of

Qij~Ei½{bj
:rij �{Ei½{bj

:̂rr1j � for three sites, with fixed b, as a

function of the time points Ti~ti – 15 years. The straight line in

black in each graph presents the regression function, calculated

with the least squares estimator from (3), whose slopes are ÂAOutl for

the corresponding site. Outlying data curves are shown with red

points (‘‘data curves’’ represent the raw data, to be distinguished

from the modeled growth curves). Following page 108 in [34],

outlying data points were defined here as those points that are at

least four standardized residuals away from the regression line.

Standardized residuals were determined from the raw residuals R0

(see (7)), after calculating the leverages and the standard errors of

the residuals of each group (page 525 in [26]).
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Independently if one, several, or all data points of a tree’s data

curve were outliers, we defined the whole data curve as an outlying

data curve. Such an outlying data curve is particularly obvious for

the Malacatépetl site (Figure 2 top left). Not all data points of the

outlying data curve for the Chichinautzin site are individually

outliers (Figure 2 bottom left). The graphs on the right of Figure 2

present the original tree growth curves of radius as a function of

time. The red points of the graphs on the left are red lines on the

right. The key aspect that is shown here is that the outlying curves

in the graphs on the left are very obvious, referring to an

exceptional growth rate, while on the right that aspect can be

masked. In the case of the Malacatépetl site, the outlying case is a

younger tree of 34 years, with much faster growth, the median age

for the site being 86.5 years in 2004; the curvature can easily be

distinguished from the remaining tree growth curves (shown in

green). The faster growth rate is not as easily distinguished in the

graph for the Popocatépetl site (Figure 2 middle right). Note that

the outlying aspect is not that the curves are at the lower bound of

the set of curves, which rather indicates again younger trees with

smaller radius (which tend to grow also faster), but the steeper

curvature. Finally, for the Chichinautzin site (Figure 2 bottom) the

outlying curve is completely masked in the right graph, being

within the range of the radiuses of the other trees and not having a

conspicuous curvature; actually, its growth rate is exceptional only

during some periods of growth. In conclusion, the analysis shown

on the left of Figure 2 provides an excellent tool to identify and

distinguish exceptional growth, including when it occurs only

during certain periods.

A total of 13 outliers were eliminated, 5.5% of the original 235

data curves. The data for all sites, except two (Gue1 and Mal),

presented still considerable skewness after eliminating the outliers,

and z = 0.2224 was determined as the globally best exponent for

transformation. Since transformation cannot be carried out

separately for the data of each site, when combining all groups

in the GMANOVA model, the data for four sites remained

significantly skewed (though less than originally), in particular for

the Catedral (Cat) site. Kurtosis also improved in several cases,

though not to the extent that the distribution of the data at each

site could be considered normal. Nevertheless, the transformation

fulfilled its purpose to get reasonable results with the maximum

likelihood estimator from (2).

Regression Coefficients and Comparison Intervals
For the maximum likelihood estimation, the 16th column for

T = 0 years was deleted with the corresponding Q data (as in

Figure 3), as recommended in the methods section of combining

the PL and the GMANOVA models. Using 30 time points (from

215 to 15 years annually, without 0 years), the sum-of-squares

matrix S had a determinant of 1.3?10246 and a condition number

of 41,358, the latter being the ratio of the largest to the smallest

singular value (pages 50–55 in [35]). The inverse could neverthe-

less be calculated in the standard way.

Table 3 compares ÂA, calculated first with the least squares

estimator (LSE) with all the data, including the 13 outliers (ÂAOutl ),

and subsequently the maximum likelihood estimator (MLE),

excluding the data of outlying growth curves (ÂAFinal ). The number

of growth curves (i.e., trees) in each case are given (nOutl and

nFinal ). The initial growth rate ÂA is significantly different for half

the number of sites, when excluding outlying data curves.

Furthermore, ÂAFinal is always smaller than ÂAOutl , in a range from

16% to 47% per year, because (apart from different estimation

techniques) the outlying data curves were frequently exceptionally

fast-growing trees and not exceptionally slow-growing trees. The

corresponding standard errors also become much smaller (62 to

64%). Note that for one site (Pel2), with no outliers deleted

(nOutl = nFinal = 16), the parameters nevertheless change. This is

due to using different estimators (LSE and MLE) and having

Table 2. Summary of parameters for growth curves (1974– 2004, n = 235 trees).

Minimum Maximum Median
25%-
quartile

75%-
quartile Mean

b determined by regression

R2 0.8351 0.9998 0.9988 0.9978 0.9993 0.9957

Probability of independent residuals 6?10218 0.78 0.00013 4?1026 0.0036 0.015

r̂r1 (cm) 4.57 37.53 21.52 17.41 25.20 21.37

ÂA~Exp½âa� (year21) 0.000015% 1.9?1043 % 16.43% 1.57% 189.27% 83.53%

b̂b (cm21) 22.6544 0.6125 20.1245 20.2757 20.0508 20.2031

corr (̂rr1 and âa) 21 1 0.746 0.727 0.762 0.732

corr (̂rr1 and b̂b) 20.99999 0.99998 20.746 20.762 20.729 20.733

corr (âa and b̂b) 20.99999 20.9536 20.9997 20.9998 20.9993 20.9989

b fixed according to the tree’s midpoint radius

R2 0.9563 0.9998 0.9967 0.9934 0.9984 0.9947

Probability of independent residuals 3?10216 0.79 3?1028 8?10211 1?1025 0.0075

r̂r1 (cm) 8.25 37.50 21.54 17.50 25.31 21.68

ÂA~Exp½âa� (year21) 0.53% 21.33% 1.76% 1.26% 2.70% 1.92%

Fixed b (cm21) 20.1212 20.0268 20.0470 20.0573 20.0397 20.0505

corr (̂rr1 and âa) 24?10212 1?10211 24?10216 24?10215 1?10215 2?10214

t1 = 15 years for all trees; corr = asymptotic correlation coefficients between regression coefficients; the probability for independent residuals is from a Ljung–Box test
for randomness on the standardized residuals, with the null hypothesis that the autocorrelations r1~r2~:::~rlagx~0 and alternatively that at least one r=0.

doi:10.1371/journal.pone.0112396.t002
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improved the distribution of the data with a transformation for

maximum likelihood estimation.

Figure 3 shows on the bottom the back-transformed data with

regression lines for one site (Malacatépetl = Mal). The non-

normally distributed residuals are obvious, as well as the

reasonable positioning of the regression lines with the maximum

likelihood estimator. The slope of the intermediate regression line

is numerically equal to ÂA = 1.19% per year). The other two

regression lines represent slightly asymmetrical 95% confidence

limits.

Having estimated the mean initial relative growth ÂAFinal for each

site, can we draw out a new growth curve with these estimates? Yes,

but we would have to decide still about some unknown parameters:

For employing t~t1z(Ei½{b:r�{Ei½{b:r1�)=ÂAFinal from (1), we

would need the parameters for t1, b, and r1, in addition to ÂAFinal .

One way to solve this is to decide that the growth curve should start

at the measured median radius in 1974 (t = 0 years) and finish at the

median radius in 2004 (30 years). Taking the Malacatépetl trees of

Figure 3, the median growth curve should then go from 21.3 cm

and finish with 26.5 cm. Therefore one gets two equations with two

variables: 0 = 15+ (Ei[–b?21.3] – Ei[–b?r1])/0.0119 and 30 = 15+
(Ei[–b?26.5] – Ei[–b?r1])/0.0119. This system of two nonlinear

equations can be solved (e.g., in Mathematica with the FindRoot

function). The result is b = 20.0206 cm21 and r1 = 23.8 cm. The

objective here, however, was to compare mean relative growth

among sites in a standardized way, not to predict a median growth

curve for each site.

Figure 4 presents 95% comparison intervals for the ten sites.

Comparison intervals were calculated on the transformed scale,

and then back-transformed with (13). One can observe some slight

asymmetry around the mean values, especially in the case of the

Popocatépetl. If a comparison interval does not overlap between

two sites, then the two sites are considered significantly different.

The distinctively higher growth rate on the Popocatépetl site (Pop)

is especially obvious. Initial relative growth of the trees on the

Popocatépetl is 3.9-times the one of the trees on the Guespalapa

#1 site (Gue1), and significantly higher than that on all other sites.

Apart from the Popocatépetl site, there is a continuous increase

from the Guespalapa #1 site to the Tláloc (Tla) site, with seven

pairwise comparisons indicating significant differences (see legend

of Figure 4).

Model Fit and Variance Components
The coefficient of determination from (8) is 0.986, which

indicates that a high proportion of the data’s variance is explained

by the model. For evaluating the model fit further, Median[All
AbsR3]/Median[All Abs (R1+R2)] was calculated, as explained in

the methods section after (9). The ratio is 0.53, indicating that data

deviation from the model can be considered sufficiently smaller

than growth variation due to nature’s within-site factors or

measurement error. A Mann-Whitney U-tests comparing the

medians is highly significant. In that sense, also the significant

autocorrelation of the means of Q among the time points for each

site is not a mayor concern; apparently it is caused by a necessarily

imperfect global power transformation of the data points from all

sites together.

Calculating the sample variances for each of the 10 groups at

each of the 30 time points, we get a matrix with 300 variances.

Variances may me heterogeneous among time points, but should

be homogeneous among groups (within time points). When

calculating the ratios of the largest variance to the smallest

variance among the 10 groups, we get one ratio for each of the 30

time points. These ratios are on average 3.8, ranging from 2.4 to
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(ÂA
F

in
a

l,
af

te
r

b
ac

k-
tr

an
sf

o
rm

at
io

n
).

V
o

lc
a

n
o

si
te

n
O

u
tl

Â
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Ŝ
E
½Â
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4.8 (rather than the ideal 1). A Conover test for homogeneity of

variances (pages 239–248 in [36]) is significant at 10 time points,

and non-significant at 20 time points, i.e., the heteroscedasticity

varies with time points, being significant in one third of them. The

median probability is 0.14, the lowest 0.007. The heteroscedasticty

among groups makes the standard errors of the estimates of A and

the comparison intervals in Figure 4 less exact, but is not of mayor

concern for our conclusions.

Calculating the ratios of the largest variance to the smallest

variance among the 30 time points, we get one ratio for each of the

10 groups. These ratios are on average 4.3, ranging from 2.6 to

7.7. In a Conover test for homogeneity of variances, only one time

point presents significant heteroscedasticity, but as mentioned the

model allows heteroscedasticity among time points.

Calculating variance components for the initial relative growth

(A), 34% of the growth variation was found among sites, 31%

Figure 2. Outlier detection with the PL-GMANOVA model. On the left GMANOVA graphs for three sites, that represent initial relative growth ÂA
as the slope of the regression line with the least squares estimator (LSE), as well as the data points for time i and tree j. Outlying data curves, defined
as data curves of which some points are at least four standard deviations from the regression line, are marked with red points. On the right, the
original data curves with the outlying curves from the left marked again in red. Observe the masked outlying curve on the bottom right.
doi:10.1371/journal.pone.0112396.g002
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among trees, and 35% over time. Without the Popocatépetl site,

the numbers changed to 7% among sites, 42% among trees, and

51% over time. For explaining more growth variation, further

research should focus on environmental factors that cause

variation within sites, such as soil, water availability, and

competition, as well as factors that change over time, such as

competition among trees. Genetic variation within the 16–28 trees

per sites is less likely to play a major role, given their relatively

small size of about 500 times 500 m, and it does not change with

time.

Discussion

The PL growth function from (1), t~t1z(Ei½{b:r�{
Ei½{b:r1�)=A for b=0 and t~t1zLn½r=r1�)=A for b~0, was

originally derived in [4], and subsequently again applied in

[37], based on the (possibly piecewise) linear relationship of

logarithmic relative growth as a function of tree trunk diameter

or radius. Originally the motivation was to determine a growth

curve when time or age values are unknown in tropical trees.

The resulting function, however, has some interesting mathe-

matical properties, which motivated us to explore its use as a

general growth curve function, including when time values are

known:

1) The three coefficients a, b, and r1 (at given t1) have straight-

forward interpretations: a is initial logarithmic relative growth

(i.e., the Y-intercept at r = 0), serving as a standardized growth

rate parameter; if b is negative, then it is numerically the

negative inverse of the turning point radius (from a left-winged

to a right-winged growth curve), serving as a shape parameter;

and r1 at t1 calibrates the position of the growth curve

segment. Figure 1 illustrates this interpretation of the

parameters in the case of one tree.

2) All types of monotonic growth of the tree radius (or another

quantity) over time can be modeled in a very flexible way.

Depending on b, the growth curve segment is sigmoid,

exponential, or over-exponential (‘‘exploding’’). Depending

on r1 (or t1) and A = Exp[a], the curvature part that fits the

data best is applied (left-winged, right-winged, or sigmoid); r1

and t1 can also be outside of the measured range, and t1 can

even be negative. Finally, a large negative value of a can cause

the growth curve to be virtually linear. Growth can either be

positive or negative (however, not mixed or cyclical).

Employing the PL model together with the GMANOVA model

provides some additional advantages:

3) Hidden outlying data curves are easily detectable, both

numerically and visually, as was explained with Figure 2.

4) Differences of growth rates among groups (here trees on

different volcano sites) can be quantified and compared

statistically in a very efficient way that is statistically robust,

takes into account different starting and turning point

radiuses, and allows for heteroscedasticity of the residuals

among time points.

Another approach would be to apply the PL model nonlinearly

for individual trees with (1), as done here, but avoid the

GMANOVA model. With the results summarized in Table 2

bottom (with fixed b), one could simply calculate the average and

standard error for the trees per site. The estimate of ÂA is larger for

all sites, by a factor from 1.2 to 1.4 (with no transformation

applied). The pooled variance of the GMANOVA is smaller by a

factor of 2.2. This difference in variance comes as an advantage

from analyzing all 222 trees together, rather than separately 22

trees for the Catedral site (Cat), 25 trees for the Chichinautzin site

(Chi), and so on.

An even simpler way to compare tree growth is to compare

annual increments. Calculating average annual increments, these

range from 0.10 cm (Chi) to 0.46 cm (Pop). Ordering sites

according to increasing average annual increment, the sequence

differs for the annual increments compared with the sequence

shown in Figure 4: Chi ,Gue1,Gue2,Pel2,Pel1,Tla,Cua,

Mal,Cat,Pop. The only site that does keep the same position is

the Popocatépetl (Pop). In particular the Chichinautzin (Chi) tree

group moves from the slowest-growing position in increment to

the third-fastest position in initial relative growth. One reason is

that the radiuses are smaller, and thus the growth rate (relative

growth) is faster than revealed by analysis of the annual

Figure 3. Data and regression line with the PL-GMANOVA
model for the Malacatépetl site. The outlier shown in Figure 2 top
was excluded. The data points for time i and tree j, as well as the
regression slopes are back-transformed, causing slightly asymmetrical
95% confidence intervals. The regression slope is ÂA = 1.19% per year.
doi:10.1371/journal.pone.0112396.g003

Figure 4. Comparison intervals of initial relative growth (ÂA) for
the trees on each sites. Means of non-overlapping 95% comparison
intervals are considered to be significantly different. The comparison
intervals are back-transformed, and consequently slightly asymmetrical.

The sites are ordered according to increasing ÂA. See Table 1 for site
abbreviations and site information. The trees on the Popocatépetl site

present a significantly higher mean ÂA than all other sites. In addition,
the following pairwise comparisons indicate significant differences:
Gue1-Chi, Gue1- Cat, Gue1-Tla, Pel1-Tla, Mal-Cat, Mal-Tla, and Gue2-Tla.
doi:10.1371/journal.pone.0112396.g004
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increments. The idea of using the PL-GMANOVA model is to

compare growth on ‘‘equal footing’’, as if the initial radiuses were

the same.

If we were to employ a standard multiple linear regression

model (without taking into account any degree of dependence or

heterscedasticity of the residuals), we would not obtain our final

results directly: Employing the regression model Q = T+ Site +
T?Site +E, where Site is a dummy variable, one obtains one

regression coefficient for T, ten coefficients for the sites, and nine

coefficients for the interactions T?Site, each with its standard error.

Heteroscedasticity and autocorrelation of the residuals could be

handled in a more flexible way by the mixed(-effects) linear model,

as introduced by Laird and Ware [38]. That model has become

popular in recent years [39–42]. The model is also called

‘‘hierarchical model’’, among other terms, and indeed the different

names cause confusion: The GMANOVA model itself is a special

case of a linear mixed model, where the design matrix of fixed

effects is a linear combination of the design matrix of random

effects (page 184 in [43]). We therefore talk about ‘‘Laird’s (linear)

mixed model’’ for distinction.

The algorithm of Laird’s mixed model is iterative and

complicated [44,45]. Convergence problems are reported in the

literature (page 109 in [46]; they mention 2% of their samples

under default options). Such problems are avoided by the

GMANOVA model with its closed-form equations. While

generally the estimators can be unbiased, model verifications

and inference in Laird’s mixed model are based on asymptotic

statistics (when the number of observation goes towards infinity).

Formulas for exact standard errors or confidence intervals, and

thus for exact statistical inference, have not been found (see page

188 in [40], pages 166–173 in [42]), page 92 in [44]).

An advantage of Laird’s mixed models is the easy handling of

missing and unbalanced data, i.e., data where individuals have

different numbers of repeated measurements, possibly obtained on

different occasions (page 22 in [41]). There are methods for the

GMANOVA model to handle randomly missing or incomplete

data, but not observations at irregularly spaced intervals or non-

randomly missing data (page 235 in [47]). This is, however, in

general not a problem with dendrochronological data, as long as

one chooses a common interval of measured years. Randomly

missing data values for one year can easily be interpolated linearly

from the data values of the adjacent years. Combining longer with

shorter time series, however, causes not only computational issue,

but also conceptual questions about what the longer time series

can tell us about the shorter time series in the period that the latter

does not cover.

After having quantified the differences among mean tree growth

curves on the ten sites from eight volcanoes, how can we explain

the detected differences, in particular the much faster tree growth

on the Popocatépetl site? There could be much more favorable site

conditions, such as for soil nutrients and water availability. Among

sites, it is also more likely to find genetic differences. One different

aspect, however, needs to be mentioned here that has caused

several outliers in Figure 2. If a period between two dates is used

(as here from 1974–2004) and trees do not have the same age, then

the growth curve comparisons among trees represent the same

exposition to climate, but differ in age-specific growth phases. On

the other hand, if tree age is used, the age-specific growth phases

are the same, but the influence of climate varies among trees. With

a mixed-age population of investigated trees, it is impossible to

have neither the varying-age nor the climate effect, so one has to

choose what effect is to be controlled. Even when adjusting t1 in (1)

individually for initial age of each tree, we do get the same

parameters, because the model is based on a growth difference

during a time period ti – t1. Our model took differences in the

initial radiuses into account for comparing growth, but not that

trees of the same radius, but different age, do likely imply different

growth physiology. Tree ages in 2004 varied for the 222 trees from

36 to 151 years; the 25% and 75% quartiles are 68.75 and 98

years, respectively. Indeed, the youngest trees of the study are at

the Popocatépetl site (Table 1, median age = 54 years). If we

compared growth at the same ages, however, we would compare

with potentially different influence of climate with its strong impact

on growth. While tree age is unlikely to explain the much faster

growth at the Popocatépetl site by itself, it would be desirable to

include initial tree age (in 1974) as an explanatory variable in our

model. Such a model adaptation, to include explanatory variables,

will be the topic of a future contribution.
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