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Abstract

Background: Next-Generation Sequencing (NGS) has been widely accepted as an essential tool in molecular
biology. Reduced costs and automated analysis pipelines make the use of NGS data feasible even for small labs, yet
the methods for interpreting the data are not sophisticated enough to account for the amount of information.

Results: We propose s·nr, a Visual Analytics tool that provides simple yet powerful visual interfaces for displaying and
querying NGS data. It allows researchers to explore their own data in the context of experimental data deposited in
public repositories, as well as to extract specific data sets with similar gene expression signatures. We tested s·nr on
1543 RNA-Seq based mouse differential expression profiles derived from the public ArrayExpress platform. We provide
the repository of processed data with this paper.

Conclusion: s·nr, easily deployable utilizing its containerized implementation, empowers researchers to analyze and
relate their own RNA-Seq as well as to provide interactive and contextual crosstalk with data from public repositories.
This allows users to deduce novel and unbiased hypotheses about the underlying molecular processes.

Demo: Login demo/demo: snr.sf.mpg.de (Tested with Google Chrome)

Keywords: Next-generation sequencing, RNA-seq, Analysis workflow, Visual analytics, Visualization, GUI, GO analysis,
Gene filtering, Differentially expressed genes

Background
Next-Generation Sequencing (NGS) has been established
as a state-of-the-art tool in molecular biology. Whole
transcriptome shotgun sequencing (RNA-Seq) is a popu-
lar tool used even by small labs to shed light on complex
metabolic processes. Canonical algorithms aligning the
raw shotgun reads to the genome and transcriptome of
species are well established and operate fully automated
[1]. The differential gene or transcript expression between
experimental groups can also be derived using estab-
lished algorithms [2]. For interpreting the analysis output,
which often comes in the form of spreadsheets con-
taining a large number of differentially expressed genes,
researchers often fall back to basic office spreadsheet
applications, such as Microsoft Excel or Apple Numbers.
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These tools lack custom-tailored data exploration fea-
tures and are slow because they are not built for use-cases
with such large data. This leads to inconsistent analysis
procedures, unobserved patterns in the data (e.g. simi-
larity of divergently expressed gene profiles across data
sets), potentially wrong conclusions and a lot of frustra-
tion for biomedical researchers not trained in harnessing
additional analytical workflows written in R, python or
other languages. We propose s·nr (pronounced “sonar”),
a Visual Analytics tool empowering molecular biologists
to explore their RNA-Seq experiments and shed light on
patterns in the data. Our contributions are:

• A Visual Analytics tool based on feedback of domain
experts to provide means of exploring vast NGS
RNA-Seq datasets.

• Providing an exploration tool covering important
aspects of interpreting the data without relying on
third-party front-ends.
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• Empowering researchers to interrogate a large
number of RNA-Seq experiments to efficiently detect
similar or diverging patterns.

• Providing means of identifying related NGS datasets
in public repositories, despite being discordant in the
interrogated model organism, tissue type or disease
context.

• An open-source web-based implementation that can
be easily set up using containerized deployment.

Implementation
In this section we describe how we went from a thorough
requirement analysis that defines the key functionality of
s·nr to the selection of web-based technologies and con-
tainerized solutions that allow for easy deployment and
scalability of the tool.

Requirement analysis
We conducted questionnaire-guided interviews to derive
information about task, context and userwith eightmolec-
ular biologists at all career stages working with RNA-Seq
data. The questions ranged from research background,
how RNA-Seq data is incorporated in that context and
which tools support the data exploration. The protocol for
the interview and the associated questionnaire is outlined
in Additional file 1.
Task: From the interviews, we derived the following

tasks:

• Gene Ontology (GO) [3] analysis: Finding relevant
signaling pathways and disease ontologies that are
enriched for the differentially expressed (DE) genes.

• Filter regulated genes: Select genes that are
differentially regulated by setting interactive and
cumulative thresholds.

• Compare datasets: Detect consistent regulation
patterns across datasets.

As result of the interviews, we decided to focus on the
tasks that were almost uniformly mentioned: Performing
GO analyses, filtering the genes and comparing datasets.
Context: We concluded that many shortcomings in the

analysis workflow arise from the context of the analysis
(i.e. applying tools that are not suitable for this data). All
interviewees use spreadsheet applications to process dif-
ferential expression tables. Due to the size of the imported
data, the software tends to be slow and unresponsive.
Spreadsheet applications provide a direct interface to the
expression tables, but also pose the risk of unintended
modifications to the data. For comparing data sets, the
problem is even more severe. Multiple datasets of the size
of standard RNA-Seq results concatenated to large sum-
mary tables render such applications unresponsive. By an
untrainedmolecular biologist, public repositories are usu-
ally queried based on meta-data only, e.g. same tissue

from the same species and same condition as the own
experiment. Functional similarity of the domain experts
data with public data cannot be computed with the tools
available. For incorporating GO term analysis or other
functional analyses, the researchers have to use web-based
interfaces by uploading their results to services typically
hosted on servers in foreign countries with different data
protection laws creating problems when handling sensi-
tive data and research idea scooping.
User: As mentioned above, methods custom-tailored

to NGS data, such as GO analyses, are often available
either as web-interface or as Application Programming
Interface (API) for programming languages such as R
or Python. The web-interfaces typically expect a pre-
cise input format. The type conversion can prove difficult
for researchers with limited coding experience, leading
to time-consuming copy & paste sessions that are highly
error-prone. Therefore we divided the domain experts
into two different groups: those (1) with and (2) with-
out programming skills to perform data wrangling and
scripting for method APIs. To account for both groups,
we have to simplify access to thirds-party tools. We have
to account for data integrity and security by not sending
information to third-party services.
Detailed results of the questionnaire as well as com-

monly used tools and plots can be found in Additional
file 2.

Analysis workflow design
The s·nr workflow relies on Visual Analytics (VA), which
combines data analytics techniques with interactive data
visualization to derive insights into complex data sets [4].
The VA mantra defined by Keim et al. [5] is defined
by four steps, (1) analyze first (rank information), (2)
show the important, (3) zoom, filter and analyze fur-
ther and show (4) details on demand. This workflow
acts in iterative analysis workflow loops, allowing obser-
vations that trigger new hypotheses which in turn require
more abstract views to go focus on other sections of the
data. On top of the VA mantra, we established the fol-
lowing design principles for s·nr: (1) Since the researchers
have to interpret the vast data presented to them, we
have to treat cognitive workload as a resource. This leads
to (2) incorporating as few user interface elements and
visual representations as possible. The power of the tool
arises from (3) a high interactivity between few visual rep-
resentations. We achieve this by incorporating brushing
(selecting) and linking (broadcast selection) facilities [6]
highlighting selected data entries in all data views.
Data format. We designed s·nr to derive insight into

differential gene expression using RNA-Seq data. This
RNA-seq centric approach represents a mere proof-of-
principle approach using a widely adopted class of NGS
data. Any standard differential RNA-Seq dataset can
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be loaded into s·nr. For further details, please refer to
Additional files 3 and 4.
We incorporate the QuickNGS [7] platform (presented

in this journal) for carrying out the alignment and dif-
ferential expression calculation. QuickNGS allows us to
easily process vast numbers of publicly available raw data
automatically. By processing all data, private or public,
with the same pipeline, we mitigate biases introduced
by different read alignment and abundance estimation
algorithms [8].

Technology, optimizations and deployment
We built s·nr using cutting-edge and scalable technolo-
gies. The system relies on a client-server structure allow-
ing to shift computation-heavy operations to a powerful
back-end and keep the requirements on the front-end
machine low. Providing the interface as web-app allows for
easy distribution, platform-independence and inherently
is based on a client-server structure.
Our goal was to develop s·nr as an easily deployable

multi-user system that can be used production-ready in
professional environments.

The front-end was realized as HTML/CSS3/
JavaScript (ES6) web-app (Fig. 1 left). Facebook’s
React [9] library for JavaScript is the back-bone of
the user interface and provides efficient means of build-
ing interactive components by distributing data changes
throughout all user-interface components. The user inter-
face components were built with Google’s Material
Design [10].
D3.js [11] is employed for building the scatter- and

hex plot visualizations and provides useful methods for
handling transfer functions and axis labels.
The major challenge when implementing s·nr was to

minimize the number of rendered elements. Modern
browser rendering engines, while already being heavily
optimized, do not perform well given a high amount of
displayed elements. Displaying 50.000 genes as SVG cir-
cle elements for 4 data sets in scatter plots renders any

web-page unusable even on powerful machines. This calls
for many optimization tweaks, such as binning scatter plot
entries into hex plots and only rendering genes as circles
after they are filtered. Another example is the data table,
which behaves exactly like a classic HTML5 scrollable
table, while it actually only renders the list elements of
the current view pane with spacers above and below that
are dynamically adjusted depending on the scroll posi-
tion, reducing the number of rendered elements in the
list from ∼50.000 to ∼20, depending on the resolution
browser view frame size. This is facilitated with heavy use
of React and D3.

The back-end is made of two components (Fig. 1).
(1) Statistical computation. The statistical compu-

tation back-end relies on the statistical programming
language R. To provide functionality for importing, pro-
cessing and serving data, we built the snR package for
R. It also facilitates access to Ensembl Biomart through
the biomaRt package [12] and handles the PCA cal-
culation for the overview plot. Running the PCA calcu-
lation on a vast number of experiments is demanding
and needs to be carried out as fast as possible to allow
for an interactive workflow where users do not have to
wait for minutes or hours to get the results. One major
optimization we incorporate is saving the public experi-
ments already in a matrix format that can be piped into
the PCA algorithm. Only the private experiments have
to converted on runtime, saving a couple of seconds.
For further optimization, we keep the public experiment
PCA input matrix in memory all the time removing the
need of loading it every time when calculating a PCA,
which, depending on the number of public experiments
that are attached to s·nr, can take up minutes. This, how-
ever, increases the footprint of the snR package in the
system memory several gigabytes. In order to reduce
the computation time of PCAs for large matrices from
hours to seconds we employ a randomized single value
decomposition algorithm provided by the RSVD pack-
age [13]. To avoid redownloading the required variables

Fig. 1 Implementation overview. A node server serves the front-end that is implemented in Javascript/HTML5 using the D3.js, Material-UI
and React libraries. The node server provides each client with the data pulled from the OpenCPU back-end, which is only accessible for the
node server. Heavy computational tasks are performed on the OpenCPU server. The node and OpenCPU server reside on one machine deployed
using a Docker image. This architecture ensures that the potentially sensitive data is not accessible through the internet
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from the Biomart database, we cache them on disk as R
dataset.
A second package, snR-GO, handles GO term analyses,

which also relies on the cached data retrieved from the
biomaRt package.
OpenCPU [14] exposes R methods using a RESTful

API for method calls generating files including the JSON
format which is easily readable by JavaScript. Unre-
stricted access to the RESTful API provided by OpenCPU
would allow users to read all the data located on the sys-
tem, yielding security issues when building a multi-user
system. To solve this problem, we employ a second server
described in the following paragraph.
(2) Web-server and gatekeeper. A custom-built

Node.js server solves two tasks: (1) provide a web-
server for the s·nr web-app and (2) act as authenticator
and gate keeper between the front-end and the R back-
end. A major disadvantage when serving web-apps is that
the app is accessible to everybody connected to the net-
work where it is hosted. If the web-server is available to the
world-wide-web, everybody can access the data through
s·nr. Therefore we implemented a user authentication sys-
tem based on user tokens. The Node.js server stores
user names, the files the user has access to as well as the
bcrypt hashes [15] of the user’s password. On success-
ful login, the user’s machine is provided with a token that
has to be sent with every request on the server to check
if it matches to the correct user. Users can access their
own private experiments as well as all public repositories.
A typical request looks as follows: A request for calcu-
lating a PCA is made from the client to the Node.js
server through a POST together with the user’s token,
which is then verified and if valid, the server will call the
R command on the OpenCPU server. On completing the
calculation, the Node.js server will retrieve the result
as JSON file and pass it back to the client triggering the
rendering of the PCA scatter plot.

We deploy s·nr as containerized solution, which allows
for easy sharing of data and methods as well as a well-
defined and reproducible computing environment [16].
We provide a system to deploy s·nr as a Docker con-
tainer. The idea behind Docker is similar to virtual
machines, it allows developers to create a system with
installed software packages as well as data and provide it
as an image. Using the Docker engine, users can convert
the image into a container that is an exact replica of the
exported system.
The Docker container both deploys (1) the Node.js

and (2) OpenCPU server. The configuration is limited
to the Docker image creation and customizing the
Node.js server settings. Only the Node.js server
needs to be accessible by the network, masking away
all the data from public access and potential hacking

attempts. Detailed instructions on how to setup s·nr can
be found in Additional file 5.
Having both the Node.js and OpenCPU server in

one Docker container requires only a single machine
to deploy s·nr. Due to the demanding memory require-
ments of the snR package mentioned above this machine
requires at least 15 GB of RAM. Support for multiple
OpenCPU servers is not implemented since the most
time-consuming operation is the PCA calculation which
cannot be easily distributed among multiple servers and
hence multiple R sessions.

Results
In this section we describe the s·nr interface and how we
incorporate third-party services. A video tour of s.nr can
be found in Additional file 6
Typically users want to examine one experiment in

detail. We define this as the focus experiment. To be able
to put it into context of other data, we extract and display
experiments that carry valuable information when ana-
lyzing the focus experiment. We define these as context
experiments.

User interface design
The analysis focus is typically on one experiment. To
put it into context of other data and observe patterns
over multiple experiments, we include additional data.
The user interface is divided into two major compo-
nents. (1) The overview visualization shows which experi-
ments express similar expression profiles and allows users
to select experiments for further investigation. (2) The
selected experiments can be analyzed in the details view
that provides simple yet efficient means for displaying and
querying the data as well as extracting GO terms. The
selection of genes feeds back into the overview visualiza-
tion, which can be triggered again to only consider the
user-defined subset of genes and refines the search of
functionally similar experiments.

The starting point of a s·nr session is the overview
visualization. We want to provide the user with a birds-
eye view on all the available data on starting s·nr. We
facilitate this by providing a scatter plot based on the
first two Principal Components (PCs) calculated on the
p-value of all genes from all experiments (Fig. 2).
The view distinguishes public experiments derived from
public repositories and private experiments, usually from
the same lab or institute.
Pictographic experiment representation. Humans

excel at distinguishing small simplified pictographic rep-
resentations (icons). We utilize this by assigning an
customizable icon to each experiment. This approach
imposes two major advantages: (1) Avoid over-plotting
due to labeling a vast number of datasets, and (2) the icon
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Fig. 2Workflow of s·nr and detailed overview visualization showing a principal component analysis (PCA) of 1543 differential RNA-Seq expression
mouse profiles. The s·nr workflow consists of the overview visualization view that is used to select datasets based on similarity. The user can further
investigate the selected data sets using the details view. Mean as an iterative analysis loop the user can always go back to the overview visualization
to adjust the selection of potentially interesting data. We derived the data depicted in the overview visualization from ArrayExpress, processed it
using QuickNGS, and provide the result with this paper. The analysis starts with the overview plot showing the first two PCAs of the p-values of all
genes of public and private data sets. Public data sets are uniformly assigned the box icon and a higher transparency to facilitate identification of
the user’s data. Data with similar p-values cluster together. a The dot of the s·nr logo emits a fading circle when data is fetched from the server.
b The PCA displayed is based on data for all genes. On brushing data sets in the details view, the user can narrow down the genes of interest and
trigger a new PCA calculation based on the selected group of genes. cMouse-over shows meta data of the data set. Clicking on a data set icon
fetches its data and passes it to the details view. Icons of downloaded data are rendered orange, data sets flash upon loading
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represents the experiments in the individual views and
manifests a clear yet simple visual link. Due to the high
count of public experiments when incorporating public
data repositories they are all assigned a box icon and are
rendered semi-opaque to highlight private experiments.
The user can also customize the public experiment icons
to create a cognitive link.
Means of interaction. A visual feedback of communi-

cation with the server is indicated with a emitted circle in
the s·nr logo (Fig. 2a). Calculating the PCA based on the
currently selected genes is triggered with the only button
integrated with the plot (Fig. 2b) Hovering over an experi-
ment icon opens a contextmenu showingmeta-data about
the experiment (Fig. 2c). For public experiments, this
also provides a link to the repository or the publication

associated with the experiment to follow up more details.
Clicking on a experiment icon pulls the associated data
from the server and colorizes the icon indicating the
loading status. The experiments can then be investigated
further in the details view.
The details view is the core of s·nr. It consists of three

components (Fig 3a–c).
(1) Main scatter plot of the focus experiment. The

focus experiment is displayed as large scatter plot in the
center of the user interface (Fig. 3a). Initially the scatter
plot shows a volcano plot [17] showing −log10(pValue)
against foldchange. To avoid a cluttered visualization when
rendering all genes as dots we incorporate a binned aggre-
gation visualization [18] dividing the space in hexes and
counting the number of genes falling into each hex. The

Fig. 3 Details view for five mouse data sets with open GO term pane. The details view consists of three major interconnected components (a–c).
Additionally, the GO term pane (d) is open. a The focus experiment is depicted in the large scatter/hex plot. b Further data sets are visualized in the
small multiples of the large scatter plot. c The table view shows detailed information per gene for the main experiment. d The GO term pane shows
GO terms for the selected genes and associated options. Opening a GO term displays additional information about the term as well as the
expression of it in the context experiments. Each GO term is represented using a GO plot which can be customized in the panes options. We depict
a typical interaction example at the bottom, where brushing (selecting) genes in the main scatter plot leads to highlighting the corresponding
genes in the context experiments and also automatically triggers a GO-term analysis of the selection
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fill color of the hex maps represents the number of genes
it contains. Genes are rendered as dots either when a
gene is selected in a different view to show context infor-
mation or when the total number of genes to render
is below 5.000. The user has the option to always ren-
der genes as dots using the scatter plot option menu.
The dots are rendered semi-opaque to counteract over-
plotting, rendering populated areas darker. By spanning
rectangles on click, the user can brush genes in the scat-
ter plot. The default behavior is to zoom in on the selected
genes to see the selected elements in detail and refine
the selection further. The selection will be linked to all
other views described below. On mouse-over a gene, that
gene is highlighted, triggering a pop-up context window
showing details about the gene, its statistics and meta-
data. Highlighted genes are also linked to all views, show-
ing as much context information as possible. Through
various options, the user can change the transforma-
tion of the scale of the axes (linear, -linear, log2,
-log2, log10, -log10, sqrt, -sqrt) as well as zoom-
ing behavior (always show whole range or only
selected range) and rendering-related options such
as always drawing genes as dots.
(2) Small multiples of context experiments. We want

to display the context experiments in a way to show as
much information related to the focus experiment as pos-
sible while occupying little screen and cognitive space
(Fig. 3b). Small multiples [19] are a series of graphics shar-
ing the same axis and scales allowing for easy comparison.
We incorporate this idea for the context experiments to
display them according to the focus experiment represen-
tation. The small multiples share the visual features of
the main scatter plot rendering it a hybrid visualization
of hex- and scatter plots. They also share the main plot
x- and y-axis as well as the transformation. The icon in the
heading of each small multiple allows to match it with the
experiment it represents.
The strength of the small multiples approach becomes

evident when a subset of genes is selected, e.g. by brush-
ing them in the main scatter plot. The small multiples
do not zoom into the selected area but rather show all
selected genes as highlighted (more opaque and bigger)
dots. This simple yet effective method allows users to
rapidly check different sets of genes along multiple data
sets. If, for example, only the up-regulated genes below a
specific p-value in the default volcano-plot are selected,
the small multiples show the regulation status in the
context experiments (Fig 3a, b).
By clicking on the description header of a small mul-

tiple, that experiment will be set as focus experiment
moving the current one to a context experiment. This
allows for rapid switches between experiments when new
hypotheses arise from the investigation. This is useful for
investigating a potentially interesting public experiment

that was found using the PCA overview visualization in
detail.
(3) Data table. All interview partners reported exten-

sive use of office spreadsheet applications for navigating
and filtering experiments. While this may not be the most
efficient way of looking at the data, it is still one the
users of s·nr potentially have years of experience in, ren-
dering them efficient in consuming data through tabular
representations. The data table view (Fig 3c) facilitates
this interface and incorporates it into the whole analysis
workflow as one essential steering point.
The data table view shows all available informa-

tion for each entry of the focus experiment. Further-
more, filter can be applied through the input fields
in the table header. The filter is made of two com-
ponents, (1) the comparison operation button and (2)
the input field. For numerical variables, the opera-
tion button can take the values <, > and =, which
are applied on the input field. For example, input for
p-value < 0.005 selects all genes consisting of small
p-values. Categorical variables only work on the =
comparison, triggering a string matching on the input
field. Analogously to filtering in the main scatter plot, the
filter is applied to all visible representations, limiting the
list to the filtered entries and highlighting the genes in
the scatter plots.
Next to providing a tabular data representation and

filtering on multiple dimensions at once, the data table
view serves as input for the dimensions mapped to the
x- and y-axis of the scatter plots. Clicking on a dimension
name in the table puts it on the x-axis of the scatter plots
and moves the current x-axis to the y-axis. This allows
for rapidly changing the perspective on the experiments
without adding user interface elements. Starting with the
initial volcano plot, the user can for example change the
plot to fold change against base mean with just two
clicks. This works well with the adjustable scale trans-
formation function of scatter plots. The table view can
apply filter thresholds while the scatter plot also allows for
defining filter ranges.

Third-party service integration
The details view is supported by two panes addressing
data access as well as interfacing third-party services.
(1) Experiment selection pane. The experiment selec-

tion acts as central hub for all private and public exper-
iments. Selecting experiments downloads them from the
server and puts them into the details view or removes
them from it. The user can set the focus experiment and
customize the experiment icons.
The Biomart selection allows to download additional

information. Biomart [20] database provides rich infor-
mation on transcript, gene, and protein level. The reason
for s·nr to require the EnsemblID dimension for each
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experiment is to enable Biomart annotations to be added.
This allows us to keep the storage footprint on the back-
end small by only saving information unique for the data
set and attach all additional information on demand. The
interface in the experiment selection pane allows the user
to customize the information attached to the data set
which can then be used to assess and filter the data further.
Since the current implementation is restricted to gene-
level information, we include Biomart variables only on
gene level.
(2) GO term pane. GO term analysis was the most fre-

quent request in the user study.When analyzing RNA-Seq
data, users usually incorporate the web interfaces of ser-
vices such as Panther [21]. This requires extracting the list
of genes to filter into a specific format which is tedious
and error-prone. The GO term pane (Fig. 3d) includes the
GO extraction in the analysis workflow of s·nr.
The GO terms are initially derived from the Biomart

database. Upon gene subgroup definitions by filtering in
any of the s·nr views, the GO term pane will automat-
ically retrieve the terms containing the selected genes.
The resulting list of GO terms is sorted by percentage
of selected genes in the term. This metric favors GO
terms of small size (the number of genes associated with
them). To mitigate this, the user can set a minimum and
maximum size of GO terms considered for the calcu-
lation. The individual GO terms are represented using
our GO term plot, where each gene is represented by a
small rectangle that derives its color from a data dimen-
sion, usually fold change. The color scale ranges from
blue (low limit) over white (mean) to red (high limit).
The width of the plot is the sum of the width of the
gene representation rectangles and is relative to the largest
GO term fitting the gene selection query. When mapping
fold change to the GO plot, the user gets an at-a-
glance view of how many genes in the term are down-
or up-regulated. Using the options pane, the user can
adjust the dimension mapped to the GO plot as well as
its transfer function. Additionally it allows for display-
ing all genes in the GO terms, not restricting it to the
selected ones.
The GO plots are rendered in the overview of

the pane for the focus experiments. On click the
GO term expands with additional information such as
name, definition, total gene- and transcript
count, its entry on the Gene Ontology Consortium
webpage as well as the GO plot for all context exper-
iments. The experiment icons allow to associate the
GO plot with the corresponding context experiment.
Hovering the mouse over the GO plot highlights the
gene under the cursor, showing its gene name as well
as highlighting it in all other plots, triggering also
the additional information context menu in the scatter
plots.

Discussion
As s·nr is an endeavor of concurrently analyzing a large
number of experiments, we discuss in this section how it
performs computationally and as analytical tool. We then
compare s·nr to published related analysis tools.

Performance
We have tested s·nr with all publicly available RNA-Seq
data for mouse mus musculus provided by the Array-
Express platform [22]. The data was processed by the
QuickNGS platform and consists of 2184 samples split up
in 1543 pairwise experimental conditions. The data is sup-
plied with the source code of this paper1. A demonstration
instance of s·nr can be accessed as well2.
The heavy computational processing is carried out using

the OpenCPU/R server, which means s·nr can only be
installed on a capable machine. For the packages with
public experiments provided with this paper, we recom-
mend a computer with at least 15 GB of RAM. The
PCA analysis takes about 20 s for this large amount of
experiments and therefore displaying the initial overview
visualization is sufficiently fast. Calculating the PCA on a
subset of genes defined by the user significantly reduces
the PCA computation time. Since both OpenCPU and
node.js server are bundled in one Docker image, both
of them run on the same machine. The client-side ren-
dering scales well with the number of displayed data, the
details view performance is dependent on the number
of context experiments. We recommend a maximum of 4
context experiments even though the software performs
well beyond that number.

Application study
We conducted a Visual Data Analysis and Reasoning
(VDAR) technique [23] to characterize the systems ability
to generate and follow up hypotheses in the data.We carry
out VDAR using a case study using the thinking-aloud
technique to comprehend the reasoning and thought pro-
cess of the user.
For our proof-of-concept evaluation we rely on public

data for mus musculus provided by ArrayExpress [22].
The data was processed using the QuickNGS platform.
To test the practicability of s·nr for VA data explo-

ration and its suitability for deriving novel contextual
insights by integrating private with public datasets in an
unbiased manner, we (re)-analyzed two private datasets
from an unpublished study on transcriptional regula-
tion of hepatic gene expression under different states of
nutrient abundances conducted in C57BL/6 mice. Here,
we quantified DE genes in liver at the end of diet-
induced obesity (DIO), which was elicited by chronic
(24 weeks) of high-fat-diet (HFD) feeding, as compared
to 24 weeks feeding with micronutrient-matched normal
chow diets (NCD).
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To put DIO DE gene changes into the context of normal
liver physiology, we additonally quantified differentially
expressed genes in liver after ad libitum feeding, 16 h
fasting or 16 h fasting following by 6h refeeding, as the lat-
ter leads to well-understood expression changes in genes
important for gluconeogenesis and lipid metabolism [24].

The exploration started with selecting the NCD/HFD
liver data set from the lab as focus experiment as well
as a few public data sets that were close to it on the
overview visualization as context. Those data sets were
then analyzed further in the small multiples view. By set-
ting filters for fold change and p-value no pattern
could be observed in the small multiples of the public con-
text experiments (genes did not follow the same trend for
up- or down regulation). Hence the context experiments
were discarded. By switching back to the overview visual-
ization and re-triggering the PCA to be only calculated on
the differentially expressed genes. Based on the updated
overview, three new data sets of interest clustered around
the focus experiment were selected and assigned icons to:

1 E-ERAD-209 (a): Ad libitum versus dietary
restriction, which is the opposite condition of the
focus experiment

2 E-ERAD-209 (b): Ad libitum into dietary
restriction vs dietary restriction in liver. This is the
same dataset as above but regards to a different
group comparison.

3 E-MTAB-3978: Mature adipocytes from white
adipose tissue in conditions preadipocyte_time : 1.0
adipocyte_time : 30.0.

These data were analyzed further in the details
view, switching the standard volcano plot presenta-
tion to a visualization showing log 10(baseMean) against
foldChange by clicking the corresponding headers in
the table (Fig. 4 right). This plot can be used to
assess fold changes dependent on abundance. The user
selected up-regulated highly abundant genes in the
main scatter plot. Using the GO term pane the user
assessed terms of the selection yielding terms such
as cholesterol metabolic process, collagen
trimmer, and steroid metabolic process. In
the ad libitum compared to dietary restriction condition
of the E-ERAD-209 (b) dataset, the user observed a
inverse relationship in these terms using the GO term
plot (Fig. 4 left). Up-regulated processed are down-
regulated and vice-versa. While the experimental setup
of E-ERAD-209 (b) is similar to the focus experi-
ment, it is compared in the opposite direction, explain-
ing the inverse relationship, showing that the obser-
vation makes biological sense and the similarity plot
yields meaningful results. Analogously, the GO terms
and differentially regulated genes of E-ERAD-209 (a)
are regulated in the same direction as in the focus
experiment.

Related work
We compared s·nr to five other tools that facilitate
a visual exploration of RNA-Seq data. DEIVA, pub-
lished in this journal [25], is closest to our approach
by also providing a web-based platform that shows dif-
ferential gene expression analysis based on a hexagonal
binned volcano plot. DEIVA also allows to query data

Fig. 4 Data exploration showing baseMean against foldChange and expressed GO terms. Screenshot made during the application study of
JWK. After selecting the displayed variables and transformation, JWK filtered all genes matching pValue <= 0.05 and foldChange > 0.05. JWK
proceeded to look at the expressed GO terms, specifically the cholesterol metabolic process term. He highlighted the gene Soat1 to show detailed
information for that gene in all displayed data sets
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based on fold change, false discovery rate
and baseMean using slider inputs, highlighting genes
as well as assessing genes in a tabular representa-
tion. In order to assess the capabilities of s·nr with
regards to competing tools, we enhanced the com-
parison table incorporated by the DEIVA authors, see
Table 1.
Major contributions of s·nr are (1) the capability of

analyzing multiple data sets and putting the data into con-
text, (2) the feature to filter based on all variables, (3)
the ability to display all numerical variables in the scatter
plot and (4) calculation of similarity between differential
gene expression datasets. Compared to the other tools,
s·nr has a significantly higher demand on the server’s
RAM. This is because of the large size of data sets to be
processed in a time-efficient way to facilitate real-time
responses. Interactive analysis packages such as Glimma
[26] allow for very basic filtering and selection of genes
using text input, but lack the link between views and are
require the user to load the data using R. This excludes
many users of RNA-Seq technologies that do not have
these skills. Other web platforms such as Oasis [27]
aim at providing a web interface for the whole RNA-Seq
pipeline including the alignment and differential analysis
steps, but usually lack interactivity in the data explo-
ration aspect. We focused solely on the exploration aspect
to keep the tool lightweight in order to maintain a low
cognitive workload on the user due to complexity of
the user interface. Degust [28] also facilities differen-
tial expression analysis of input genes and also allows for
comparisons of multiple conditions in a data set. It also
allows for filtering using KEGG pathways, but lacks fea-
tures to compare the results with other public or private
data sets.
While the discussed tools differ a lot with respect to

their feature set, all of them perform fast and responsive.
Since comparing data and calculating similarity is unique

for s·nr, we cannot conduct a quantitative comparison of
these features.

Conclusion
We demonstrated that s·nr provides interactive visual
analysis methods for RNA-Seq data and puts them into
the context with other private and public data. The
client-server system allows to outsource computationally
heavy operations on capable back-end machines which
then transfer the result to the user’s front-end device.
We showed that s·nr performs well with high dataset
counts by processing all publicly available mouse RNA-
Seq datasets from the ArrayExpress platform which are
also provided with this publication. The open input for-
mat of s·nr allows users to pipe in results from any RNA-
Seq based differential gene expression analysis algorithm.
A containerized deployment allows for a simple setup pro-
cedure and allows s·nr on any machine with a Docker
instance. Researchers are able to extend s·nr further with
its permissive open source license.

Availability and requirements
• Project name: s·nr
• Project home https://github.com/snr-vis/
• Operating system(s): Platform independent
• Programming language: Javascript, R
• Other requirements: Docker
• License: MIT
• Demo: Login demo/demo: snr.sf.mpg.de (Tested

with Google Chrome)
• Any restrictions to use by non-academics: none

Endnotes
1 Setup instructions and link to public files: setup-snr
2Demo instance. Tested with Google Chrome (login

demo/demo): snr.sf.mpg.de

Table 1 Comparison of s·nr to competing tools

Tool s·nr DEIVA DEGUST Oasis Glimma

Features Locate & identify genes ✓ ✓ ✓ ✓ ✓

Interactive plots ✓ ✓ ✓ ✗ ✓

DE analysis pipeline ✗ ✗ ✓ ✓ ✗

Databases Biomart ✗ KEGG ✗ ✗

User data ✓ ✓ ✓ ✓ ✓

Public data ✓ ✗ ✗ ✗ ✗

Compare data ✓ ✗ ✗ ✗ ✗

Show data similarity ✓ ✗ ✓ ✗ ✗

Web-based ✓ ✓ ✓ ✓ ✗

License MIT MIT GPLv3 Closed source LGPL

Dependencies Development node.js, R, Docker node.js Ruby No custom deployment R

Server 15GB RAM with provided data No custom deployment

https://github.com/snr-vis/
http://snr.sf.mpg.de
http://snr.sf.mpg.de
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Additional files

Additional file 1: Interview Structure & Questionnaire.pdf — Interview
structure and questionnaire. Detailed protocol on the questionnaire and
structure guiding the interviews with the domain experts to assess
requirements for s·nr. (PDF 126 kb)
Additional file 2: Requirement Analysis Result.pdf — Requirement
Analysis Result. Detailed description of requirement analysis for user, task
and context for s·nr. (PDF 179 kb)
Additional file 3: Data format.pdf — s·nr data format. Detailed data
format information used in s·nr. (PDF 140 kb)
Additional file 4: Data dictionary.json— Example data dictionary.
Example data dictionary specifying dimension names as well as meta data.
(JSON 2 kb)

Additional file 5: Setup snr.pdf — Instructions for setting up s·nr.
Detailed instructions on how to setup a s·nr instance. (PDF 259 kb)
Additional file 6: Video demonstration.mp4— Video demonstration of
s·nr. A video showcasing the features of s·nr. (MP4 100,558 kb)
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