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Neonatal sepsis is one of the most prevalent causes of death of the neonates. However, the mechanisms underlying neonatal sepsis
remained unclear. The present study identified a total of 1128 upregulated mRNAs and 1008 downregulated mRNAs, 28
upregulated lncRNAs, and 61 downregulated lncRNAs in neonatal sepsis. Then, we constructed PPI networks to identify key
regulators in neonatal sepsis, including ITGAM, ITGAX, TLR4, ITGB2, SRC, ELANE, RPLP0, RPS28, RPL26, and RPL27.
lncRNA coexpression analysis showed HS.294603, LOC391811, C12ORF47, LOC729021, HS.546375, HNRPA1L-2, LOC158345,
and HS.495041 played important roles in the progression of neonatal sepsis. Bioinformatics analysis showed DEGs were
involved in the regulation cellular extravasation, acute inflammatory response, macrophage activation of NF-kappa B signaling
pathway, TNF signaling pathway, HIF-1 signaling pathway, Toll-like receptor signaling pathway, and ribosome, RNA transport,
and spliceosome. lncRNAs were involved in regulating ribosome, T cell receptor signaling pathway, RNA degradation, insulin
resistance, ribosome biogenesis in eukaryotes, and hematopoietic cell lineage. We thought this study provided useful
information for identifying novel therapeutic markers for neonatal sepsis.

1. Introduction

Neonatal sepsis was a severe systematic infectious disease
in neonates induced by bacteria, fungi, and viruses [1]. Neo-
natal sepsis is one of the most prevalent causes of death of
neonates [2]. Adult sepsis has been studied in depth, but
many abundant studies stated that the neonatal immune
response to sepsis is different from adults; comparable
research on neonatal vascular endothelium is not enough.
Neonatal endothelial cells expressing lower amounts of adhe-
sion molecules show a reduced capacity to reactive oxygen
species [3]. In the past decades, emerging studies showed
activation of lymphocytes, neutrophils, and mononuclear
macrophages played crucial roles in the progression of neo-
natal sepsis. A few genes were identified to be associated with
neonatal sepsis. For example, TLR2 and TLR4 were associ-

ated with the recognition of the bacteria in neonates [4].
PIK3CA, TGFBR2, CDKN1B, KRAS, E2F3, TRAF6, and
CHUK were reported to be key regulators in neonatal sepsis
[5]. However, the detailed mechanisms underlying these pro-
cesses remained elusive.

Long noncoding RNAs (lncRNAs) were a class of ncRNAs
longer than 200bps. Emerging studies showed lncRNAs were
important regulators in multiple human diseases such as dia-
betes, cancers, and neonatal sepsis. lncRNAs regulate target
expression in different levels, including transcriptional and
posttranscriptional levels. lncRNAs could bind to RNA, pro-
tein, and DNAmolecules in cells. Very few reports are aimed
at elucidating the functions and roles of lncRNAs in neonatal
sepsis. Until now, only one report showed lncRNA SNHG16
reverses the effects of miR-15a/16 on the LPS-induced
inflammatory pathway in neonatal sepsis [6]. Exploring the
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roles of lncRNAs in neonatal sepsis could provide novel
clues for us to understand the mechanisms underlying this
disease progression.

The previous study is aimed at identifying differently
expressed mRNAs and lncRNAs in neonatal sepsis by ana-
lyzing GSE25504 [7]. Protein-protein interaction network
and coexpression network analysis were used to identify key
mRNAs and lncRNAs. Bioinformatics analysis was also con-
ducted to predict the potential roles of these genes in neonatal
sepsis. This study could provide novel clues to understand the
mechanisms of underlying neonatal sepsis progression.

2. Materials and Methods

2.1. Microarray Data. Three gene expression profile
GSE25504 [8] was downloaded from the GEO database.
GSE25504, which was based on the GPL6947 platform,
was submitted by Dickinson et al. The GSE25504 dataset
contained 38 negative blood culture result samples and 25
positive blood culture result samples. The analysis for differen-
tial gene expression between tumor and normal tissue was
performed using GeneSpring software version 11.5 (Agilent
Technologies, Inc., Santa Clara, CA, USA). Student’s t-test
was used to identify DEGs with an alteration of ≥2-fold.
p < 0:05 was considered to indicate a statistically significant
difference. We applied Limma package to identify DEGs with
R software [9].

2.2. Coexpression Network Construction and Analysis. In this
study, Pearson’s correlation coefficient of differently expressed
gene- (DEG-) lncRNA pairs was calculated according to the
expression value of them. The coexpressed DEG-lncRNA
pairs with the absolute value of Pearson’s correlation
coefficient ≥ 0:8 were selected, and the coexpression network
was established by using Cytoscape software.

2.3. Pathway Enrichment Analysis. Pathway analysis was
used to find the significant pathways according to Kyoto
Encyclopedia of Genes and Genomes (KEGG). Fisher’s exact
test was adopted to select the significant pathways, and the
threshold of significance was defined by FDR and p value.
Significant pathways were extracted according to the thresh-
olds of p < 0:05 and intersection gene count > 1.

2.4. Integration of the Protein-Protein Interaction (PPI)
Network. The Search Tool for the Retrieval of Interacting
Genes version 10.0 (STRING: http://string-db.org) [10] was
used for the exploration of potential DEG interactions at
the protein level. The PPI networks of DEGs by STRING
were derived from validated experiments. A PPI score of
>0.4 was considered significant. The PPI networks were visu-
alized using Cytoscape software [11] (http://www.cytoscape
.org). p < 0:05 was considered to indicate a statistically signif-
icant difference.

3. Results

3.1. Identification of Differently Expressed mRNAs and
lncRNAs in Neonatal Sepsis by Analyzing Whole Blood
Expression Profiling. The present study is aimed at identify-

ing differently expressed mRNAs and lncRNAs in neonatal
sepsis by analyzing whole blood mRNA expression profiling,
GSE25504, from the NCBI GEO dataset (https://www.ncbi
.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25504). A total of
38 negative blood culture result samples and 25 positive
blood culture result samples were included in this dataset.
As shown in Figures 1(a) and 1(b), 1128 upregulated
mRNAs and 1008 downregulated mRNAs with log2 fold
change ðFCÞ∣ ≥ 1:0 and false discovery rate ðFDRÞ ≤ 0:01
were identified as differently expressed genes (DEGs). Mean-
while, this study identified 28 upregulated lncRNAs and 61
downregulated lncRNAs in positive samples compared to
negative samples as differently expressed lncRNAs (DElncs).

3.2. PPI Network Analysis of DEGs in Neonatal Sepsis. The
above analysis revealed multiple differently expressed genes
in neonatal sepsis. However, the interactions of these DEGs
remained largely unclear. To obtain the interactions among
the 22 upregulated mRNAs and 863 downregulated mRNAs
in the neonatal sepsis, the present study constructed and pre-
sented PPI networks using the STRING database and Cytos-
cape software. The combined score > 0:4 was used as the cut-
off criterion. Following the construction of PPI network, a
MCODE plug-in analysis was performed to identify hub net-
works (degree cut-off ≥ 2 and the nodes with edges ≥ 2-core)
in the PPI network using Cytoscape software (Figure 2). As
shown in Figure 2, upregulated hub network 1 included 71
nodes and 1187 edges, upregulated hub network 2 included
66 nodes and 611 edges, and upregulated hub network 3
included 62 nodes and 529 edges. As shown in Figure 3,
downregulated hub network 1 included 94 nodes and 4048
edges, downregulated hub network 2 included 30 nodes
and 247 edges, and downregulated hub network 3 included
26 nodes and 199 edges. Blue nodes indicate upregulated
genes, and pink nodes indicate downregulated genes in the
neonatal sepsis.

Also, we identified several key regulators in these PPI
networks. The key regulators in upregulated PPI networks
included ITGAM (degree = 131), ITGAX (degree = 101),
TLR4 (degree = 100), ITGB2 (degree = 92), SRC (degree =
87), and ELANE (degree = 81). The key regulators in down-
regulated PPI networks included RPLP0 (degree = 128),
RPS28 (degree = 128), RPL26 (degree = 124), RPL27 (degree
= 123), NSA2 (degree = 122), RPS15 (degree = 120), RPS10
(degree = 117), RPS13 (degree = 117), RPS20 (degree =
117), RPL36 (degree = 110), FAU (degree = 108), NHP2L1
(degree = 106), RPL23 (degree = 106), RPS25 (degree = 105),
RPL9 (degree = 101), RPL30 (degree = 100), and RPL35A
(degree = 100).

3.3. Bioinformatics Analysis of DEGs in Neonatal Sepsis.
Furthermore, we explored the potential functions of DEGSs
in neonatal sepsis. We next performed bioinformatics analy-
sis of upregulated and downregulated hub PPI networks in
thyroid cancer using Cytoscape’s ClueGo plug-in. Only sig-
nificant biological processes and pathways (p ≤ 0:05) were
shown. Our results (Figure 4) showed upregulated hub net-
work 1 was involved in regulation of myeloid cell apoptotic
process, cellular extravasation, acute inflammatory response,
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neutrophil degranulation, macrophage activation, antimi-
crobial humoral response, and collagen metabolic process.
Upregulated hub network 2 was involved in regulating NF-
kappa B signaling pathway, TNF signaling pathway, HIF-
1 signaling pathway, Toll-like receptor signaling pathway,
tuberculosis, legionellosis, and complement and coagulation
cascades. Upregulated hub network 3 was involved in reg-
ulating ubiquitin-mediated proteolysis, Toll-like receptor
signaling pathway, chemokine signaling pathway, and circa-
dian entrainment.

Meanwhile, our results (Figure 5) showed downregulated
hub network 1 was involved in regulating ribosome, and
RNA transport. Downregulated hub network 2 was involved
in regulating Parkinson’s disease and oxidative phosphoryla-

tion. Downregulated hub network 3 was involved in regulat-
ing spliceosome.

3.4. Coexpression Network Analysis of DElncs in Neonatal
Sepsis. We next explored the interactions between mRNAs
and lncRNAs. We performed Pearson’s correlation calcula-
tion of lncRNA-mRNA pair in neonatal sepsis. Based on
the correlation analysis results, we constructed an mRNA-
lncRNA coexpression network, including 62 lncRNAs, 726
mRNAs, and 2041 interactions between lncRNAs and
mRNAs (p value < 0.05 and absolute value of correlation
coefficient > 0:85). Eight lncRNAs are significantly associ-
ated with more than 100 genes, suggesting their key roles
in this network (Figure 6), including HS.294603 (degree =
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Figure 1: Identification of differently expressed mRNAs and lncRNAs in neonatal sepsis by analyzing whole blood mRNA expression
profiling. (a) Hierarchical clustering analysis showed differential mRNAs expression in negative blood culture result samples and positive
blood culture result samples. (b) Hierarchical clustering analysis showed differential lncRNA expression in negative blood culture result
samples and positive blood culture result samples.
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Figure 2: Continued.
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Figure 2: Construction of upregulated PPI networks in neonatal sepsis. PPI network analysis showed upregulated hub PPI network 1 (a), hub
PPI network 1 (b), and hub PPI network 3 (c).
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195), LOC391811 (degree = 179), C12ORF47 (degree = 168),
LOC729021 (degree = 155), HS.546375 (degree = 151),
HNRPA1L-2 (degree = 127), LOC158345 (degree = 100), and
HS.495041 (degree = 100).

3.5. Bioinformatics Analysis of DElncs in Neonatal Sepsis. Bio-
informatics analysis for DElncs in neonatal sepsis was also
conducted. GO analysis (Figure 7) showed that differentially
expressed lncRNAs were associated with translation, cyto-
plasmic translation, rRNA processing, ribosomal large sub-
unit biogenesis, regulation of translational initiation, tRNA
processing, response to peptidoglycan, positive regulation
of natural killer cell mediated cytotoxicity, T cell receptor sig-
naling pathway, and negative regulation of apoptotic process.
KEGG pathway analysis indicated these lncRNAs were asso-
ciated with ribosome, T cell receptor signaling pathway, RNA
degradation, insulin resistance, ribosome biogenesis in
eukaryotes, and hematopoietic cell lineage.

4. Discussion

Neonatal sepsis is the most common cause of death of new
born children with few certainly reported biomarkers. Infec-
tions remained to be the main risk factor that causes the neo-
natal death. In the past decades, only few reports indicated

the potential mechanisms underlying the progression of neo-
natal sepsis. For example, Medzhitov et al. reported that
TLR2 and TLR4 were associated with the recognition of bac-
teria in neonates [12]. Meng et al. identified core regulators
involved in the regulation of neonatal sepsis using bioinfor-
matics analysis [13]. Wynn et al. used gene microarray to
identify whole genome gene expression change in very low
birth weight with neonatal sepsis [14]. The present study is
aimed at identifying differently expressed mRNAs and
lncRNAs in neonatal sepsis by analyzing GSE25504. A total
of 1128 upregulated mRNAs, 1008 downregulated mRNAs,
28 upregulated lncRNAs, and 61 downregulated lncRNAs
were identified. Of note, several DEGs identified by this study
had also been reported to be associated with neonatal sepsis.
For example, IL1R2 and SOCS3 were reported to drive the
neonatal innate immune response to sepsis [15]. In order to
elucidate the interactions among these DEGs, we constructed
upregulated and downregulated genes regulating PPI net-
works in neonatal sepsis.

Several key genes were identified in neonatal sepsis,
including ITGAM, ITGAX, TLR4, ITGB2, SRC, ELANE,
RPLP0, RPS28, RPL26, and RPL27. ITGAM (CD11b) was
reported as an early diagnostic marker of neonatal sepsis.
TLR4 had been reported to be a key regulator in neonatal
sepsis [16]. TLR4 was associated with the recognition of the
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Figure 3: Construction of downregulated PPI networks in neonatal sepsis. PPI network analysis showed downregulated hub PPI network 1
(a), hub PPI network 1 (b), and hub PPI network 3 (c).
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bacteria in neonates [17]. The single-nucleotide polymor-
phisms (SNPs) in TLR4 were regarded as genetic modulators
of infection in neonatal sepsis [18]. Bioinformatics analysis
revealed these DEGs were significantly associated with multi-
ple biological processes, including myeloid cell apoptotic
process, cellular extravasation, acute inflammatory response,
neutrophil degranulation, macrophage activation, antimicro-
bial humoral response, collagen metabolic process, NF-kappa
B signaling pathway, TNF signaling pathway, HIF-1 signal-
ing pathway, Toll-like receptor signaling pathway, tuberculo-
sis, legionellosis, complement and coagulation cascades,
chemokine signaling pathway, circadian entrainment, ribo-
some, RNA transport, and spliceosome. This signaling had
been demonstrated to play crucial roles in neonatal sepsis.
For example, altered neonatal Toll-like receptor (TLR) func-
tion is hypothesized to contribute to the heightened suscepti-
bility to infection and perpetuated inflammation in term and
preterm neonates, clinically evident in neonatal sepsis and
increased rates of inflammatory disorders [19].

Emerging studies had demonstrated noncoding RNAs,
such as lncRNAs and miRNAs, were involved in regulating
the progression of human diseases. In neonatal sepsis,
multiple miRNAs were reported. For example, microRNA-
300/NAMPT regulates inflammatory responses through acti-
vation of the AMPK/mTOR signaling pathway in neonatal
sepsis [20]. miR-15a/16 are upregulated in the serum of neo-
natal sepsis patients and inhibit the LPS-induced inflamma-
tory pathway [21]. lncRNAs were a type of ncRNAs longer
than 200bps. Emerging evidences showed lncRNAs played
important roles in human diseases, such as diabetes, multiple
cancers, and neurodegenerative diseases. A recent study
showed lncRNA SNHG16 reverses the effects of miR-15a/16

on the LPS-induced inflammatory pathway in neonatal sepsis
[6]. However, the molecular functions of lncRNAs in neonatal
sepsis remained unclear. This study identified 28 upregulated
lncRNAs and 61 downregulated lncRNAs in neonatal sepsis.
Coexpression analysis were used to identify key lncRNAs,
including HS.294603, LOC391811, C12ORF47, LOC729021,
HS.546375, HNRPA1L-2, LOC158345, and HS.495041. Bio-
informatics analysis showed these lncRNAs were involved in
regulating ribosome, T cell receptor signaling pathway, RNA
degradation, insulin resistance, ribosome biogenesis in
eukaryotes, and hematopoietic cell lineage.

In this study, there also existed some limitations. Firstly,
more samples were needed considering the small sample size
in the present study. Secondly, further experimental valida-
tion would be required for future verification. Moreover, spe-
cific functions of those dysregulated circRNAs had not been
further excavated in this study. Therefore, the further
researches with a larger samples group should be performed
and more experimental validation and much deeper analysis
were still needed in the near future.

5. Conclusion

In conclusion, the present study identified a total of 1128
upregulated mRNAs, 1008 downregulated mRNAs, 28 upreg-
ulated lncRNAs, and 61 downregulated lncRNAs in neonatal
sepsis. Then, we constructed PPI networks to identify key
regulators in neonatal sepsis, including ITGAM, ITGAX,
TLR4, ITGB2, SRC, ELANE, RPLP0, RPS28, RPL26, and
RPL27. lncRNA coexpression analysis showed HS.294603,
LOC391811, C12ORF47, LOC729021, HS.546375, HNRPA1L-
2, LOC158345, and HS.495041 played important roles in
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Figure 4: Bioinformatics analysis of hub upregulated PPI networks in neonatal sepsis. Bioinformatics analysis of up-regulated hub PPI
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Figure 5: Bioinformatics analysis of hub downregulated PPI networks in neonatal sepsis. Bioinformatics analysis of down-regulated hub PPI
network 1 (a), hub PPI network 1 (b), and hub PPI network 3 (c).
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the progression of neonatal sepsis. Bioinformatics analysis
showed DEGs were involved in the regulation cellular extrav-
asation, acute inflammatory response, macrophage activation

of NF-kappa B signaling pathway, TNF signaling path-
way, HIF-1 signaling pathway, Toll-like receptor signaling
pathway, and ribosome, RNA transport, and spliceosome.

Figure 6: Construction of differently expressed lncRNAs regulating coexpression networks in neonatal sepsis.
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lncRNAs were involved in regulating ribosome, T cell recep-
tor signaling pathway, RNA degradation, insulin resistance,
ribosome biogenesis in eukaryotes, and hematopoietic cell
lineage. We thought this study provided useful information
for identifying novel therapeutic markers for neonatal sepsis.
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