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The discussion of whether amyloid plaque Aβ is a valid drug target to fight Alzheimer’s
disease (AD) has been a matter of scientific dispute for decades. This question can
only be settled by successful clinical trials and the approval of disease-modifying drugs.
However, many clinical trials with antibodies against different regions of the amyloid Aβ

peptide have been discontinued, as they did not meet the clinical endpoints required.
Recently, passive immunization of AD patients with Donanemab, an antibody directed
against the N-terminus of pyroglutamate Aβ, showed beneficial effects in a phase II
trial, supporting the concept that N-truncated Aβ is a relevant target for AD therapy.
There is long-standing evidence that N-truncated Aβ variants are the main variants
found in amyloid plaques besides full-length Aβ1–42, t, therefore their role in triggering
AD pathology and as targets for drug development are of interest. While the contribution
of pyroglutamate Aβ3–42 to AD pathology has been well studied in the past, the potential
role of Aβ4–42 has been largely neglected. The present review will therefore focus on
Aβ4–42 as a possible drug target based on human and mouse pathology, in vitro and
in vivo toxicity, and anti-Aβ4-X therapeutic effects in preclinical models.

Keywords: N-truncated Aβ, Tg4–42, transgenic mouse model, immunotherapy, neuron loss, PET, in vivo imaging,
memory decline

INTRODUCTION

Even though the field of Alzheimer’s disease (AD) research has rapidly developed over the last
decade, there is still a lack of disease-modifying therapies. Passive immunization with Donanemab a
pyroglutamate Aβ (AβpE3) specific antibody showed disease-modification on cognition and for the
ability to perform the activities of daily living (Mintun et al., 2021). No biomarkers are yet available
based on N-truncated Aβ although autoantibodies were identified in plasma (Marcello et al., 2011).
Trieb et al. (1996) investigated whether amyloid-β peptides may be relevant targets for the immune
system using peripheral blood lymphocytes from healthy blood donors and patients with AD.While
healthy donors elicited normal proliferative responsiveness after stimulation, a significant reduction
was observed using lymphocytes from AD patients. Meanwhile, lower levels of naturally occurring
anti-Aβ auto-antibodies have also been reported in the CSF (Du et al., 2001) and sera (Weksler
et al., 2002) of AD patients, and elevated serum levels were also reported (Nath et al., 2003).
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It is also of note that in plasma of patients with mild cognitive
impairment (MCI) and AD reduced pools of autoantibodies of
the IgM class directed against pyroglutamate Aβ3-X (AβpE3-X)
have been reported (Marcello et al., 2009). In MCI patients,
the level of the autoantibodies correlated with cognitive
performance as evaluated by mini-mental state examination. N-
and C-terminally truncated Aβ variants, their potential function
and toxicity as well as their potential as drug targets were
discussed recently (Bayer and Wirths, 2014; Dunys et al., 2018;
Wirths and Zampar, 2019). The current mini-review, discusses
the potential role of N-truncated Aβ in AD, focussing on
N-truncated Aβ starting with position four Aβ4–42.

DISCOVERY OF N-TRUNCATED Aβ4–42
AND PREVALENCE IN THE HUMAN BRAIN

As revealed by a study by Portelius et al. (2010), the
relative prevalence of full-length and N-truncated Aβ

is of significant interest within the Alzheimer field. The
authors used Aβ antibodies binding to Aβ4–9 and Aβ8–22 for
immunoprecipitation. This was followed by mass spectrometry
for identification of all Aβ variants in post-mortem tissue from
patients with sporadic AD, familial AD with mutations in the
presenilin-1 (PS-1; PSEN-1), or amyloid precursor protein
(APP) genes. The authors demonstrated that the dominating
Aβ isoforms are Aβ1–42, AβpE3–42, Aβ4–42, and Aβ1–40. The most
prevalent variants in the hippocampus and the cortex were
Aβ1–42 and Aβ4–42. The importance of Aβ4–42 did not receive
appropriate attention in the past, although N-truncated Aβ4-X
has been discovered with the first sequencing endeavors of Aβ

peptides isolated from plaque cores. This surprising finding
puzzled Masters et al. (1985) as the most abundant variant
of Aβ in the formic acid soluble fraction of plaque cores and
subsequent peptide sequencing started with phenylalanine at
position four (Aβ4-X) and not with the full-length Aβ1-X they had
hoped.

Glenner and Wong (Glenner and Wong, 1984) published
ground-breaking work showing the full-length sequence of
Ab peptides derived from the vasculature of AD patients. A
number of reports have discussed the dominant presence of
N-truncated Aβ variants within amyloid plaques in AD and
Down syndrome patients (Harigaya et al., 2000; Tekirian, 2001;
Miravalle et al., 2005; Piccini et al., 2005; Jawhar et al., 2011;
Bayer and Wirths, 2014), while others suggest that full-length
Aβ1–42 is pathologically relevant (Haass et al., 1992; Näslund
et al., 1994; Selkoe, 2001; Walsh et al., 2002). Haass et al. (1993)
discovered that Aβ is produced as a normal physiological process
in APP transfected cell lines and cultured cells. The cells were
analyzed by epitope mapping and radiosequencing of secreting
Aβ variants. They observed mainly full-length Aβ1–42 (aspartate-
1), but also two other Aβ peptides starting with the amino acid
phenylalanine at position four and glutamate at position 11.

Although different methodologies for extracting and
solubilizing aggregated Aβ have the potential for over- or under-
estimating the relative prevalence of the various Aβ pools within
amyloid plaques, there is general agreement that the C-terminus
mostly ends with AβX-42 (alanine-42) and less abundantly with

AβX-40 (arginin-40). For example, Ancolio et al. (1999) have
demonstrated a large elevation of N-truncated Aβx–42 in familial
AD, postulating that all Aβx–42 variants are the main factors
driving AD pathology.

The idea that N-truncated Aβ may represent a potential drug
target to fight AD has been largely neglected but was brought into
attention recently (Jawhar et al., 2011; Bayer and Wirths, 2014;
Cabrera et al., 2018). After this original discovery (Masters et al.,
1985), other research groups have verified the presence of Aβ4–42
by other methodologies. Miller et al. (1993) employed matrix-
assisted, laser-desorption-time-of-flightmass spectrometry of Aβ

peptides isolated from plaque cores or the cerebrovasculature
obtained from patients with AD. The authors demonstrated that
the C-terminus of Aβ peptides within plaques ended with Aβ42,
whereas cerebrovascular Aβ ended at Aβ40. They also proved
that N-truncated Aβ4-X represents a dominant fraction within
plaque cores. Lewis et al. (2006) employed surface-enhanced
laser desorption/ionization mass spectrometry for identifying
the composition of Aβ peptides in AD and vascular dementia
patients. In the brain of AD patients, Aβ started mostly with
Phe-4, but other N-termini starting with Asp-1, Ala-2, pE-3, and
Arg-5 were also detected in extractions from plaque cores. Using
specific Aβ antibodies, Lemere et al. (1996) showed that patients
with Down syndrome harbor Aβ starting at Asp-1 or pE-3 in a
subset of plaques. Zampar et al. (2020) used capillary isoelectric
focusing for showing Aβ antibody specificity of the N-terminus.
Furthermore, the authors used immunohistochemistry with the
verified N-terminal specific Aβ antibodies to stain post-mortem
brain tissue from sporadic AD patients. They concluded that
the staining signal for Aβ1-X was much weaker in plaques as
compared to cerebrovascular amyloid. In contrast, the signal for
Aβ4-X was much more evident in amyloid plaques.

Sergeant et al. (2003) verified that N-truncated Aβ

represented the majority of all variants in both AD and
pre-symptomatic AD with a substantial amount being Aβ4–42.
The authors explored brain specimen from non-demented
individuals with low amyloid load and tangle formation
by Western blotting and mass spectrometry of the formic acid
soluble fraction of amyloid plaques. Rosen et al. (2016) compared
the composition of amyloid peptides isolated from AD neocortex
and aged squirrel monkeys using immunochemical staining
with an Aβ4-X specific antibody and by mass spectrometry.
The authors confirmed the high prevalence of N-truncated Aβ

peptides including Aβ4–42 in the AD brain, while the prevalence
in the non-human primate brain was low.

Although it has been shown that Aβ4-X is generated
and secreted in vitro, it was a matter of concern whether
N-truncation and post-translational modifications of Aβ

represent a post-mortem artifact due to long-term storage or
tissue handling. Such an assumption can now be neglected
with the therapeutic effect of an AβpE3-specific antibody in
patients with AD after passive immunization (Mintun et al.,
2021). Wildburger et al. (2017) employed high-resolution mass
spectrometry to explore the question of whether N-truncation
and other post-translational modifications of Aβ are found in
AD brains due to post-mortem artifacts. The authors studied
different Aβ pools depending on their solubility and concluded
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that the N-truncated variants did not correlate with post-mortem
interval.

Aβ4-X CAN BE GENERATED BY
ENZYMATIC CLEAVAGE

The generation of N-terminal Aβ4-X by known enzymatic
cleavages has been reviewed before in detail (Bayer and Wirths,
2014). It can be generated by a two-step process starting with β-
site APP cleaving enzyme 1 (BACE-1) cutting APP between Met
at postion-1 and Asp at position +1 liberating the N-terminus of
full-length Aβ1-X (Vassar et al., 1999). ADAMTS4 (a disintegrin
and metalloproteinase with thrombospondin motifs 4) and
neprilysin (NEP) further cuts between Glu at position +3 and
Phe at position +4 liberating the N-terminus of Aβ4-X (Bayer and
Wirths, 2014; Walter et al., 2019; Figure 1A). NEP cleaves Aβ at
multiple sites thereby detoxifying amyloid-β peptides (Bayer and
Wirths, 2014). Walter et al. (2019) identified a recognition site
for the secreted form of metalloprotease ADAMTS4 within the
full-length Aβ sequence. The induction of ADAMTS4 expression
in cell culture led to increased secretion of Aβ4–40 the levels
of Aβ1-x were not altered. Furthermore, the authors identified
adult oligodendrocytes as the only source of ADAM4TS triggered
Aβ4-X generation in the murine brain. The main function of
NEP on Aβ is degradation and catabolism of the peptide (Iwata
et al., 2001; Leissring et al., 2003). The loss of NEP activity
leads to enhanced levels of brain and plasma levels of full-length
Aβ, the elevated half-life of soluble Aβ, and increased amyloid
plaque pathology in the J9 mouse model of AD (Farris et al.,
2007). Hama et al. (2004) showed that different intracellular
compartments are involved in the degradation of amyloid
peptides by NEP. Thus NEP is mainly responsible for the intra-
and extracellular neuronal clearance of Aβ peptides and more
importantly also at the presynaptic site (Iwata et al., 2004).
Elevated NEP impaired hippocampal synaptic plasticity and
cognitive function in the APP23 mouse model for AD (Huang
et al., 2006). Besides general clearance of full-length Aβ peptides,
NEP is also involved in the generation of N-truncated Aβ

peptides Aβ4-X (Bayer and Wirths, 2014), and further clearing of
Aβ4–42 in vivo and in vitro (Hornung et al., 2019). Aβ4–9, a main
degradation product of NEP, is a major Cu2+ binding and has
been suggested as a possible Cu2+ carrier in the brain (Bossak-
Ahmad et al., 2019) and NEP modulation (Mital et al., 2018).
Modulating Cu metabolism is discussed as a relevant therapeutic
target (Lei et al., 2020). In APP23 mice, Cu supplementation
lowered amyloid plaque load and stabilized Cu-dependent
superoxide dismutase-1 activity (Bayer et al., 2003). In mild
to moderate AD patients cognitive decline correlated with low
plasma concentrations of Cu (Pajonk et al., 2005). However,
treatment for 12 months with supplemental Cu had no effect
on cognition in patients with mild AD in a phase 2 clinical
trial (Kessler et al., 2008). Alternatively, N-truncated Aβ4-X may
be generated directly by cutting APP between Glu at position
3 and Phe at position 4 by unknown enzymatic activity. Of
note, N-truncated Aβ4-X is secreted together with Aβ1–42 in
APP overexpressing cells in vitro, which may indicate unknown
enzymatic activity in neurons (Haass et al., 1993). For example,

FIGURE 1 | Schematic presentation of the potential generation of N-terminal
Aβ4-X with known enzymatic cleavages of the amyloid precursor protein (APP)
and Aβ1-X. (A) β-site APP cleaving enzyme 1 (BACE-1) or meprin-β cuts APP
between amino acid position -1 and +1 liberating the N-terminus of full-length
Aβ1-X. While ADAMTS4 further cuts between position +3 and +4 liberating
Aβ4–40/42, the normal function of neprilysin is to detoxify Aβ as it has several
N-terminal activities within Aβ with N-truncation of Aβ4-X being only one
alternative. (B) Hypothetical pathway(s) by which N-truncated Aβ4-x is
generated by sequential cleavage by meprin-β, aminopeptidase A (APA),
and/or dipeptidyl peptidase 4 (DPP 4).

N-truncated Aβ5-X is mainly produced from the caspase-cleaved
form of APP and not from full-length Aβ (Murayama et al.,
2007). Another potential alternative may be the generation
the Aβ4-x peptide, a sequential cleavage of full-length Aβ by
aminopeptidase A, meprin-β or dipeptidyl-peptidases (Sevalle
et al., 2009; Antonyan et al., 2018; Schlenzig et al., 2018; Valverde
et al., 2021). At least theoretically, Aβ4-x could be derived from
Aβ2-x or Aβ3-x peptide (Figure 1B).

ACUTE EFFECT OF N-TRUNCATED Aβ4–42

Exposure of soluble oligomers of Aβ4–42 preparations induced
neuron degeneration after 7 days of cultured rat primary cortical
neurons (Antonios et al., 2013, 2015). Injecting Aβ4–42 into the
lateral ventricles of wildtype mice induced working memory
deficits after 4 days (Antonios et al., 2013, 2015). In both
assays, the neurodegenerative effect of Aβ4–42 was similar to
the exposure of Aβ1–42 and AβpE3–42. In 1995, Pike et al.
(1995) claimed that Aβ peptides with N-terminal truncations
including Aβ4-X exhibited enhanced peptide aggregation relative
to full-length Aβ species. Furthermore, they concluded from
obtained CD (circular dichroism) spectra that β-sheets were
the predominantly formed conformations by all Aβ variants.
They exhibited fibrillary morphology viewed by transmission
electron microscopy, and induced degeneration of cultured rat
hippocampus neurons. Bouter et al. (2013) demonstrated that
soluble oligomeric aggregates derived from Aβ4–42 and AβpE3–42
have specific structural features distinct from full-length Aβ1–42,
although fibril formation as reported previously (Pike et al.,
1995) was comparable. Spectral alterations using ultraviolet
circular dichroism spectroscopy showed that Aβ4–42 forms a
folded conformation upon heating (Bouter et al., 2013). Using
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the liquid state nuclear magnetic resonance technique Aβ4–42
and AβpE3–42 exhibited soluble and stable aggregates, which was
less pronounced for Aβ1–42. However, the size of Aβ4–42 and
AβpE3–42 aggregates were different from those formed by Aβ1–42
(Bouter et al., 2013). Even though Aβ1–42, AβpE3–42 and Aβ4–42
are unstructured in the monomeric state. After heating all Aβ

peptides formed of folded structures. Interestingly, monomeric
Aβ4–42 and AβpE3–42 rapidly converted into soluble oligomeric
forms in contrast to full-length Aβ1–42, which stay in equilibrium
for a longer time between monomers and oligomers (Bouter
et al., 2013).

Parodi-Rullan et al. (2020) studied the effect of full-length
and different N-terminal truncated Aβ variants on blood-
brain barrier permeability, cerebral microvascular endothelial
cell viability, and angiogenesis. The authors demonstrated that
Aβ4–42 followed by Aβ4–40 was the most potent inhibitor of
angiogenesis, and they were also much stronger than Aβ1–42 and
Aβ1–40.

CHRONIC EFFECT OF N-TRUNCATED
Aβ4–42

The development of the APP/PSEN-1 double-transgenic mouse
model, APP/PS1KI, for AD revealed, besides massive neuron
loss in the hippocampus, many N-truncated AβX-42 variants
including Aβ4–42 elucidated by two-dimensional Western
blotting, which were subsequently verified by mass spectrometry
(Casas et al., 2004). The 5XFAD mouse model is more widely
used in the scientific community expressing mutant APP and
PSEN-1 transgenes (Oakley et al., 2006). Mass spectrometric
analysis with N-terminal specific Aβ antibodies of 5XFADmouse
brain elucidated that the vast majority of Aβ peptides were
full-length Aβ1–42 (Wittnam et al., 2012).

Using a highly specific antiserum against the N-terminus of
Aβ4-X abundant plaque staining was observed in APP/PS1KI
and 5XFAD transgenic mouse brain (Wirths et al., 2017). In the
humanADbrain, this antiserum demonstrated staining of plaque
cores of senile plaques, but none in diffuse amyloid deposits.
The peptide content of plaques from AD brain and an AD
mouse model (presenilin-2/APP transgenic mice, PS2APP) was
analyzed using laser dissection microscopy combined with mass
spectrometry (Rufenacht et al., 2005). The authors described
various N-terminal truncated Aβ peptides in PS2APP and AD
amyloid plaques however with significantly elevated levels in AD
brain.

Kawarabayashi et al. (2001) studied another AD mouse
model with mutant APP (Tg2576) and elucidated that only a
minor fraction of Aβ was N-terminally truncated in contrast
to AD brain (Kawarabayashi et al., 2001). This was verified, by
another study by Kalback et al. (2002). The authors employed
size-exclusion and reverse-phase chromatography, amino acid
sequencing, and mass spectrometry of amyloid plaques of
Tg2576 mice. The authors found that the amyloid plaques
differed in their physical and chemical properties from those
isolated from the AD brain. In Tg2576 mice, most peptides
were full-length Aβ1–42, whereas, in AD brains, most peptides
were N-truncated. The brain tissue of the transgenic mouse

models mentioned above were freshly prepared without any
post-mortem delay, therefore changes in pH, long-storage
artifacts, state of agony, and medication, etc. can be ruled out as
an explanation of the appearance of N-truncated Aβ variants in
transgenic mouse brain.

The Tg4–42 mouse model for AD expresses only Aβ4–42,
which represents a unique model system for studying the effect
of chronic exposure of Aβ4–42 in the mouse brain (Bouter
et al., 2013; Figure 2). The long-lasting exposure of Aβ4–42
induced an age-dependent neuron loss in the hippocampus,
which correlated with hippocampus-dependent spatial reference
memory deficits. Tg4–42 mice demonstrated synaptic hyper-
excitability, changes in short-term synaptic plasticity but no
effects on short- and long-term potentiation in the hippocampus
(Dietrich et al., 2018). Busche et al. (2012) have demonstrated
that full-length Aβ induced neuronal hyperactivity in brain
slice cultures of wild-type mice. Synaptic hyperactivity of
hippocampal pyramidal neurons is therefore an early event
in AD pathology. 18F-Fluorodeoxyglucose (18F-FDG)-PET in
combination with magnetic resonance imaging (MRI) in
Tg4–42 mice was used for analyzing cerebral brain glucose
metabolism in vivo (Hinteregger et al., 2021). Tg4–42 mice
demonstrated lower glucose uptake correlating with neuron
loss and memory deficits in an age-dependent manner (Bouter
et al., 2018). The reduction of glucose metabolism was detected
already in young Tg4–42 prior to neuron death and neurological
deficits. In clinical settings, the quantification of brain glucose
uptake using 18F-FDG-PET is an established diagnostic tool
widely used for differential diagnosis of patients with dementia,
including AD (Chetelat et al., 2020). The expert panel suggested
a diagnostic algorithm with appropriate time-points using
amyloid-PET and 18F-FDG-PET for better clinical management
of patients with AD. 18F-FDG-PET signal is a powerful tool
to monitor cerebral glucose consumption in vivo, a measure
for synaptic activity (Sokoloff, 2008). It is also a valuable
tool in preclinical research (Bouter and Bouter, 2019). A
comparison between 5XFAD and Tg4–42 showed, that only
young Tg4–42 developed robust neurological deficits, whereas
in aged mice both models elicited similar memory deficits and
fear conditioning tasks (Bouter et al., 2014). Reduced acoustic
startle response, prepulse inhibition, and motor coordination
were reported in Tg4–42 (Sichler et al., 2019;Wagner et al., 2019).
Differentially expressed mRNAs in the brain of Tg4–42 and
5XFAD were identified by deep sequencing. A significant
number of mRNAs were associated with memory deficits
and neuron loss, which points to common disease pathways
in both AD models (Bouter et al., 2014). Moreover, small
RNA sequencing of the microRNAome in the hippocampus
of Tg4–42 mice revealed microRNAs involved in learning,
memory function, and synaptic signaling (Bouter et al., 2020).
Metabolic changes of the glutamate/4-aminobutyrate-glutamine
axis correlated with neurological deficits, neurodegeneration,
and elevated CSF levels of neurofilament light chain in aged
Tg4–42 mice (Hinteregger et al., 2021). Tg4–42 mice harbor
more than 20 copies of the transgene in exon 2 of the retinoic
acid receptor β (RARB) leading to decreased expression of RARB,
which could have an (at least partial) effect on the phenotype
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FIGURE 2 | Chronic effect of the expression of Aβ4–42 in the Tg4–42 mouse model for Alzheimer’s disease (AD). The transgenic mouse model Tg4–42 (1) expresses
exclusively normal wildtype human Aβ4–42 predominantly in pyramidal neurons in the CA1 area of the hippocampus (2). The expression of Aβ4–42 induces early
(starting at 2–3 months of age) pathological effects highlighted by synaptic hyperexcitability of CA1 pyramidal neurons, reactive micro- and astroglia (3). As a
consequence of chronic exposure of Aβ4–42 (4), massive reduction in glucose metabolism is detected by 18F-PET/magnetic resonance imaging (MRI), loss of
degenerating CA1 pyramidal neurons, and loss of spatial reference memory analyzed by the Morris water maze test (starting at 4–6 months of age). The figure shows
methodologies in addition to pathological events using appropriate symbols. Created with BioRender.com.

(Hinteregger et al., 2020). Co-expression of Aβ4–42 with AβpE3–42
within the same neuron accelerated neurodegeneration in the
hippocampus, enhanced loss of anxiety andmotor deficits as well
as sensori-motor deficits (Lopez-Noguerola et al., 2018).

N-TRUNCATED Aβ4-X AS THE TARGET
FOR IMMUNOTHERAPY

The discovery by Schenk et al. (1999) represents an important
development in the AD field because it was the first time
that disease-modulation was shown to be possible. The authors

showed that pre-aggregated synthetic Aβ1–42 drastically reduced
amyloid plaques together with associated astrogliosis in the
PDAPP transgenic mouse model for AD. This observation was
supported by a subsequent report by Morgan et al. (2000)
using another transgenic mouse model for AD (a cross of
the Tg2576 and the PS1M146L transgenic line (Holcomb
et al., 1998), demonstrating that memory decline assessed
by the radial-arm water-maze test was stabilized by active
immunization with full-length Aβ.

Janus et al. (2000) observed similar treatment effects of
vaccination with Aβ1–42 in the TgCRND8 model. This was
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followed by exploring the effect of active immunization with
AN1792 (pre-aggregated full-length Aβ1–42) in patients with AD.
In phase I and IIa clinical trials a subset of the patients developed
aseptic meningoencephalopathy and was therefore discontinued
despite some hints that it might stabilize cognitive decline in a
small subset of patients (Hock et al., 2002; reviewed in Morgan,
2011). Boche et al. (2008) demonstrated that amyloid plaques are
solubilized by anti-Aβ antibodies after active immunization with
pre-aggregated full-length Aβ1–42. Consequently, the solubilized
amyloid-β is drained via the perivascular pathway and was found
to be increased in the brain.

Passive immunization with antibodies against Aβ had
beneficial treatment effects in AD mouse models and is,
therefore, another promising approach to modulating amyloid
pathology in vivo. Demattos et al. (2001) used the monoclonal
antibody m266 directed against the central domain of Aβ

for passive immunization of PDAPP mice leading to reduced
amyloid load. Stabilizing memory deficits using an object
recognition task and a holeboard learning and memory task
without a treatment effect on amyloid load in PDAPP mice was
also reported (Dodart et al., 2002). However, Solanezumab the
humanized version of m266 did not reach clinical endpoints on
cognitive or functional abilities in phase III clinical trials with
AD patients (Doody et al., 2014). In clinical phase III trials,
bapineuzumab, the humanized monoclonal antibody derived
from murine 3D6 was directed against Aβ1–5 (Johnson-Wood
et al., 1997) and did not improve clinical outcomes in patients
with AD (Salloway et al., 2014). A comprehensive review of other
antibody candidates for the treatment of AD has entered clinical
trials and novel drug targets have recently been discussed in detail
by Cummings et al. (2020).

Mclaurin et al. (2002) reported that active immunization
with the full-length Aβ1–42 peptide of TgCRND8 mice reduced
amyloid plaques and rescued memory deficits. Interestingly,
the therapeutically active antibodies in this experimental
setup recognized residues 4–10 of Aβ1–42, an indication
that N-truncated Aβ4-X may be a relevant drug target.
The therapeutic active anti-Aβ4–10 antibodies also influenced

aggregation propensity and toxicity in vitro. We have generated
novel murine monoclonal Aβ antibodies against N-truncated
Aβ4-X (and AβpE3-X) using preparations of freshly prepared
Aβ4–40 and used the antibody NT4X for further studies
(Antonios et al., 2013, 2015). NT4X rescued the acute toxic
effects of Aβ4–42 using rat primary neurons and in vivo by
cerebroventricular injection into wildtype mice (Antonios et al.,
2013). NT4X also rescued the chronic effects of Aβ4–42 on
pyramidal neuron loss in the hippocampus and spatial reference
memory deficits after passive immunization (Antonios et al.,
2015). Therefore, besides AβpE3–42, Aβ4–42 might be another
relevant drug target in AD.

The question of whether N-truncations of Aβ within plaques
represent a post-mortem artifact or might even precede the
symptomatology of AD was addressed by Russo et al. (1997),
demonstrating that both Aβ1-X and AβpE-X can form stable
water-soluble aggregates not related to aggregates amyloid
within plaques. Moreover, Rijal Upadhaya et al. (2014) studied
post-mortem brain tissue from AD cases with symptomatic and
preclinical AD by Western blot and demonstrated that AβpE3-X
is an informative biomarker for biochemical amyloid-β staging.
AβpE-X and a phosphorylated Aβ variant were not only detectable
in plaques but also in soluble aggregates. The authors concluded
that the different Aβ variants occur in a hierarchical sequence
that allows the distinction of three stages, and may therefore
be relevant for therapeutic intervention (Rijal Upadhaya et al.,
2014). Finally, Mintun et al. (2021) conducted a phase 2 clinical
trial of Donanemab in patients with early symptomatic AD,
an antibody that specifically detects AβpE3-X in plaques. The
patients were selected based on the amount of tau and amyloid
deposition on positron-emission tomography. The outcome of
the study showed that a group of patients had a significantly
better cognitive score than the placebo group as well as lower
amyloid and tau load.
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