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Abstract

The essential amino acid L-tryptophan (Trp) undergoes extensive metabolism along several 

pathways, resulting in production of many biologically active metabolites which exert profound 

effects on physiological processes. The disturbance in Trp metabolism and disposition in many 

disease states provides a basis for exploring multiple targets for pharmaco-therapeutic 

interventions. In particular, the kynurenine pathway of Trp degradation is currently at the forefront 

of immunological research and immunotherapy. In this review, I shall consider mammalian Trp 

metabolism in health and disease and outline the intervention targets. It is hoped that this account 

will provide a stimulus for pharmacologists and others to conduct further studies in this rich area 

of biomedical research and therapeutics.

Keywords

immunotherapy; indoleamine 2,3-dioxygenase; inflammation; kynurenine pathway; major 
depressive disorder; neurological disease; plasma free tryptophan; serotonin pathway; tryptophan 
2,3-dioxygenase; tumoral immune escape

1 Introduction

The essential amino acid L-tryptophan (Trp) is unique among amino acids in the wide range 

of biologically active metabolites produced along its 4 degradative pathways. Trp 

metabolites influence body physiology at multiple levels and it is therefore no surprise that 

Trp research extends across many scientific disciplines and medical specialties (Table 1). 

These include: (1) Basic sciences (mammalian, insect and plant biochemistry, behavioural 

science, immunology, neurochemistry, nutrition science, pharmacology, physiology); (2) 

Medical specialties (cardiology, diabetes, gastroenterology, hepatology, obstetrics & 

gynaecology, oncology, ophthalmology, parasitology, rheumatology, urology, virology, 

veterinary medicine); (3) Psychiatry (alcoholism, anxiety, depression, drug dependence, 

obsessive-compulsive disorder, schizophrenia); (4) Neurological disease (Alzheimer’s 
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disease, chronic brain injury, Huntington’s disease, stroke). For this reason, an International 

Society for Tryptophan Research (ISTRY) dedicated to studying this amino acid exists and 

holds triennial conferences (https://www.istry.org/).

Trp research has been actively practiced in Egypt from the 1960s on, mainly in relation to 

Schistosoma infestation, by the group of Dr Gamal Abdel-Tawab at the National Research 

Centre in Gizeh and the Medical Research Institute in Alexandria (see, e.g., [1–4]). Trp 

research is a fruitful area that never disappoints. The eminent Japanese scientist, Professor 

Osamu Hayaishi, discoverer of indoleamine 2,3-dioxygenase, testifies to this fact in the title 

of his paper “My life with tryptophan: never a dull moment” [5]. I have been studying Trp 

over the past 48 years and have never once been disappointed by the results. I hope that the 

readership of this journal will find the following account a stimulus for exploring and 

enriching our knowledge of this amino acid in health and disease. In the following text, a 

description of plasma Trp disposition will be followed by an account of each of the Trp-

degradative pathways. Each account will include the general biochemical features and 

control of the pathway and, where appropriate, a discussion of targets for pharmacological 

intervention in relation to disease states.

Of the 4 known pathways of Trp metabolism in mammals, 3 are of minor quantitative 

significance, namely the hydroxylation (serotonin and melatonin), decarboxylation 

(tryptamine), and transamination (indolepyruvic acid) pathways, with each contributing ~ 

1% to overall dietary Trp degradation. Functionally, these 3 pathways are no less important 

than the 4th, the oxidative (kynurenine) pathway (KP), which accounts for ~ 95% of dietary 

Trp degradation [6]. Although Trp is essential for protein synthesis, dietary Trp contributes 

nothing to this process in the nitrogen balance state, wherein Trp released by protein 

degradation is reutilised for protein synthesis [7]. Consequently, dietary Trp is totally 

available for metabolism [7].

2 Plasma Tryptophan Disposition

2.1 General features and control

After absorption following dietary protein digestion, Trp exists in plasma largely (90–95%) 

bound to albumin, with the remaining 5–10% being free and hence immediately available 

for tissue uptake and metabolism. Equilibration between free and albumin-bound Trp is, 

however, rapid, such that a sustained increase in free [Trp] coupled with continued tissue 

uptake results in depletion of total (free + albumin-bound) [Trp]. This is best seen in rats 

treated with a single acute dose of sodium salicylate or ethanol [8]. The physiological binder 

of Trp is albumin, whereas the physiological displacers of albumin-bound Trp are non-

esterified fatty acids (NEFA). Trp binding is usually expressed as the % free Trp (100 × [free 

Trp]/[total Trp]. Free Trp is best isolated from plasma or serum by ultrafiltration, rather than 

by equilibrium dialysis, as the latter is less accurate. Ultrafiltration should be performed 

using freshly isolated plasma or serum and never after frozen storage and subsequent 

thawing, as frozen storage increases Trp binding to albumin, thereby giving an artifactually 

low free [Trp] [9]. Because of the above rapid equilibration, accurate interpretation of 

changes in plasma Trp disposition necessitates determination of both free and total [Trp]. 

Equally important is that these simultaneous determinations can help establish the baseline 
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Trp disposition status and its biological determinants [8]. Free and total Trp are now 

determined by HPLC (high-performance liquid chromatography) or GC (gas 

chromatography), with or without mass spectrometry. However, in the absence of these 

techniques, Trp can be measured fluorimetrically by the method of Denckla and Dewey [10], 

as modified by Bloxam and Warren [11] to avoid errors in the former.

Table 2 lists the number of conditions influencing plasma Trp disposition and the 

mechanisms involved [12]. Important points to note from this Table are the following. 

Induction of liver Trp 2,3-dioxygenase (TDO) or extrahepatic indoleamine 2,3-dioxygenase 

(IDO) should decrease both free and total [Trp] by similar proportions without altering the 

% free Trp. Similarly, TDO inhibition should increase both free and total [Trp] without 

altering the % free Trp. Other changes in free [Trp] and the % free Trp occur in parallel 

when Trp binding is altered. Binding is increased when NEFA are decreased by insulin, 

nicotinic acid or other antilipolytic agents, but is decreased by displacement from albumin-

binding sites by NEFA and agents acting via NEFA, by direct displacement, e.g. by 

salicylate, or if [albumin] is decreased, e.g. in pregnancy and liver and kidney diseases.

Plasma free Trp can also be influenced by diet. Dietary proteins and lipids will increase it, 

whereas dietary carbohydrates will decrease it [8], with proteins providing Trp, lipids 

providing NEFA and inhibiting liver TDO, and carbohydrates acting via insulin. Thus, 

assessing the plasma free Trp status should take into consideration the potential effects of 

food and drugs. To avoid the influence of recent food intake, free and total [Trp] should be 

determined in plasma or serum of overnight fasting subjects.

2.2 Pharmacological targeting

As far as I could ascertain, pharmacological intervention to alter plasma Trp availability has 

been limited to the use of Trp mainly in the treatment of depression in relation to the 

serotonin deficiency in this condition. This will be discussed further under 3 (the 

hydroxylation or serotonin pathway). Targeting Trp availability to tumors has recently been 

proposed [13] to overcome tumoral immune escape. Here, decreasing plasma free [Trp] 

using antilipolytic agents, albumin infusions or both has been suggested. This will be 

discussed further under 6 (the oxidative or kynurenine pathway).

3 The Hydroxylation or Serotonin Pathway

3.1 General features and control

Serotonin synthesis is a 2-step process (Figure 1). First, Trp is hydroxylated to 5-

hydroxytryptophan (5-HTP) by Trp hydroxylase (TPH). This is then followed by 

decarboxylation of 5-HTP to 5-hydroxytryptamine (5-HT) or serotonin. The serotonin 

pathway exists in brain, gastrointestinal tract and pineal gland. 5-HT is further converted to 

melatonin in the pineal gland and the periphery. TPH exists in 2 isoforms: TPH1 in the 

periphery and TPH2 in the central nervous system (CNS). 5-HT is metabolised mainly by 

oxidation to 5-hydroxindoleacetaldehyde by monoamine oxidase (MAO) and this is 

followed by further oxidation to 5-hydroxyindoleacetic acid (5-HIAA), the main urinary 

serotonin metabolite, by the action of aldehyde dehydrogenase (ALDH). Not shown in 
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Figure 1 is the reduction of 5-hydroxindoleacetaldehyde to 5-hydroxytryptophol by the 

action of aldehyde reductase. This is a minor pathway of serotonin metabolism, which can 

be enhanced by alcohol consumption and metabolism providing adequate amounts of the 

NAD(P)H cofactor for the reductase. 5-Hydroxytryptophol is thought to promote sleep. In 

the pineal gland and elsewhere, 5-HT is converted to melatonin in a 2-step process: N-

acetylation to N-acetyl serotonin followed by o methylation of the 5 hydroxy group of the 

latter to melatonin.

In rat and other experimental animal brains, TPH is the rate-limiting enzyme in cerebral 5-

HT synthesis. However, whereas TPH activity can be influenced by factors such as 

phosphorylation of the enzyme and level of the cerebral cofactor tetrahydrobiopterin (BH4), 

brain [Trp] is the major determinant of TPH activity, because the enzyme exists unsaturated 

(≤ 50%) with its Trp substrate [14], i.e. the physiological [Trp] is lower than the Km of TPH. 

Thus, minor fluctuations in [Trp] in brain or its availability in the circulation can have a 

significant impact on cerebral 5-HT synthesis.

Excess Trp can, however, decrease serotonin synthesis by substrate inhibition of TPH. Such 

inhibition has been demonstrated in vitro when TPH activity was determined by measuring 

brain [5-HTP] after ALAAD inhibition but in the presence of the natural BH4 cofactor and 

not its analogue dimethyl tetrahydrobiopterin [15], and in vivo after administration of large 

doses of Trp [16]. Substrate (Tyr) inhibition of brain tyrosine hydroxylase activity has also 

been similarly demonstrated both in vitro [17] and in vivo after administration of various 

doses of Tyr [18]. Substrate inhibition of TPH in vivo is also suggested by the finding that, 

whereas rat brain [Trp] continues to rise with increasing dosage, the increases in brain [5-

HT] and [5-HIAA] cease to rise and begin to decrease with doses of Trp of 50 mg/kg and 

above [19]. In general, the increase in brain [5-HT] after Trp loading rarely reaches, and 

certainly does not exceed, twofold.

Whereas assessing cerebral 5-HT synthesis in rats can be achieved by direct measurement of 

brain levels of Trp, 5-HT and the major serotonin metabolite 5-HIAA and by estimating the 

rate of hydroxylation of Trp to 5-HTP in vivo by measuring brain levels of the latter 

following inhibition of aromatic L-amino acid decarboxylase (ALAAD) activity in brain, 

e.g. by compound NSD-1015, these techniques cannot be used in humans for obvious 

reasons. As brain [Trp] is the major determinant of TPH activity and hence brain 5-HT 

synthesis, assessing the likely changes in brain [Trp] in humans is currently performed by 

measuring the ratio of plasma [Trp] to the sum of 5 competing amino acids [CAA] which 

share with Trp the same cerebral uptake mechanism. The change in this ratio is considered a 

reasonable reflection of the likely changes in brain [Trp] and hence 5-HT synthesis. The 5 

competing amino acids are the 3 branched-chain amino acids (BCAA) Val, Leu and Ile, and 

the 2 aromatic amino acids Phe and Tyr. Both the free and total [Trp]/[CAA] ratios should be 

determined. Utilising this principle, brain 5-HT can be acutely decreased or increased by the 

techniques of acute Trp depletion (ATD) or loading (ATL) respectively [20, 21], which are 

widely used to manipulate serotonin levels in diagnostic and research studies in psychiatric 

and other conditions associated with serotonin dysfunction. In the original method of Young 

et al [20], the high content of BCAA led to decreased specificity towards serotonin. This has 

been remedied by lowering the BCAA content by 40% [21]. Although the second enzyme of 
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5-HT synthesis, ALAAD, is thought not to be rate-limiting in rat brain, it may be limiting in 

human brain, where its activity is low [22]. ALAAD is a pyridoxal 5’-phosphate (PLP)-

dependent enzyme and it is therefore possible that subjects with vitamin B6 deficiency could 

be at risk of becoming serotonin-deficient. B6 deficiency could be nutritional or drug-

induced, e.g. by hydrazine compounds (e.g. benserazide and carbidopa) and oestrogens.

Melatonin is synthesized in the pineal gland, retina and various other brain structures, the 

gastrointestinal tract and many other peripheral tissues [23] and exerts a wide range of 

effects, including regulation of the sleep-wakefulness cycle, modulation of immune function, 

the endocrine system and reproduction, free radical scavenging (antioxidant effect) and 

regulation of the mental state and behaviour [24]. Pineal gland calcification results in 

decreased pineal melatonin production and is associated with neurological diseases and 

other pathologies [25]. Melatonin is synthesized from Trp via serotonin. Pineal synthesis 

occurs at night. Of the 2 steps of synthesis from serotonin, the first, catalysed by AANAT 

(arylalkylamine N-acetyl transferase) is rate-limiting. In the chicken pineal and retina, the 

mRNAs encoding AANAT, HIOMT and TPH are expressed in a day/night rhythm, with the 

rhythm in the pineal persisting under conditions of constant darkness [26]. Trp loading 

increases melatonin synthesis in the rat pineal by up to 100% [27]. As this is also the 

maximum elevation of brain serotonin levels after Trp loading (because of substrate 

inhibition of TPH by excess Trp, see above) and as serotonin is the precursor of melatonin, it 

may be concluded that synthesis of the latter from Trp is subject to the same TPH control 

mechanisms applicable to serotonin synthesis.

3.2 Pharmacological targeting

The serotonin pathway has been a target for pharmacotherapy of conditions associated with 

serotonin deficiency or dysfunction (Table 3). The monoamine hypothesis of affective 

disorders that postulates a deficiency in one or more monoamines (serotonin, dopamine 

and/or noradrenaline) formed the basis of the first pharmacotherapy of these conditions, with 

major depressive disorder (MDD) having received the greatest attention. To ensure adequate 

levels of cerebral monoamines, preventing their degradation was the first adopted approach 

in pharmacotherapy. This was achieved by using and developing monoamine oxidase 

inhibitors (MAOI) and inhibitors of monoamine reuptake at the synaptic cleft, the tricyclic 

antidepressants. There is a wide array of antidepressant drugs of different chemical 

structures and pharmacological profiles in current use. Those related to serotonin function 

include selective serotonin-reuptake inhibitors (SSRIs), serotonin-noradrenaline reuptake 

inhibitors, serotonin antagonists, MAOIs and some tricyclic antidepressants.

MAO-A is the isoform of MAO that preferentially deaminates serotonin, adrenaline, 

noradrenaline and melatonin. Different trace amines are deaminated by MAO-A and MAO-

B. Dopamine is equally deaminated by both isoforms. In addition to their use in depression, 

MAOIs are also used in Parkinson’s disease, panic disorder and post-traumatic stress 

disorder. A recent development in MAO targeting is in prostate cancer, where the A form is 

highly expressed [28, 29]. Targeting MAOs with multipotent ligands has been suggested as a 

potential strategy in the search for new drugs to treat neurodegenerative diseases [30].
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The B form of MAO has been implicated in the neurotoxicity and Parkinson’s disease-like 

symptoms in subjects receiving MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine): a 

by-product in the synthesis of a mepyridine analogue first used as a substitute for heroin [31, 

32]. MPTP itself is not neurotoxic, but is converted into toxic pyridinium metabolites by 

MAO-B.

Inhibition of MAO-B by deprenyl prevents the toxicity, and the abundance of MAO-B in 

dopaminergic neurons explains the high susceptibility of these neurons to MPTP toxicity 

(see [31] and references cited therein).

Targeting ALAAD is currently the mechanism of therapy of Parkinson’s disease, which 

involves dopamine deficiency. To ensure that adequate amounts of the dopamine precursor 

L-Dopa (3,4-dihydroxyphenylalanine) reach the brain, it is administered jointly with 

inhibitors of peripheral ALAAD (such as carbidopa and benserazide) to prevent its 

decarboxylation to dopamine in the periphery. Other ALAAD inhibitors include 3-

hydroxybenzylhydrazine and L-α-methyldopa.

Targeting TPH2 has more recently been proposed to enhance brain serotonin synthesis in 

major depressive disorder [33]. The authors proposed approaches including transcriptional 

activation of the TPH2 gene, gene therapy, post-translational modifications (e.g. by 

phosphorylation), and use of 5-HT precursors. The first two approaches may be effective 

only in the long-term and are not without risk, whereas the third can only have a moderate 

effect (see [34] and references cited therein). The key to boosting central serotonin synthesis 

in the short term is in the TPH2 kinetic properties and especially Trp availability [34]. One 

of the early therapies of depression was oral Trp administration. Results of clinical trials 

with Trp have been equivocal and it appears that, at best, Trp may exert a moderate 

antidepressant effect in mildly depressed patients (for references, see [34]). The reason for 

the poor efficacy of Trp is almost certain to be its increased hepatic degradation by TDO 

leading to decreased availability to the brain. This decreased availability is suggested by the 

decrease in plasma [Trp] and in the [Trp]/[CAA] ratio in depressed patients (for references, 

see [34]). As will be discussed below, an inverse relationship exists between liver TDO and 

brain [Trp] and 5-HT synthesis. Liver TDO is likely to be induced in MDD, at least in ~50% 

of patients, in whom cortisol is elevated. TDO can also be activated in MDD by other 

mechanisms, e.g. raised peripheral catecholamines enhancing lipolysis, thereby increasing 

free Trp entry into liver and activating TDO by a substrate-type mechanism [34] (see below). 

For Trp to be an effective antidepressant, it has been suggested that it is administered 

together with a liver TDO inhibitor [35, 36]. Subsequent studies showed that a large number 

of antidepressant drugs of various chemical structures and pharmacological profiles also 

inhibit TDO (Trp pyrrolase) activity (see [34] and references cited therein). TDO inhibition 

will be further discussed in 6 (the oxidative or kynurenine pathway). In 8 out of 13 clinical 

trials, Trp was shown to potentiate the antidepressant effects of MAOIs and tricyclic 

antidepressants (for references, see [37]). Many important features of the role of Trp in 

MDD are discussed in [34], including comparative TDO-inhibitory potencies of 

antidepressants, the effects of mood stabilisers, augmenters and adjunctive therapies (Li+, 

carbamazepine, allopurinol, nicotinamide, oestrogens, progesterone, salicylate, the β-

adrenoceptor blocker pindolol and T3) on Trp metabolism, the optimal Trp dosages, the 
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delayed therapeutic response to antidepressants and the effects of the latter on circulating 

cortisol. The role of cytokines and inflammation in depression is also briefly discussed, 

though, in the author’s opinion, inflammation does not play a role in the impaired 

availability of circulating Trp to the brain for serotonin synthesis in MDD, even if it 

contributes significantly to the psychopathology of depression. This will be discussed further 

in 6 below.

The serotonin pathway in the periphery plays an important role in certain conditions, e.g., 

osteoporosis, irritable bowel syndrome, carcinoid syndrome, obesity, ulcerative colitis and 

pulmonary arterial hypertension. Current and potential inhibitors of TPH1 have been 

reviewed [38].

The important physiological roles of melatonin render it an attractive target for 

pharmacotherapy of certain conditions in addition to sleep disturbances and jet lag. Such 

conditions include autism spectrum disorder, where a defective melatonin synthesis due to 

impaired AANAT and HIOMT in pineal, gut and platelets involves post-translational and 

post-transcriptional mechanisms [39], cancer, where melatonin can influence many of its 

hallmarks [40] and protection of mitochondria [41]. AANAT is the enzyme involved in the 

diurnal rhythm of pineal melatonin synthesis and N-bromoacetyltryptamine has recently 

been shown to be a potent inhibitor of this enzyme and suggested for use to dissect the role 

of melatonin in the circadian rhythm and a potential lead compound for therapeutic use in 

mood and sleep disorders [42].

4 The Decarboxylation or Tryptamine Pathway

4.1 General features and control

Aromatic L-amino acid decarboxylase (ALAAD) decarboxylates amino acids to their 

respective amines and intermediates of monoamine biosynthetic pathways to their respective 

monoamines, e.g. Trp to tryptamine, Tyr to tyramine, Phe to phenylethylamine, 5-HTP to 5-

HT and L-Dopa to dopamine. The enzyme uses pyridoxal 5’-phosphate (PLP) as cofactor 

and releases CO2 (Figure 2). It is therefore controlled by availability of the cofactor and of 

the Trp substrate. Decarboxylation of Trp to tryptamine occurs in the periphery and the 

CNS, where tryptamine has a very rapid turnover rate and is thought to fulfil the criteria for 

a neurotransmitter and also a modulator of monoamine function [43], thereby implicating it 

in various psychiatric conditions, including hepatic encephalopathy [43, 44]. Patients with 

hepatic coma exhibit a greater tryptamine turnover, as assessed by levels of the metabolite 

indoleacetic acid (IAA) [45]. Urinary excretion of IAA is elevated in some conditions, 

including diabetes, neuromuscular disorders, amyotrophic lateral sclerosis and idiopathic 

sprue, but not in many others [46]. Brain [tryptamine] in humans and several animal species 

is generally, however, in the sub-micromolar range, but can be dramatically increased by 

MAO inhibition (see [43] and references cited therein). The decarboxylation pathway 

contributes little to overall Trp degradation [47].

The pathway also exists in the gastrointestinal tract. Thus, it has been known for some time 

that part of brain tryptamine is of intestinal bacterial origin [48]. More recently, Williams et 
al [49] demonstrated at least one of two bacteria encoding Trp decarboxylase in guts of 10% 
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of the human population: the common gut firmicute Clostridium sporogenes and 

Ruminococcus gnavus.

4.2 Pharmacological targeting

Halogenated tryptamine derivatives have been suggested as potential radiopharmaceuticals 

for monitoring abnormal brain states occurring in Parkinson’s and Alzheimer’s diseases and 

schizophrenia [50, 51] and tryptamine Schiff bases were proposed as antimicrobial agents 

[52] (Table 3). Tryptamine has also been targeted in plant biochemistry and biology, both as 

the precursor of the plant auxin IAA and as a proto-alkaloid in tobacco plant biology and of 

hallucinogenic derivatives.

5 The Transamination or Indolepyruvic Acid Pathway

5.1 General features and control

Trp can be transaminated to indol-3-ylpyruvic acid (IPA) via an unstable intermediate 

(Figure 3) by aminotransferases. In crude homogenates of rat liver, 60% of Trp 

aminotransferase activity can be attributed to tyrosine aminotransferase [53]. Several more 

Trp-specific aminotransferases have now been identified. These include the mammalian/

bacterial Trp-2-oxoglutarate aminotransferase (EC 2.6.1.27), which can also act on 5-HTP 

and to a lesser extent on phenyl amino acids, and the bacterial Trp-phenylpyruvate 

aminotransferase (EC 2.6.1.28) and plant Trp-pyruvate aminotransferase (EC 2.6.1.99) [54]. 

The IPA formed can be either reduced to indol-3-yllactic acid by indole lactate 

dehydrogenase, or decarboxylated by indole pyruvate decarboxylase to indol-3-

ylacetaldehyde. The latter is subsequently oxidised by aldehyde dehydrogenase to indol-3-

ylacetic acid.

IPA has been shown in more recent years to be converted to kynurenic acid (KA), an 

important kynurenine metabolite (see below). As shown in Figure 3, IPA is capable of 

tautomerization and when the keto form initially produced tautomerizes to the enol form, the 

latter is converted into an unstable Kynuric acid intermediate under the influence of reactive 

oxygen species (ROS), which spontaneously cyclises to KA [55]. Two potential mechanisms 

of KA formation from IPA are: non-enzymic production by ROS and production by 

transamination of kynurenine produced from Trp through IPA back transamination (see [55] 

and references cited therein).

It has been known for some time that IPA [56] is remarkably efficient in promoting the 

growth of rats deprived of Trp, thus suggesting that IPA can be back-transaminated to Trp. 

This could occur by the reversible transamination reaction of the mammalian enzyme [55], 

or of the common gut firmicute Clostridium sporogenes [57]. Synthesis of Trp from IPA was 

suggested in a study of a healthy woman who restored her nitrogen balance by intake of IPA 

while being maintained on a synthetic Trp-free diet [58].

As is the case with the decarboxylation pathway, the transamination or IPA pathway can be 

limited by availability of the PLP cofactor as determined by nutritional, pharmacological and 

physiological modulators.
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5.2 Pharmacological targeting

IPA possesses a number of pharmacological properties, including sedation, analgesia, sleep-

promotion and antioxidant and anticonvulsant actions [59, 60], which render it a target for 

pharmacological interventions (Table 3). A patent on “3-Indolepyruvic acid derivatives and 

pharmaceutical use thereof” for the treatment of disturbances of the central nervous system 

caused by elevation of brain superoxide anions in conditions such as epilepsy, cerebral 

ischemia, ictus and Alzheimer’s disease exists [61] which is hypothesized to involve 

increased production of KA from IPA. More recently, IPA has been shown to be formed and 

excreted in large amounts by the parasite Trypanasoma brucei, which causes African 

trypanosomiasis or sleeping sickness in humans and nagana in domestic animals [62]. IPA 

was shown to prevent the lipopolysaccharide (LPS or endotoxin)-induced glycolytic shift in 

macrophages resulting from increased hydroxylation and degradation of the transcription 

factor hypoxia-inducible factor-1α (HIF-1α). The reduction in HIF-1α levels by IPA 

following LPS or trypanosome activation results in a decrease in production of the 

proinflammatory cytokine IL-1β, thus permitting immune escape by the parasite (see the 

immune discussion in 6 below).

6 The Oxidative or Kynurenine Pathway

The KP exists mainly in the liver, where it accounts for ~ 90% of overall Trp degradation. 

The KP also exists in extrahepatic tissues and contributes little (< 2%) to Trp degradation 

under normal physiological conditions. However, after immune activation, the extrahepatic 

KP assumes a greater quantitative significance (see below). Whereas early studies of the KP 

were related mainly to its role in nutrition (exerted by the pellagra-preventing factor 

nicotinic acid or nicotinamide: the 2 forms of “vitamin” B3) and assessment of the 

functional capacity of the pathway by analysis of urinary metabolites following acute Trp 

loading in healthy subjects and those with various diseases, emphasis has shifted to 

assessment of the role of KP metabolites as modulators of immune function. Because of its 

special importance in health and disease, a detailed account is given below of the 

biochemistry and functions of the KP and the wide range of pharmacological targeting it 

attracts.

6.1 General features

Detailed accounts of the KP have been published [6, 7]. As shown in Figure 4, Trp is first 

oxidized to N’-formylkynurenine by the catalytic actions of liver Trp 2,3-dioxygenase 

(TDO, formerly Trp pyrrolase; EC 1.13.11.11) and the extrahepatic indoleamine 2,3-

dioxygenase (IDO: EC 1.13.11.17). The above product is rapidly hydrolysed by the 

abundant N’-formylkynurenine formamidase to kynurenine (Kyn). Kyn is then metabolised 

mainly by oxidation, first to 3-hydroxykynurenine (3-HK) by Kyn monooxygenase (KMO 

or Kyn hydroxylase), followed by hydrolysis of 3-HK to 3-hydroxyanthranilic acid (3-HAA) 

by kynureninase. This latter enzyme can also convert Kyn to anthranilic acid (AA). For 

simplicity, the kynureninase reactions will be designated as kynureninase A (Kyn → AA) 

and B (3-HK → 3-HAA). 3-HAA is then oxidized by 3-HAA 3,4-dioxygenase (3-HAAO) 

to the unstable intermediate 2-amino-3-carboxymuconic acid-6-semialdehyde (ACMS; also 

known as Acroleyl aminofumarate), which occupies a central position at the 2 arms of the 
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KP. ACMS undergoes non-enzymic cyclization to quinolinic acid (QA) or decarboxylation 

by ACMS Decarboxylase (ACMSD: also known as picolinate carboxylase) to 2-

aminomuconic acid-6-semialdehyde (AMS). The latter can also undergo non-enzymic 

cyclization to picolinic acid (PA) or oxidation by AMS dehydrogenase to 2-aminomuconic 

acid, with eventual conversion to acetyl CoA. The KP favours the production of QA rather 

than PA. Only when AMSD is saturated with its substrate can PA be formed in larger 

amounts. The KP includes 2 aminotransferases, which transaminate Kyn to KA (KAT A) 

and 3-HK to xanthurenic acid (XA) (KAT B). Transamination is, however, a minor pathway, 

in view of the high Km of the 2 enzymes for their substrates (Kyn and 3-HK), compared with 

the lower Kms of KMO and kynureninase for these 2 substrates respectively (see [6] for 

details). Only when the substrate concentration is increased [by Trp or Kyn loading or KMO 

inhibition (see 6.4.6. below)] can significant amounts of products be formed. As will be 

described below, 4 isoforms of KAT are known (KAT I, II, III and IV).

The rest of the KP involves the synthesis of NAD+ from QA (the de novo pathway), or from 

nicotinic acid and nicotinamide (the salvage pathway) through the series of reactions 

outlined in Figure 5, which also shows the interconversion of NAD+ and NADP+ and the 

methylation of nicotinamide and subsequent oxidation to the major urinary metabolites the 

N1 methyl 2- and 4-pyridone carboxamides. Details of all KP enzymes, including substrates, 

products, cofactors and major tissue sources can be seen in [6]. The liver is the only tissue 

that contains the complete set of enzymes of the KP leading to niacin and NAD+ synthesis. 

Thus, in extrahepatic tissues, the presence or absence of certain enzymes will determine the 

KP metabolite patterns in these tissues. NAD+ synthesis is more effective from Trp (via 

QA), than from nicotinamide or nicotinic acid [63–65]. From a nutritional viewpoint, a 1 mg 

of niacin is formed from 60 mg of Trp [66, 67].

6.2 Control of the pathway

The KP is controlled primarily by the first enzyme(s), namely TDO in liver and IDO 

elsewhere. Although these are the 2 rate-limiting enzymes of the KP, it is important to 

emphasize that the flux of Trp down the pathway is determined primarily by plasma free Trp 

(see [6] and references cited therein). More recent evidence (see below) suggests that some 

Kyn metabolites can also play a regulatory role within the pathway.

6.2.1 Roles of TDO and IDO in tryptophan oxidation—As stated above, liver TDO 

controls Trp oxidation through the KP under normal physiological conditions, whereas the 

extrahepatic IDO plays a negligible role. Evidence for this difference is provided by the 

observations that deletion of the TDO2 gene increases plasma [Trp] by 9.3-12.7-fold [68, 

69] and that, although plasma [Trp] was not measured in a study involving IDO1 deletion 

[70], brain [Trp] was not altered after IDO1 or IDO2 gene deletion in contrast to a 10.6-fold 

increase in brain [Trp] after TDO2 gene deletion [71]. However, as will be discussed below, 

under conditions of immune activation, IDO assumes a greater role in Trp oxidation, with 

important biological consequences. Under certain conditions, the KP may also be limited by 

activity of certain enzymes, notably kynureninase and ACMSD or picolinate carboxylase.
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6.2.2 Regulation of TDO—Liver TDO in humans, rats and certain, but not all other, 

animal species exists in two forms: the active haem-containing holoenzyme and the inactive 

haem-free apoenzyme, in roughly equal proportions. Other differences between these two 

groups of animal species exist, which necessitate careful choice of the most suitable animal 

model to study in relation to human Trp metabolism. This will be discussed below.

In rats, TDO is regulated by 4 mechanisms: (1) glucocorticoid induction of de novo 
synthesis of the enzyme; (2) substrate (Trp) activation of the enzyme by promoting the 

conjugation of the haem-free apoenzyme with its haem cofactor and by stabilisation of the 

pre-existing apoenzyme in the presence of the normal rate of its synthesis; (3) cofactor 

activation by haem; (4) feedback inhibition by NAD(P)H. TDO was one of the first enzymes 

in which these mechanisms were identified, which established the concept of enzyme 

regulation in the early 1960s, and this was pioneered in the USA by the groups of W Eugene 

Knox, Olga Greengard, Philip Feigelson and Henry C Pitot. Details of these mechanisms are 

discussed in [6] and it is noteworthy that: (1) some other hormones influence TDO 

synthesis; (2) the Trp activation of TDO may involve induction of haem biosynthesis; (3) the 

haem cofactor may mediate glucocorticoid induction of TDO mRNA transcription and 

translation; and (4) regulate the TDO gene post-translationally through enhanced 

phosphorylation of the α subunit of the eukaryotic initiation factor eIF2α (for references, 

see [6]). Regarding the feedback allosteric inhibition of TDO [72], the enzyme activity is 

inhibited by agents which increase the hepatic concentrations of NAD(P)H, such as glucose 

and nicotinamide [73] and chronic ethanol intake [74].

6.2.3 Regulation of IDO—By contrast with liver TDO, the extrahepatic IDO is not 

inducible by glucocorticoids nor activated by haem, as it exists only in the haem-containing 

active holoenzyme [75, 76]. Also, IDO is less sensitive to activation by Trp, compared with 

TDO. Thus, whereas the latter in rat liver is activated severalfold by Trp, IDO in the rat 

intestine (the richest source) is activated by only 50% by a large Trp dose [76]. This modest 

response may involve substrate inhibition of IDO, which occurs with the mouse epididymal 

enzyme at [Trp] above 50 μM [77] by a mechanism investigated in the human enzyme 

involving a reversed sequence of binding of Trp and O2 [78]. At low [Trp], Trp is bound to 

the enzyme first followed by O2, whereas at high [Trp], this order is reversed, with the haem 

reduction potential playing an important role [78].

The principal effector of IDO is interferon-γ (IFN-γ) [79]. Interferon-α is a less efficient 

inducer [80]. Other cytokines and mediators (both pro- and anti-inflammatory) exert various 

effects on IDO (for details and references, see [34]). Thus, the IDO status can be assumed to 

be determined by the balance between pro- and anti-inflammatory cytokines. Potentiation of 

the IFN-γ induction of IDO by the synthetic glucocorticoid dexamethasone, which is 

ineffective by itself [80] suggests that glucocorticoids exert a permissive effect on IDO 

induction, which may be important in tumoral immune escape (see below).

As an inhibitor of human IDO [81], nitric oxide (NO) may act as modulator of the immune 

function of the enzyme. Activity of the recombinant human IDO is reversibly inhibited by 

NO by binding to haem, with the inactivated enzyme complex being the Fe2+-NO-Trp 

adduct [82].
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6.2.4 Species differences in tryptophan metabolism and the choice of animal 
models—Because of wide species differences in Trp metabolism and enzymes of the KP, it 

is important that the appropriate animal model of Trp-related function and in relation to 

human disease is carefully selected. Regarding Trp metabolism, species can be broadly 

divided into 2 groups: one possessing both forms of TDO (holoenzyme and apoenzyme) and 

the glucocorticoid induction mechanism, and the other lacking the free apoenzyme and 

glucocorticoid induction. The former group includes man, rat, mouse, chicken, turkey and 

pig, whereas the second group includes cat (Felis catus), frog, the Mongolian gerbil, the 

golden (Syrian) hamster, guinea pig, ox, rabbit and sheep [83]. Because of the absence of the 

glucocorticoid induction mechanism, which facilitates increased TDO synthesis to handle a 

sudden increase in [Trp], the latter group of species are sensitive to the toxicity of excess Trp 

[83]. There are also major species differences in enzymes of the KP (other than TDO) in 

liver and elsewhere among the above 2 groups. A most notable difference between cat and 

rat is the much greater activity of ACMSD, with a cat:rat ratio of 32: 1 in liver and 4: 1 in 

kidney [84]. This greater ACMSD activity renders the cat vulnerable to niacin and NAD+ 

deficiency, with the conversion of 3-HK to niacin ribonucleotides being only 11% of that in 

the rat [84]. More recently, differences in many KP enzymes in various tissues have been 

reported between rats, mice, rabbits, gerbils and guinea pigs [85, 86]. The distinction 

between these 2 groups of species based on differences in TDO and other KP enzymes does 

not apply to IDO [85, 86].

It may therefore be concluded that the above TDO-deficient species are unsuitable as animal 

models of human Trp-related diseases, though they would be valid models in studies 

addressing issues related to their specific KP characteristics. Rats and mice are the most 

common experimental animal models. However, because of significant mouse strain 

differences in Trp metabolism [12], I recommend the Wistar rat as the most suitable animal 

model for Trp-related studies.

6.3 Functions of the pathway

The KP performs a variety of important physiological functions, disturbances of which 

result in negative health consequences. The following are brief accounts of these functions, 

(Table 4), which have been discussed in more detail elsewhere [6].

6.3.1 Detoxification of excess tryptophan—As stated above, animal species lacking 

the free TDO apoenzyme and its glucocorticoid induction mechanism are sensitive to the 

toxicity of excess Trp [83]. These species are unable to synthesise the TDO apoenzyme 

necessary to meet the increased need to process the excess Trp to “harmless” kynurenine 

metabolites. As a result, Trp metabolism is diverted towards production of excessive 

amounts of indoles [87]. When rats are deprived of the glucocorticoid induction mechanism 

by adrenalectomy, they become also sensitive to the toxic actions of excess Trp but receive 

protection upon cortisol administration [88]. This detoxicating function of the KP is 

restricted to liver TDO and so does not involve differences in IDO, because, although some 

have a higher IDO activity, species lacking the TDO apoenzyme are still sensitive to Trp 

toxicity. The ability of [Trp] above 50 μM to inhibit IDO activity [77] may make a possible 

additional, if minor, contribution to the poor ability of these species to process the excess 

Badawy Page 12

Egypt J Basic Clin Pharmacol. Author manuscript; available in PMC 2019 May 16.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Trp. It is notable that, with the exception of the cat, these species are herbivorous. They, 

however, attempt to deal with Trp differently from species which tolerate Trp, by two 

mechanisms. First, their TDO shows a rapid response to activation by Trp and at lower 

[Trp], compared with e.g. rats (see [89] and references cited therein). Second, they 

metabolise Trp to acetyl CoA more efficiently than the other species. Thus, as described 

above, the cat possesses a greatly elevated ACMSD activity [84] and a study in isolated 

hepatocytes [90] showed that, whereas the rate of Trp oxidation and QA formation are lower 

than in rats, guinea pigs, gerbils and sheep metabolize a much larger part of Trp through the 

citric acid cycle.

6.3.2 Control of plasma tryptophan availability—As stated in 6.2.1. above, TDO 

controls plasma Trp availability under normal physiological conditions, whereas IDO plays a 

more active role during immune activation. Earlier work has demonstrated the impact of 

liver TDO on plasma Trp availability. For example, an inverse relationship exists between 

liver TDO activity and brain [Trp] and 5-HT synthesis [91]. The potential glucocorticoid 

induction of TDO by the elevated cortisol may explain the serotonin deficiency in major 

depressive disorder (MDD) [34]. In this latter study, it was shown that TDO inhibition by 

chronic administration to rats of drugs of dependence increases brain [Trp] and enhances 5-

HT synthesis, whereas TDO induction by corticosterone during subsequent drug withdrawal 

exerts the opposite effects. The dramatic increase in plasma [Trp] induced by deletion of the 

mouse TDO gene results in an equally dramatic increase in circulating Trp availability to the 

brain (expressed as the [Trp]/[competing amino acids] ratio) and consequently in brain Trp, 

5-HT and 5-HIAA [68]. The control of Trp availability to the brain by TDO has also been 

suggested [68] as a modulator of anxiety through changes in brain 5-HT. TDO gene deletion 

also increases Trp availability for Trp decarboxylation and transamination [68] and it is of 

interest that the Trp transamination product indolepyruvic acid (IPA) possesses anxiolytic 

properties [60].

Although it plays a minor role in the control of plasma Trp availability under normal 

conditions, the extrahepatic IDO can influence KP activity even in the absence of TDO, as 

suggested by the finding [68] that plasma [Kyn] and [KA] are maintained at wild-type levels 

in TDO Knock-out (KO) mice. In the absence of preformed niacin, synthesis of Kyn and its 

metabolites KA, XA and 3-HAA is increased, whereas that of QA is decreased, in these 

mice [69]. The latter authors suggested that Kyn formed by IDO extrahepatically can be 

utilized by the liver to form adequate amounts of nicotinamide and NAD+ nucleotides to 

maintain growth. Also, it is very likely that the hepatic KP can contribute to extrahepatic 

Kyn metabolite formation through the availability of the Kyn precursor. In some situations, 

this is likely to be quantitatively more important than the modest contribution of IDO itself. 

The role of IDO in control of plasma Trp availability takes centre stage when the immune 

system is activated. IDO induction by IFN-γ and agents acting through it leads to depletion 

of [Trp] and increased Kyn formation in cultures of monocytes [80] and serum [92].

6.3.3 Control of hepatic haem biosynthesis—Mammalian hepatic haem 

biosynthesis is controlled by the rate-limiting enzyme 5-aminolaevulinate synthase (5-

ALAS) and is achieved by a negative feedback mechanism exerted by a small pool of haem 
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whose concentration in the (rat) hepatic cytosol is ~ 10−7 M (see [93] and references cited 

therein). Haem biosynthesis can therefore be enhanced by a decrease in this regulatory-haem 

pool, e.g. by destruction of haem to green and other pigments by chemical porphyrogens, 

such as 2-allyl-2-isopropylacetamide and 3,5-diethoxycarbonyl, 1,4-dihydrocollidine), 

inhibition of ferrochelatase by griseofulvin, or induction of haem oxygenase by metal 

cations. Under any of these conditions, the decrease in the regulatory-haem pool removes the 

negative feedback control. Utilisation of this pool by haemoproteins is another mechanism 

by which haem biosynthesis can be enhanced. The only haemoprotein that utilises this pool 

is liver TDO [93]. This utilisation can be estimated from the increase in the TDO 

holoenzyme activity or in the haem saturation of the enzyme in rat liver. The latter is usually 

expressed as the percentage haem saturation (100 X holoenzyme activity/total enzyme 

activity) or the haem-saturation ratio (holoenzyme activity/apoenzyme activity) [93]. Under 

a variety of experimental conditions involving changes in haem synthesis and degradation, 

the above haem saturation of TDO is altered in the appropriate direction and is always 

inversely related to 5-ALAS activity [93–97]. The rat (and possibly also human) liver TDO 

thus serves as a sensitive marker of changes in the regulatory-haem pool: a property that 

forms the basis of a screening test for exacerbation of porphyria by drugs and other 

chemicals [98].

6.3.4 Modulation of immune function by kynurenine metabolites—The first 

indication that Trp metabolites along the KP may influence immune function was the 

discovery in the 1970s-80s of the enzyme indoleamine 2,3-dioxygenase (IDO) and its 

induction by interferon-γ (IFN-γ) [99–101]. Initially, it was thought that the antibacterial, 

antiparasitic and antiviral effects of this major cytokine involve deprivation of these 

pathogens of an essential nutrient, Trp, by stimulating its breakdown through IDO induction 

[102, 103]. The Trp depletion theory in infectious diseases was thus born and its application 

was extended to explain the immune tolerance of pregnancy [104]. However, Trp is not 

depleted in pregnancy, but is increased to meet the increased demand for protein synthesis 

by mother and foetus. The above decrease refers to the plasma total [Trp], which has been 

shown in many studies to occur in late pregnancy. However, in contrast, maternal free [Trp] 

is increased throughout pregnancy by a combination of liver TDO inhibition, increased 

[NEFA] and decreased [albumin, [105]]. This illustrates the need to measure both free and 

total [Trp] for accurate interpretation of changes in Trp metabolism and disposition. While 

there may be a case for Trp depletion in infection, this cannot be a universal or a sole 

mechanism for defence against pathogens. For example, most bacteria will not suffer from 

Trp depletion, because they can synthesize Trp. Several other equally compelling arguments 

against the Trp depletion concept can be seen in the excellent review by Moffett and 

Namboodiri [106]. These latter authors proposed “Trp utilisation” as a more appropriate 

concept in infectious diseases. A Trp utilisation concept in pregnancy was also proposed 

[107, 108]. The Trp depletion concept in pregnancy and infection has been suggested [109] 

to be no longer tenable, because the depletion of Trp is accompanied by increased formation 

of kynurenine metabolites, which exert profound effects on the immune system. The Trp 

utilisation concept was thus born and the following account summarises the 

immunomodulatory properties of kynurenine metabolites.
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QA was the first Kyn metabolite to be shown to possess antiinflammatory effects in rats 

[110]. Subsequent studies showed that other Kyn metabolites (Kyn, 3-HK and 3-HAA) 

suppress T cell responses in vitro in an additive manner and by an apoptotic mechanism 

[111]. Findings by Fallarino et al [112] confirmed the apoptotic mechanism and showed that 

both QA and 3-HAA induced apoptosis in T-helper type 1 (Th1), but not in Th2 cells. At the 

smallest concentration of Kyn metabolites tested (10 μM), only 3-HAA and QA induced 

apoptosis in thymocytes, whereas 3-HK, Kyn and AA were ineffective. With macrophages, a 

10-fold higher concentration of 3-HAA was needed to induce apoptosis. Other details are 

discussed in [106] and further information on the immunomodulatory effects of Kyn 

metabolites continues to be generated by many subsequent and current investigations. As 

will be discussed below, tumors take advantage of the immunosuppressive effects of Kyn 

metabolites to undermine effector T cell function and thereby escape an immune response.

The immunomodulatory effects of Kyn metabolites have, however, been demonstrated in 
vitro at concentrations (10 μM and above) that are much higher than their circulating plasma 

levels, which are in the sub-micromolar range (see [113] and references cited therein). 

Metabolites could, however, reach very high levels in cellular microenvironments. Attempts 

to establish such levels have been successful only with QA using immunohistochemistry 

[106, 114]. This has been possible by the successful production of specific antibodies to QA 

by virtue of its chemical structure, in particular the absence of an amino group. With other 

Kyn metabolites, except for KA and PA, the presence of both an amino and a carboxyl group 

allowed orientation in several directions when being coupled to a protein (see [113]), thus 

leading to non-specific epitopes. However, with 3-HAA, it is possible that much of it may be 

converted to QA within microenvironments, because 3-HAA 3,4-dioxygenase is the most 

active enzyme of the KP [115, 116]. However, for practical reasons and until suitable 

methods are devised to measure other Kyn metabolites in cellular microenvironments, 

emphasis should be placed on QA measurements.

Traditionally, studies of QA and KA have been conducted in relation to their actions at the 

NMDA (N-methyl-D-aspartate) type of receptors of the excitatory amino acid glutamate 

following the pioneering discovery by T W Stone [117] of QA as agonist and KA as 

antagonist at these receptors. This opened a new field of investigation of Trp metabolism in 

cognitive and neurological diseases, with QA being neuronal excitotoxic and KA being 

cytoprotective. While QA can modulate the immune system to induce T cell suppression, 

and thus acts as a pro-inflammatory Trp metabolite, KA possesses antiinflammatory 

properties (see [113] and references cited therein). KA has so far received only minimal 

attention in studies on inflammatory diseases and growing evidence now suggests that it 

should receive greater emphasis in future studies. It would therefore appear that, as in the 

case of cognitive and neurological diseases, QA and KA may also play opposing roles in 

inflammatory diseases [113].

In the above hypothesis [113], the potential role of anthranilic acid (AA) in inflammation is 

discussed. AA is not without immunomodulatory activity and many anti-inflammatory drugs 

have been developed from the AA nucleus, including mefenamic acid and diclofenac. The 5 

hydroxylated AA metabolite (5-HAA) is a potent apoptotic agent with a potency equal to 

that of 3-HK and 3-HAA (see [113] and references cited therein). Darlington et al [118] 
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reported a decrease in the ratio in plasma of [3-HAA]/[AA] in a variety of neurological and 

neurodegenerative diseases. This decrease is due to a rise in [AA] and in some cases also a 

decrease in [3-HAA]. The authors [118] suggested that this decrease either reflects 

inflammatory disease and its progression or is an antiinflammatory response. I hypothesized 

in favour of the latter possibility [113] based among others on the potential role of KA in the 

AA elevation. We have previously reported [119] that KA administration to rats increases 

liver [AA] by stimulating the kynureninase A reaction (Kyn → AA). In this latter study 

[119], various changes in KP enzyme activities were observed following administration of 

Kyn metabolites. Notably: (1) KA stimulated TDO possibly by acting via 3-HAA, but 

inhibited KAT activity; (2) 3-HK inhibited the kynureninase B reaction (3-HK → 3-HAA); 

(3) 3-HAA stimulated TDO but inhibited the kynureninase A and B reactions. These novel 

effects of Kyn metabolites point towards new and hitherto unrecognised internal 

mechanisms of control of the KP by its intermediates that may contribute to the overall 

activity of the pathway.

6.3.5 Modulation of carbohydrate metabolism and other processes by 
kynurenine metabolites—Carbohydrate metabolism and its impact on diabetes can be 

influenced by kynurenine metabolites, notably QA, XA and PA. For example, activity of the 

key gluconeogenic enzyme phospho-enol-pyruvate carboxykinase is inhibited by QA. In 

species in which Trp conversion to QA is strong, e.g. the rat, gluconeogenesis is inhibited by 

Trp administration, whereas this is not the case in species, such as gerbil, guinea pig or 

sheep, which exhibit poor QA production from Trp [90, 120, 121]. Because of KP 

similarities with rats, gluconeogenesis is likely to be inhibited in humans under conditions of 

excessive QA elevation or production. It is noteworthy that animal models of diabetes are 

mainly those of rodents and pigs, but not species in which QA production is limited.

Carbohydrate metabolism could also be influenced by XA and PA acting on insulin. The 

diabetogenic effect of XA is thought to involve binding of and hence inactivating insulin [7]. 

A high plasma [XA] is associated with high insulin resistance and higher odds of having 

diabetes [122]. Urinary and plasma [XA] is elevated in diabetic patients and experimentally-

induced diabetes in rats [123, 124]. The increased urinary XA excretion is accompanied by 

that of Zn in the form of an XA-Zn complex [123]. Insulin requires Zn at many levels [125]. 

Zn absorption and bioavailability are, however, controlled by another Kyn metabolite 

picolinic acid (PA). While there are no available data on [PA] in diabetes, current evidence 

suggests a likely increase. Thus, ACMSD activity and mRNA expression are increased in 

experimental diabetes, although hepatocyte PA production is not impaired, and ACMSD 

activity is greater in kidney than in liver (for references, see [6]). Plasma [PA] is however 

elevated in hepatitis C viral infection, and to a greater extent if diabetes is present [126]. 

From this account, it appears that further work on the roles of XA and PA in diabetes is 

required, e.g. to establish if the increased urinary excretion of Zn in diabetes is due in part to 

a potential defect in binding to PA in addition to complex formation with XA.

PA and XA are the least studied metabolites of the KP. PA exerts immunomodulatory effects 

(see [109]) and its levels are increased in plasma in hepatitis C viral infection and hepatic 

cirrhosis [126] and in CSF in cerebral malaria [127]. Little else is known about the status of 

this KP metabolite in other CNS conditions [128]. With XA, other than its insulin and Zn 
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binding described above and activation of the malaria gametocyte [129], evidence exists for 

its involvement in synaptic signaling and hence neurotransmission [130]. Thus, more work 

on these 2 KP metabolites is required. Kyn metabolites also act as ligands of the aryl 

hydrocarbon receptor (AhR), the significance of which will be described in 6.4.2. below.

Kyn metabolites may also play important roles in conditions not directly associated with 

inflammation. These include inhibition by KA of alcohol- and cocaine-seeking behaviour 

and relapse and induction of aversion to alcohol by KA, 3-HK and 3-HAA (for references, 

see [113, 119]).

6.3.6 Niacin synthesis and pellagra prevention—In the absence of adequate intake 

of niacin (in the form of nicotinic acid or nicotinamide), its levels are maintained by de novo 
synthesis from Trp via the QA arm of the pathway. Niacin deficiency is the central feature of 

pellagra, usually referred to as the disease of the 3 Ds (dermatitis, diarrhoea and dementia, 

though more appropriately delirium). Tissues with a great demand for nicotinamide-adenine 

dinucleotides to meet their rapid cellular turnover, e.g. skin, gastrointestinal tract and the 

nervous system, suffer most from the resultant NAD+ deficiency.

Nutritional pellagra therefore occurs only if diets are deficient in both niacin and Trp. Even 

with marginal niacin, but adequate Trp, intake, clinical or subclinical pellagra can be 

induced by drugs interfering with one or more enzymes of the KP, e.g. by TDO inhibition by 

some antibiotics and antiviral drug or kynureninase inhibition by hydrazine compounds or 

oestrogens [7, 131].

Subsistence on a largely maize staple [7, 131] led to a widespread incidence of pellagra in 

Southern Europe during the 18th century and in the USA following the American civil war. 

Although maize (and sorghum, widely used in India) are Trp-deficient, they contain 

adequate amounts of niacin, but in a polysaccharide-bound form (niacytin) that cannot be 

hydrolysed by mammalian digestive enzymes. Unfortunately, those who introduced maize in 

Southern Europe ignored the importance of the liming process, a procedure used for 

millennia by the peasants of Central America in the preparation of tortillas, that causes the 

release of niacin from niacytin [131]. Also, the presence of high levels of leucine in maize 

and sorghum aggravates the pellagra by activation of TDO and ACMSD and inhibition of 

kynureninase and QPRT [7, 131, 132]. While pellagra continues to result from malnutrition 

in certain parts of the world, it appears occasionally in developed countries in association 

with alcoholism and it may be relevant that, among other effects, chronic ethanol 

consumption inhibits TDO activity [74, 132].

It is generally accepted that 1 mg of niacin arises from intake of 60 mg of Trp [66, 67], 

though this ratio shows individual variations and can be influenced by factors including 

nutrients, hormones, pregnancy, drugs and diseases, with some nutrients and hormones 

enhancing and others suppressing the conversion of Trp to nicotinamide [133]. The niacin 

status is generally determined by measuring urinary excretion of N1-methylnicotinamide and 

its 2 oxidation products 2-PY and 4-PY (Figure 5) [134, 135]. The correlations between 

daily niacin intake and urinary excretion of 2-PY and 4-PY are comparable and more 

superior to that between niacin intake and N1-methylnicotinamide excretion [135]. TDO 
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gene deletion in mice, however, still allows synthesis of nicotinamide and NAD+ to proceed 

[69].

6.3.7 Control of NAD+ synthesis—The final major function of the hepatic KP is 

production of the redox cofactor NAD+, from which NADP+ is formed by the action of 

NAD+ kinase (Figure 5). Both oxidized dinucleotides and their reduced forms play vital 

roles in metabolism at multiple levels and in other cell functions and are therefore essential 

to life. As will be outlined in 6.4.10. below, defects in NAD+ availability have negative 

health consequences. As the KP favours the arm leading to QA formation (Figures 4 and 5), 

it must be concluded that NAD+ synthesis from QA and hence from Trp is quantitatively 

more important than that from nicotinamide or nicotinic acid. This is illustrated by the 

findings [63–65] that dietary Trp is more effective than dietary nicotinamide or nicotinic 

acid in elevating liver nicotinamide dinucleotides and urinary levels of N1-

methylnicotinamide. Studies by the group of Bender [7, 64, 65] suggest that: (1) activities of 

nicotinamide deamidase (NMD) and nicotinamide phosphoribosyltransferase (NMPRT), 

both of which are substrate-saturated at normal (steady-state) levels of liver nicotinamide 

determine the incorporation of nicotinamide into the dinucleotides; (2) whereas activities of 

the above 2 enzymes show a significant correlation with hepatic nicotinamide dinucleotide 

levels, this is not case with nicotinic acid phosphoribosyltransferase (NPRT), which 

functions normally just below its Vmax; (3) by contrast, although QPRT activity also does 

not correlate with liver dinucleotides, this enzyme operates at [QA] well below its Km, thus 

suggesting that increased availability of QA could lead to greater formation of NaMN and 

hence NAD+; (4) although liver dinucleotide levels are increased after a single large dose of 

nicotinamide, this is more likely to result from decreased NAD+ catabolism, rather than 

increased synthesis, because both nicotinamide and its N1-methyl metabolite inhibit the 

NAD+-degrading (depleting) enzyme poly-(ADP-ribose) polymerase (PARP; EC 2.4.2.30). 

The significance of PARP will be discussed below.

It is important to note that, whereas QA does not accumulate in liver after Trp loading, 

presumably because of its rapid metabolism to NAD+, activated cells of the immune system 

accumulate relatively large amounts of QA and it has been suggested that this is to provide 

the substrate for NAD+ synthesis and the PARP reaction in response to immune-related 

oxidative damage [106].

6.4 Pharmacological targeting of the pathway

The relatively large number of enzymatic steps in the KP renders it open to multiple 

targeting for pharmacological intervention. Of the actual precursors and intermediates of the 

pathway, Trp, nicotinic acid, nicotinamide and kynurenic acid can also be targeted for 

therapeutic use. The Trp literature includes details of research on and application of, 

individual targets, and only brief accounts will therefore be presented in this section.

6.4.1 Tryptophan, nicotinic acid and nicotinamide—As stated in 3.2, Trp has been 

used as antidepressant, with only modest efficacy when used alone, but more effectively in 

combination with antidepressants [34]. Many antidepressants also inhibit liver TDO activity 

and lower circulating cortisol, thus providing the means of preventing excessive hepatic Trp 
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degradation, thereby increasing Trp availability to the brain for 5-HT synthesis. Potent TDO 

inhibitors have been developed for use in cancer immunotherapy (see below) and there is no 

reason why they should not be effective as antidepressants, either alone or in combination 

with Trp. As will be discussed below, the same principle applies to the potential treatment of 

acute hepatic porphyrias by TDO inhibitors.

Targeting Trp availability to tumors has been suggested as a strategy to overcome tumoral 

immune escape [13]. Tumors need Trp and other nutrients to stimulate their growth and 

proliferation. They upregulate amino acid transporters, 4 of which (SLC1A5, SLC7A5, 

SLC7A11 and SLC6A14) are of special interest in cancer biology [136]. Of these, SLC6A14 

transports all essential amino acids [137]. α-Methyltryptophan (α-MT) inhibits SLC6A14 

function thereby preventing amino acid uptake by cancer cells [138] and has been shown to 

undermine growth of oestrogen receptor-positive breast cancer cells [139]. Tumors are 

sensitive to changes in [Trp]. When [Trp] is decreased to ≤ 5 μM, tumors upregulate specific 

Trp transporters [140]. At the same time, the increased uptake of Trp coupled with 

upregulation of IDO and, where appropriate, TDO, ensures adequate formation of 

immunosuppressive Kyn metabolites (3-HK, 3-HAA, QA), which tumors use to undermine 

effector T cell proliferation and function and thereby escape an immune attack. T cell 

proliferation is inhibited at [Trp] of < 10 μM [141]. Thus, the narrow range of [Trp] of 5–10 

μM is critical for survival of tumors and effector T cells. Consequently, strategies aimed at 

maintaining effector T cell function by ensuring that tumoral [Trp] remains above 10 μM 

should be pursued in conjunction with strategies preventing production of 

immunosuppressive kynurenines, namely those involving inhibition of IDO/TDO 

upregulation and limiting Trp availability to tumors. In human colon and stomach cancer 

tissues, tumoral [Trp] can reach 70 and 40 μM respectively and a much higher value (270 

μM) has been reported in a mouse model of CT26 colon carcinoma (for references, see 

[13]). In the above proposed targeting strategy [13], inhibition of amino acid transporter 

function by α-MT is the first line of action. Decreasing plasma free Trp availability to 

tumors, which is enhanced in cancer through decreased albumin and increased NEFA, could 

be achieved by albumin infusions and use of antilipolytic agents, e.g. nicotinic acid. IDO/ 

TDO inhibition should complete the proposed strategy and is discussed further below. Both 

nicotinic acid and nicotinamide have been used in therapy of certain cancers, but for reasons 

other than modulation of Trp metabolism and disposition (for references, see [13]). TDO 

inhibition by nicotinamide [73] will be discussed further below.

6.4.2 Kynurenic acid—KA exerts effects in the central nervous system (CNS) and the 

periphery which render it a target for pharmacotherapy at various levels. In the CNS, 

blocking the excessive production of KA in schizophrenia requires the use of KAT inhibitors 

(see below). In the periphery, KA affects the immune system and gastrointestinal tract (GIT) 

function. It acts as a ligand for the orphan G protein-coupled receptor GPR35, which is 

expressed in both types of cells [142], but involvement of this receptor in the 

antiinflammatory activity of KA is somewhat controversial [142, 143]. The KA inhibition of 

tumour necrosis factor-α (TNF-α) production by mononuclear cells, high mobility group 

box protein 1 (HMGB1) production by monocytes and human neutrophil peptide 1-3 

(HNP1-3) secretion by neutrophils has been shown [144] to be stronger with 2-(2-
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N,Ndimethylaminoethylamine-1-carbonyl)-1H-quinolin-4-one hydrochloride, a KA 

analogue, and exploration of this analogue activity in human inflammatory disease has been 

proposed. KA production and KAT activity are decreased in retinal ganglion cell loss during 

retinal neurodegeneration [145]. In a mouse model of ocular hypertension, age-related 

decreases in [KA] and KAT activities are observed [145]. Intense KAT activities have also 

been demonstrated in the corpora amylacea of the human retina [145]. These changes justify 

exploring a potential role of KA in these retinal conditions.

[KA] is relatively high in the GIT [146] and its serum concentration is elevated in 

inflammatory bowel disease [147], but is decreased in the non-inflammatory bowel 

condition, the irritable bowel syndrome [148, 149]. This latter study also showed decreased 

serum levels of Kyn and 3-HAA, suggesting inhibition of Trp degradation at a step(s) 

beyond that catalysed by TDO/IDO and it was also suggested that the reported increase in 

serum free [Trp] increases serotonin levels, which may explain the increased gut secretions 

and motility described in diarrhoea-predominant IBS.

Another receptor involving KA is the aryl hydrocarbon receptor (AhR), which is a ligand-

activated transcription factor mediating the toxicity of environmental chemicals, such as the 

dioxins. Activation of the AhR induces toxic responses including cell damage and 

carcinogenesis [150]. The AhR can also control immune responses in both protective and 

destructive ways [150, 151]. For example, whereas endogenous ligands of the AhR facilitate 

a dampening of the immune response to prevent excessive inflammation and autoimmunity, 

exogenous ligands act as signals to enhance inflammatory responses to infection and 

resistance of cancer to its own destruction [150], resulting in a state of “pathological 

immunosuppression”, a mechanism of which based on changes in Trp availability has been 

suggested (see [6, 109]). Of the Trp metabolite ligands of the AhR (Kyn, KA and XA), KA 

has the highest ligand activity (see [109]). The dual role of activation of the AhR is 

illustrated by 2 examples involving KA. While KA activation of the AhR allows certain 

tumor cells to escape immune surveillance by secreting large amounts of IL-6 [152], 

deletion of the mouse AhR gene increases production of KA and expression of Kyn 

aminotransferase II (KAT II) in mouse cortex and striatum, thus protecting the brain against 

excitotoxicity and oxidative stress [153]. Other examples of this dual role and KA 

involvement are detailed in the excellent review by Wirthgen et al. [143], based on which 

these latter authors cautioned against targeting KA for therapeutic interventions to avoid 

adverse consequences, at least until further in-depth analysis of the interference of KA with 

various immune-related signaling pathways is made. It is noteworthy in the context of the 

AhR receptor that Kyn binding regulates the expression of the IL-10-RA (interleukin 10 

receptor alpha subunit) in intestinal epithelia thus affording acceleration of IL-10-dependent 

wound closure [154]. Whether KA binding to the AhR can cause similar changes is 

currently unknown.

Tryptophan 2,3-dioxygenase and indoleamine 2,3-dioxygenase As stated in 3.2. above, TDO 

inhibition has been suggested as an antidepressant strategy, either alone or in combination 

with Trp. In addition to antidepressant drugs which also inhibit TDO activity, many other 

compounds used as adjuncts to or augmenters of antidepressant medication also inhibit TDO 
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and some have been demonstrated to exert an antidepressant effect of their own or to 

accelerate clinical response to established antidepressants [34].

TDO inhibition may also play a role in combating anxiety and neurodegeneration in 

conditions such as Alzheimer’s Huntington’s and Parkinson’s diseases. Deletion of the TDO 

gene results in decreasing anxiety levels in mice, stimulation of neurogenesis and enhanced 

memory [68, 71]. As far as I could ascertain, no corresponding studies with TDO inhibitors 

in these human conditions have been performed.

TDO inhibition could also form the basis of therapy of acute hepatic porphyria. As stated in 

6.3.3. above, liver TDO utilises the small haem pool that regulates haem biosynthesis by 

repression of 5-ALAS. Prevention of this utilisation enables the regulatory haem pool to 

exert its feedback control of its own synthesis. This prevention involves inhibition or 

prevention of the conjugation of apo-TDO with haem. There is evidence that treatments 

which cause this prevention are effective therapies of acute porphyric attacks. One such 

treatment is glucose, which is used in acute porphyric attacks precipitated by fasting. In rats, 

haem utilisation by TDO is enhanced by starvation via glucocorticoid induction of the 

apoenzyme [93]. Other precipitants of acute porphyric attacks are drugs, which are thought 

to act by direct 5-ALAS induction. Such induction may be overcome if availability of the 

regulatory haem pool is increased by inhibition of TDO conjugation with haem. TDO 

inhibition is therefore a potential new strategy for therapy of the hepatic porphyrias. 

Currently, therapy involves intravenous haem preparations or glucose.

TDO inhibition for cancer therapy has recently been explored at the experimental level. 

IDO1 inhibition for cancer therapy has been explored much earlier and will be discussed 

here along with TDO inhibition. Emphasis on TDO inhibition was prompted by 2 major 

observations: (1) IDO1 inhibition is not always effective in arresting the growth of tumors 

expressing IDO1; (2) demonstration of TDO expression in certain tumors. The association 

of IDO1 with cancer has arisen following the discovery of the immunomodulatory properties 

of this enzyme. Human cancerous tissue expression of IDO1, IDO2 and TDO2 has been 

studied [155]. Many types of cancers express IDO1, whereas that of IDO2 is negligible. 

TDO2 is also expressed in many cancers, but at lower levels than IDO1, except in 

hepatocellular carcinoma, where expression is considerably higher among all tissues 

examined and relative to that of IDO1. IDO1 inhibition has been an active targeting area for 

cancer therapy. Many IDO1 [156–158] and some TDO [159–161] inhibitors have been and 

continue to be developed. These and others have recently been reviewed [162]. Many issues 

need to be considered in developing IDO1 inhibitors [163], some of which are also 

applicable to TDO2 inhibitors. Among these issues is the inhibitory mechanism and its 

confirmation in vivo. Many IDO/TDO inhibitors act by a Trp competitive mechanism. 

Additionally, as stated above [77, 78], IDO is inhibited by [Trp] > 50 μM. An excess of Trp 

could therefore undermine IDO1 inhibition in tumors. By contrast, the greater capacity of 

TDO for Trp will not cause reversal of the TDO inhibition by TDO inhibitors, unless too 

excessive Trp levels are reached in tumors. However, the increase in plasma [Trp] resulting 

from TDO inhibition in the host liver can lead to Trp accumulation in tumors. Given the 

discussion in 6.4.1. above and the detailed account in [13], a prudent strategy is to block Trp 

transport into tumors as a first line of attack and in conjunction with IDO1/TDO2 inhibition. 
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Some negative or moderately successful outcomes of clinical trials with such inhibitors may 

be explained by tumoral immune escape based on the above issues. Also, as emphasized by 

Platten et al [160], preclinical studies have not considered exploring potential mechanisms of 

this immune escape. The proposed targeting of Trp availability to tumors [13] is one such 

approach in this direction. Furthermore, current trials do not select patients based on IDO1 

expression in tumor tissue or assessment of systemic IDO1 activity by analysis of Trp and its 

metabolites in patients’ serum [161].

6.4.3 N’-Formylkynurenine formamidase—A wide range of compounds inhibit 

activity of this enzyme, including organophosphate insecticides and metal cations [54]. Of 

the latter, Ag+ is the strongest inhibitor, causing 89% inhibition at 10 μM [164]. However, 

most of these inhibitors are not suitable for use in humans and those that can be used in 

humans are weak ones. Although NFK formamidase activity is normally abundant in liver 

and possibly also other tissues, its inhibition can still block the formation of Kyn and its 

metabolites. Such inhibition could achieve the same aims as that of TDO and IDO and, in 

fact, development of formamidase inhibitors based on structure of the enzyme has been 

suggested [165].

6.4.4 Kynurenine aminotransferase—As stated in 6.1. above, the KAT reactions (K 

→ KA and 3-HK → XA) are minor ones limited by availability of the substrates because of 

the high Kms of both KAT A and KAT B respectively for their respective substrates. There 

are 4 KAT isoenzymes (KATs I, II, III and IV) with wide tissue distribution, of which KAT 

II has the highest activity in brain (60%). The importance of KAT in brain stems from the 

fact that it catalyses the formation of the NMDA receptor antagonist KA [117], which is 

cytoprotective and may thus be beneficial for cognitive function in patients with 

neurodegenerative and other CNS diseases. Elevation of KA levels in brain and CSF of 

patients with schizophrenia, however, induces a state of glutamatergic hypoactivity [166, 

167]. Targeting KAT in schizophrenia has therefore been an active area of research [168–

170] and detailed accounts of drug development of KAT inhibitors have been published 

[171–173]. As well as minimising glutamatergic hypoactivity, KAT inhibition also reduces 

the activity of mid-brain dopamine neurons [174], which is enhanced in schizophrenia.

KAT is inhibited by hydrazine compounds, some of which are used in medicine, e.g. the 

anti-tuberculous drug isonicotinic acid hydrazide, which causes a 92% inhibition when given 

in the rat’s diet at a 0.05% concentration [175]. The peripheral aromatic L-amino acid 

decarboxylase (ALAAD) inhibitors carbidopa and benserazide, which are used in 

Parkinson’s disease in conjunction with L-Dopa, also inhibit KAT activity both in vitro and 

after administration to rats [119]. When tested in vitro, carbidopa is twice as effective as 

benserazide (67% vs 33% inhibition at 25 μM). KAT inhibition by chronic benserazide 

administration leads to accumulation of Kyn and 3-HK in liver and decreases in [KA] and 

[XA] in serum. These results suggest that benserazide may be useful in the treatment of 

schizophrenia. Two clinical trials have, however, produced negative results [176, 177], 

nevertheless, the decrease in [KA] [119] warrants further exploration of the potential clinical 

utility of benserazide in schizophrenia.
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The above and other hydrazine compounds inhibit pyridoxal 5’-phosphate (PLP)-dependent 

enzymes by forming hydrazones with the cofactor, thus preventing the latter from binding to 

the enzymes [178]. Oestrogens and their derivatives can also inactivate PLP-dependent 

enzymes, e.g. KAT [179]. Thus, oestradiol disulphate is a strong inhibitor of KAT II (IC50 = 

26.3 μM), whereas oestradiol itself is a much weaker inhibitor (IC50 > 2 mM). It thus 

appears that the 17-sulphate moiety in oestradiol disulphate confers a much greater 

inhibitory potency. The authors [179] suggested that this can also be exploited in the design 

of novel KAT II inhibitors and can also contribute to improvement of existing inhibitors.

Inhibition of KAT B leading to decreased formation of XA may represent an important 

strategy for combating malaria. XA is the gametocyte-activating agent [129, 180] and while 

developmental efforts may be aimed at vaccine therapy, exploring the mechanism of 

gametocyte activation by XA may improve our understanding of the physiology of this 

parasite and lead to drug development including that aimed at blocking XA formation.

The 2 KAT isoenzymes responsible for KA formation in brain astrocytes are KAT I and 

KAT II and their targeting can be useful in treatment of schizophrenia. Inhibitors of these 

isoenzymes have been reviewed [162]. KAT I inhibitors are mainly Trp derivatives, whereas 

KAT II inhibitors include Kyn derivatives, fluoroquinolones and hydroxamate derivatives.

6.4.5 Kynurenine monooxygenase (Kynurenine hydroxylase)—KMO has been 

the subject of intense research as a potential target for development of pharmacotherapy of 

many conditions, notably those affecting CNS function. A glance at Figure 4 will show that 

KMO inhibition should result in the following important changes in KP metabolite 

formation in liver, plasma, brain and/or CSF: (1) accumulation of Kyn; (2) consequent to the 

increase in this substrate, production of KA by the KAT A and of AA by the kynureninase A 

reactions is increased; (3) decreased formation of 3-HK; (4) a consequent decrease in 

production of subsequent metabolites from the main oxidative route, namely 3-HAA, QA 

and PA and from the transamination arm leading to XA formation by KAT B. These 

changes, which have important implications for drug development for a variety of disease 

states, can be seen from published data of the effects of the KMO inhibitors m-

nitrobenzoylalanine in rats [181, 182] and mice [183] and 3,4-dimethoxy-N-[4-(3-

nitrophenyl)thiazol-2-yl]benzenesulfonamide (Ro-61-8048) in mice [184], and of the effects 

of targeted deletion of the KMO gene in mice [185, 186]. These changes are desirable for 

achieving protection against the patho-physiological disturbances encountered in many 

disease states. A variety of studies have been reported on KMO inhibition in disease models. 

These include: (1) prolonged survival of mice with cerebral malaria by KMO inhibition by 

Ro-61-8048 [184]; (2) reduction of neuropathic pain in rats by the KMO inhibitors 

Ro-61-8048 and the pro-drug JM6 [2-(3,4-dimethoxybenzenesulfonylamino)-4-(3- 

nitrophenyl)-5-(piperidin-1-yl) methylthiazole,187]; (3) prevention by JM6 of spacial 

memory deficits, anxiety behaviour and synaptic loss in a mouse model of Alzheimer’s 

disease and extension of life span, prevention of synaptic loss and reduction of microglial 

activation in a mouse model of Huntington’s disease [188]; (4) prevention of multi-organ 

failure in a rat model of acute pancreatitis by the potent and specific KMO inhibitor the 

oxazolidine compound GSK 180 [189]. The status of current and new KMO inhibitors has 
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been reviewed [162, 190] and it remains to be seen if or when some of these will be shown 

to be therapeutically effective in neurodegenerative diseases.

The accumulation of Kyn following KMO inhibition will increase both KA and AA levels. 

While increasing [KA] may not be desirable in schizophrenia, it can provide neuronal 

protection by combating the excitotoxicity of QA and reducing inflammation in 

inflammatory disease. The AA elevation may be of interest in relation to inflammatory 

disease, schizophrenia and diabetes and, as discussed earlier, as well as acting via its 

powerful apoptotic metabolite 5-HAA, AA can also decrease QA formation by inhibiting 3-

HAAO [191].

The potential antiinflammatory consequences of KMO inhibition extend further down the 

KP via decreased production of 3-HK, 3-HAA and QA, given their pro-inflammatory 

properties discussed above in 6.3.4. Decreased formation of these Kyn metabolites by KMO 

inhibition can also prevent tumoral immune escape and it is noteworthy that KMO is 

upregulated in hepatocellular carcinoma [192] and triple negative breast cancer [193]. The 

potential impact of KMO inhibition on XA formation remains to be explored.

6.4.6 Kynureninase—Kynureninase inhibition will increase the concentrations of Kyn, 

KA, 3-HK and XA, and decrease those of AA, 3-HAA and QA. Some of these effects have 

been reported [181, 182]. The kynureninase inhibitor nicotinylalanine has been reported 

[194] to inhibit the increase in rat brain [QA] induced by endotoxin administration. Among 

current therapeutic agents are the peripheral ALAAD inhibitors benserazide and carbidopa 

used in Parkinson’s disease (see 3.2. above). Both drugs are also kynureninase inhibitors, 

but, because they also inhibit KAT activity (see 6.4.5. above), the expected elevations of KA 

and XA do not occur [119]. Potent inhibitors of kynureninase have been synthesized [195] 

and patented [196] but await further investigation.

6.4.7 3-Hydroxyanthranilic acid 3,4-dioxygenase—Inhibition of 3HAAO will 

block the formation of the excitotoxic metabolite QA and the antiinflammatory metabolite 

PA and cause accumulation of 3-HAA. While lowering [QA] may be desirable, increasing 

[3-HAA] is not, as it possesses proinflammatory properties. 3-HAAO inhibition may be 

justified if the enzyme is overexpressed, as has been demonstrated in the hepatic proteome 

of the hyperlipidaemic substance for normal cell function and integrity mouse HcB19 model 

[197] and brain of the triple transgenic Alzheimer’s Disease mouse model [198]. Even here, 

a better strategy is to limit 3-HAA availability by blocking the KP at an earlier step, namely 

that involving KMO.

6.4.8 ACMSD (Picolinate carboxylase)—As described in 6.1. above, ACMSD 

converts ACMS to AMS, which can either undergo non-enzymic cyclisation to PA or 

continued degradation to acetyl CoA. Inhibition of ACMSD will therefore divert ACMS 

towards QA formation and subsequent NAD+ synthesis. NAD+ is a vital substance for 

maintenance of normal cell activity and functions, including cell signaling and gene 

regulation, and a decrease in its levels is associated with a variety of disease states. 

Pharmacological enhancement of NAD+ synthesis or availability is therefore an important 

goal. Recently, a potent ACMSD inhibitor, TES 1025, with an IC50 of 13 nM, has been 
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developed and was shown to increase cellular NAD+ levels [199]. The application of this 

inhibitor to disease therapy remains to be seen.

Phthalate esters, especially di(2-ethylhexyl) phthalate and its metabolite mono (2-

ethylhexyl) phthalate, MEHP), have been shown [200] to increase tissue levels of QA by 

inhibiting ACMSD. The authors suggested that phthalate ester toxicity could involve 

excessive QA production if a Trp-rich diet is consumed simultaneously. While increasing 

NAD+ levels may be desirable in some situations, a sustained inhibition of ACMSD activity 

may be undesirable, as it can lead to accumulation of QA with a resulting potential 

excitotoxicity. A genetic mutation of ACMSD has been observed in a family with 

Parkinson’s disease [201]. This latter group have also shown [202] that deletion of the 

ACMSD gene leads to a 20-50-fold increase in [QA] in liver, kidney, brain and plasma and 

suggested that this could be a suitable model for studies that can lead to new therapies of 

depression and neurodegenerative diseases.

6.4.9 Enzymes of the pathways for NAD+ synthesis and consumption—The 

balance between activity of the NAD+-biosynthetic (the de novo and salvage) pathways and 

that of pathways of its consumption determines tissue NAD+ levels. As stated in 6.3.7. 

above, an adequate supply of NAD+ is vital for cell function at many levels, with shortages 

being associated with negative health consequences. Thus, NAD+ controls cellular 

metabolism and energy production. Processes such as glycolysis, the citric acid cycle, fatty 

acid and amino acid oxidation, the pentose phosphate pathway, biosynthetic processes and 

biological oxidation via cytochrome P-450 are all controlled by the NAD+(P+) H couples. 

The review by Srivastava [203] is informative. Lack of NAD+ can result in oxidative 

damage, DNA damage, muscle degeneration, inflammatory responses and age-related 

diseases [204, 205]. A variety of studies have implicated enzymes of NAD+ synthesis and 

utilisation in disease states. Examples include QPRT suppression of spontaneous cell death 

by lowering the overproduction of active caspase-3 [206], potential targeting of 

Mycobacterium tuberculosis with high affinity inhibitors of NAD synthetase, which is 

essential for survival of this pathogen [207], development of activators of NMNAT/

NAMNAT for neuronal protection [208], over expression of this latter enzyme protects 

against acute CNS neurodegeneration by inhibiting excitotoxic-necrotic cell death [209], 

potential use of inhibitors of NMPRT in antitumor therapy by blocking glycolysis at the 

glyceraladehyde-3-phosphate dehydrogenase step [210]; the potential use of micro-RNA 26b 

as a suppressor of colorectal cancer tumor by inhibiting NMPRT [211], and use of NNMT as 

a target for treatment of obesity and type II diabetes [212].

NADase (NAD glycohydrolase) and streptolysin O are 2 proteins secreted by group A 

streptococci which promote virulence [213] and could therefore be potential targets for 

suppressing virulence [214]. Carbocyclic NAD analogues have been proposed as NADase 

inhibitors [215].

PARPs [poly(ADP-ribose) polymerases] is a family of enzymes that catalyse the transfer of 

ADP-ribose to target proteins, thus influencing many important processes, e.g. chromatin 

structure, transcription, replication, recombination, and DNA repair [216]. The latter effect 

is of special interest, as tumors may rely on this property of PARPs for survival. PARP 
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inhibitors are therefore potential cancer therapeutic agents. Preclinical studies have shown 

PARP inhibitors in combination with other drugs or ionising radiation are effective against 

tumors and clinical trials are already in progress [217]. Preclinical data also suggest that 

PARP inhibitors may be effective therapies for non-cancer conditions, including stroke, 

neurotrauma, circulatory shock and acute myocardial infarction [217]. Other NAD+-

consuming enzymes are sirtuins and c-ADP ribose synthases, both of which play major roles 

in control of NAD+ homeostasis, thus impacting many vital functions and are amenable to 

pharmacological interventions [203].

7 Conclusions and General Comments

The above account has demonstrated the multiple roles the essential amino acid L-

tryptophan and its various metabolites play in health and disease and the wide range of 

scientific disciplines and medical specialties for which Trp metabolism is of special 

importance. Trp research over the past 7 decades has provided and continues to provide 

important information expanding our knowledge of physiological processes and facilitating 

our understanding of many disease states, ranging from abnormal behaviour and mental 

illness to carcinogenesis. Its unique involvement in health and disease has rendered Trp 

metabolism a fertile area for pharmacotherapeutic interventions and pharmacologists and 

other biomedical researchers can play an important role in drug developmental efforts for 

addressing many disease states. It is hoped that this review will stimulate interest among 

researchers in further enriching our knowledge of Trp and utilising it in disease therapy.
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Figure 1. The hydroxylation or serotonin pathway in brain and melatonin pathway in pineal.
Abbreviations used are: AANAT (arylalkylamine N-acetyltransferase), ALAAD (aromatic 

L-amino acid decarboxylase), ALDH (aldehyde dehydrogenase), BH2 and BH4 (dihydro- 

and tetrahydro-biopterin), HIOMT (hydoxyindole-O-methyltransferase), MAO (monoamine 

oxidase), PLP (pyridoxal 5’-phosphate), TPH (tryptophan hydroxylase).
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Figure 2. The decarboxylation or tryptamine pathway.
Abbreviations used are: ALAAD (aromatic L-amino acid decarboxylase), ALDH (aldehyde 

dehydrogenase), MAO (monoamine oxidase), NAD(H) [oxidized and (reduced) 

nicotinamide-adenine dinucleotide], PLP (pyridoxal 5’-phosphate).
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Figure 3. The transamination or indolepyruvic acid pathway.
Abbreviations used are: ALDH (aldehyde dehydrogenase), IPD (indole pyruvate 

decarboxylase) ILDH (indole lactate dehydrogenase), ROS (reactive oxygen species), TAT 

(tryptophan aminotransferase).
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Figure 4. The oxidative or kynurenine pathway up to quinolinic acid and down to acetyl CoA.
Adapted from Figure 1 in ref [6] (A. A.-B. Badawy. Kynurenine pathway of tryptophan 

metabolism: regulatory and functional aspects. Int J Tryptophan Res. 10, 1-20, 2017 doi: 

10.1177/1178646917691938. Abbreviations used are: ACMS (2-Amino-3-carboxymuconic 

acid-6-semialdehyde), AMS (2-Aminomuconic acid -6-semialdehyde), IDO (indoleamine 

2,3-dioxygenase), TDO (tryptophan 2,3-dioxygenase).
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Figure 5. NAD+ synthesis from quinolinic acid and via the salvage pathway.
Adapted from Figure 1 in ref [6] (A. A.-B. Badawy. Kynurenine pathway of tryptophan 

metabolism: regulatory and functional aspects. Int J Tryptophan Res. 10, 1-20, 2017 doi: 

10.1177/1178646917691938.
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Table 1
Role of tryptophan and its metabolites in various disciplines.

Discipline Area Metabolite, role and example

Basic sciences Mammalian biochemistry Trp and metabolites and various body systems

Insect biochemistry 3-HK → xanthommatin in Drosophila

Plant biochemistry IAA as plant hormone (auxin)

Behavioural science IPA, 5-HT, KA, QA

Immunology Kyn and its metabolites (KA, QA, 3-HK, 3-HAA) as immunomodulators

Neurochemistry Trp, 5-HT, KA, QA

Nutrition Trp, NA, NAM, QA

Pharmacology 5-HT receptor modulators

Physiology KA and QA as NMDA receptor modulators; melatonin and circadian rhythm

Medical Specialties Cardiology KA and inflammatory response

Diabetes XA, PA, AA, QA

Gastroenterology Serotonin, kynurenine metabolites in irritable bowel syndrome

Hepatology Trp in hepatic cirrhosis and encephalopathy

Obs & Gynaecology Trp utilization, Kyn metabolites as immunosuppressants

Oncology Immunosuppressive kynurenine metabolites

Ophthalmology Kyn and 5-HAA elevations and 3-HK photo-oxidation in cataract

Parasitology XA in malaria and IPA in trypanosomiasis

Rheumatology Kyn metabolites elevation after IDO induction

Urology Kyn metabolite elevation

Veterinary medicine Trp metabolism in herbivores

Virology and other infections Kyn metabolite elevation by IDO induction

Psychiatry Alcoholism 5-HT deficiency, KA, 3-HK and 3-HAA as aversive agents

Anxiety 5-HT, KA, QA

Depression 5-HT

Drug dependence 5-HT, KA

OCD 5-HT

Schizophrenia KA

Neurological disease Alzheimer’s disease Kyn metabolites as immunomodulators

Chronic brain injury Kyn metabolites as immunomodulators

Huntington’s disease Kyn metabolites as immunomodulators

Stroke Kyn metabolites as immunomodulators

Most of the relevant sources are referenced in the list of references. Other sources can be accessed through search engines. Abbreviations used: 
AA (anthranilic acid), 3-HAA (3-hydroxyanthranilic acid), 5-HAA (5-hydroxyanthranilic acid), 3-HK (3-hydroxykynurenine), 5-HT (5-
hydroxytryptamine or serotonin), IAA (indoleacetic acid), IDO (indoleamine 2,3-dioxygenase), IPA (indolepyruvic acid), KA (kynurenic acid), 
Kyn (kynurenine), NMDA (N-methyl-D-aspartate), NAM (nicotinamide), NA (nicotinic acid), PA (picolinic acid), QA (quinolinic acid).
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Table 2
Plasma tryptophan disposition.

Parameter Change Mechanism Examples of effectors

Free Trp Decrease TDO/IDO induction Glucocorticoids/interferon-γ

Inhibition of lipolysis Insulin, nicotinic acid, antilipolytic agents

Increase TDO inhibition glucose, nicotinamide, antidepressants

Displacement from albumin NEFA, catecholamines, ethanol, salicylate

Decreased albumin Pregnancy, liver and kidney diseases

Total Trp Decrease TDO/IDO induction Glucocorticoids/interferon-γ

Increase TDO inhibition glucose, nicotinamide, antidepressants

% Free Trp Unaltered TDO/IDO induction, TDO inhibition

Decrease Increased albumin binding

Increase Decreased albumin binding

Reproduced here from Table 2 in ref [12] A. A.-B. Badawy. Tryptophan metabolism, disposition and utilisation in pregnancy. Biosci Rep. 35, art: 
be00261 / doi 10.1042/BSR20150197, 2015.
Abbreviations used: IDO (indoleamine 2,3-dioxygenase), NEFA (non-esterified fatty acids), TDO (tryptophan 2,3-dioxygenase, formerly 
tryptophan pyrrolase)), Trp (tryptophan). The % free Trp is an expression of Trp binding to albumin and is = 100 X [free Trp]/[total Trp].
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Table 3
Pharmacological targeting of the serotonin, tryptamine and indolepyruvate pathways.

Pathway Enzyme/metabolite Intended
change

effector Condition(s)

Serotonin TPH2 activation Trp depression, anxiety

TPH1 inhibition various osteoporosis, irritable bowel syndrome, 
carcinoid syndrome, obesity, ulcerative 
colitis, pulmonary arterial hypertension

ALAAD inhibition carbidopa, benserazide Parkinson’s disease

MAO inhibition tranylcypromine and other 
MAOI

depression, Parkinson’s disease, panic and 
post-traumatic stress disorders, prostate 
cancer

Melatonin various uses melatonin autism spectrum disorders, cancer, 
mitochondrial protection, sleep

Tryptamine Tryptamine halogenation derivatives to monitor brain 
function

Parkinson’s, Alzheimer’s schizophrenia

Biotransformation derivatives as hallucinogens drug dependence

Indolepyruvate Indolepyruvic acid antioxidant IPA, KA epilepsy, cerebral ischaemia, Alzheimer’s 
disease

Inhibition of IL-1β IPA overcoming immune escape by 
Trypanosomes

Abbreviations used: ALAAD (aromatic L-amino acid decarboxylase), IL-1β (interleukin-1β) IPA (indolepyruvic acid), KA (kynurenic acid), MAO 
(monoamine oxidase), MAOI (monoamine oxidase inhibitors), TPH1 and TPH2 (isoforms of tryptophan hydroxylase), Trp (tryptophan).
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Table 4
Functions of the kynurenine pathway.

Function Mediator (mechanism)

Detoxification of tryptophan TDO (Glucocorticoid induction)

Control of plasma tryptophan availability TDO (Trp flux and oxidation)

Control of liver haem biosynthesis TDO (Utilisation of the regulatory haem pool)

Modulation of the immune system Kyn, KA, 3-HK, 3-HAA, QA, PA (Cytokine induction of IDO)

Modulation of carbohydrate metabolism XA, PA (Binding of insulin and Zn); QA (inhibition of PEPCK)

Pellagra prevention QA, Nicotinic acid, nicotinamide (NAD+ synthesis)

NAD+ synthesis QA, nicotinic acid, nicotinamide (De novo and Salvage pathways)

Abbreviations used: 3-HAA (3-hydroxyanthranilic acid), 3-HK (3-hydroxykynurenine), IDO (indoleamine 2,3-dioxygenase), KA (kynurenic acid), 

Kyn (kynurenine), NAD+ (oxidized nicotinamide-adenine dinucleotide), PEPCK (phosphoenolpyruvate carboxykinase), PA (picolinic acid), QA 
(quinolinic acid), TDO (tryptophan 2,3-dioxygenase), Trp (tryptophan), XA (xanthurenic acid).
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Table 5
Pharmacological targeting of the kynurenine pathway.

Target Condition Mechanisms and effectors

Trp and metabolites:

Trp tumoral immune escape Decrease tumoral uptake by α-MT

Decrease plasma free Trp by albumin infusions

Decreased plasma free Trp by antilipolytic agents

Nicotinic acid cancer Decreased plasma free Trp by inhibition of lipolysis in host

Nicotinamide cancer TDO inhibition in tumors and hosts

Kynurenic acid Alcoholism Aversion to alcohol by ALDH inhibition

Schizophrenia KAT inhibition

Inflammatory diseases KA analogues

Retinal degeneration Increasing KA formation by Trp?

GIT diseases Increasing KA formation by Trp

Enzymes:

TDO Depression Increased serotonin synthesis by TDO inhibition (antidepressants, others)

Neurodegeneration Increased KA formation

Anxiety Increased brain serotonin by TDO inhibition

Hepatic porphyrias Decreased haem utilisation by TDO inhibitors (glucose, others?)

Cancer, immune escape Decreased immunosuppressive kynurenines by TDO inhibitors

IDO cancer, immune escape Decreased immunosuppressive kynurenines by IDO inhibitors

Formamidase Neurological diseases Decreasing neurotoxic Kyn metabolites by formamidase inhibition

Cancer and infections Decreasing immunosuppressive Kyn metabolites by formamidase inhibition

KAT Schizophrenia Improved glutamatergic activity by KAT II inhibition

Malaria infection Decreasing XA by KAT inhibition

KMO anxiety, cerebral malaria, Inflammatory 
and neurodegenerative diseases, 
pancreatitis

Decreased 3-HK, 3-HAA and QA and increased Kyn and KA by KMO 
inhibitors

Kynureninase Neurodegenerative diseases Decreased 3-HAA and QA formation by kynureninase inhibition

3-HAAO Neurodegenerative diseases Decreased QA formation by 3-HAAO inhibition

ACMSD No definite views Inhibition could be controversial

QPRT neurodegenerative
Diseases

Stimulation to lower QA

Cancer Inhibition to decrease NAD+ to undermine tumor viability

And suppression of cell death by inhibition of caspase production

NAD synthetase Mycobacterium tuberculosis Inhibition to limit NAD+ availability

NMPRT Cancer Inhibition to suppress colorectal tumors

NMNAT-NAMNAT Neurological and neuro-degenerative 
diseases

Activation to increase NAD+ synthesis to combat oxidative damage

NNMT Obesity, type 2 diabetes Inhibition undermines processes related to glucose metabolism and fat 
deposition

NADase Streptococcal virulence Inhibition of NADase

PARP Cancer, stroke, myocardial infarction, 
neurotrauma

Inhibition of PARP activity
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Abbreviations used: ACMSD (2-amino-3-carboxymuconic acid-6-semialdehyde; also known as acroleyl aminofumarate), 3-HAA (3-
hydroxyanthranilic acid), 3-HAAO (3-hydroxyanthranilic acid 3,4-dioxygenase), 3-HK (3-hydroxykynurenine), IDO (indoleamine 2,3-
dioxygenase), KA (kynurenic acid), Kyn (kynurenine), KAT (kynurenine aminotransferase), KMO (kynurenine monooxygenase or kynurenine 
hydroxylase), α-MT (α-methyltryptophan), NAMNAT/NMNAT (nicotinamide mononucleotide/nicotinic acid mononucleotide adenylyl 
transferases), NMPRT (nicotinamide phosphoribosyltransferase), NNMT (nicotinamide N-methyltransferase), PARP [poly (ADP-ribose) 
polymerase], QPRT (quinolinate phosphoribosyltransferase), QA (quinolinic acid), Trp (tryptophan), TDO (tryptophan 2,3-dioxygenase), XA 
(xanthurenic acid).
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