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Linking neurodegeneration in SNAP to PART 
pathology

The link between atrophy of medial temporal structures on 
MRI and the pathology of PART is straightforward, as is the 
link between abnormally elevated CSF tau and the pathol-
ogy of PART. The link between decreased metabolism in 
AD-like areas on FDG-PET and the pathology of PART 
may, however, not be intuitively obvious. Medial parietal 
and lateral temporal/parietal cortical hypometabolism in 
PART could be explained by direct involvement of these 
areas by tauopathy which has extended beyond the medial 
temporal lobe as described in Crary et al. [5]. It could also 
be explained, however, by the fact that the medial temporal 
lobe (always involved in PART) is highly connected func-
tionally to the posterior default mode network which is 
located anatomically in medial parietal and lateral tempo-
ral/parietal cortex and therefore overlaps extensively with 
the AD-like hypometabolism pattern [1, 2, 36].

Parallels between PART and SNAP

At least 12 different studies in seven different cohorts have 
been published to date describing characteristics of SNAP 
in cognitively normal elderly subjects [13, 18, 20–23, 27, 
34, 37, 39, 41, 44]. And at least three studies in four differ-
ent cohorts have been published describing SNAP in MCI 
subjects [8, 30, 31]. Clear parallels exist between SNAP 
and PART in several areas.

First, while population frequencies of PART are not esti-
mated in Crary et al. [5], PART is judged to be common in 
middle-aged and elderly subjects. SNAP is likewise com-
mon in subjects over age 65. Of 1,425 cognitively normal 
subjects reported from seven different centers, 315 (22 %) 

The condition described by Crary et al. [5] of predomi-
nantly medial temporal lobe tauopathy in the absence of 
β-amyloidosis has a clear parallel in the recent imaging/
biomarker literature. Individuals with imaging/biomarker 
evidence of Alzheimer’s disease (AD)-like neurodegenera-
tion without β-amyloidosis have been labeled “suspected 
non-Alzheimer’s pathophysiology (SNAP)” [8, 13, 18, 22, 
27, 30, 31, 34, 37, 39, 41, 44].

Biomarkers of β-amyloidosis are amyloid PET and low 
CSF Aβ42. Biomarkers of AD-related neurodegeneration 
are high CSF tau (total or phosphorylated); atrophy on 
structural MRI in an AD-like topographic pattern (particu-
larly medial temporal structures); and decreased metabo-
lism on FDG-PET in an AD-like topographic pattern [14]. 
Positive or negative cut points for each biomarker modality 
have typically been established in relation to AD demen-
tia subjects [8, 13, 18, 22, 27, 30, 31, 34, 37, 39, 41, 44]. 
By designating subjects as either β-amyloid positive or 
negative, and neurodegeneration positive or negative, every 
individual can be classified into one of four groups: neither 
amyloidosis nor neurodegeneration; amyloidosis without 
neurodegeneration; amyloidosis plus neurodegeneration; 
or, neurodegeneration without amyloidosis (i.e., SNAP). 
We [18] originally labeled this last group SNAP because 
we felt that neurodegeneration in this group represented 
non-AD etiologies; however, as discussed later in this com-
mentary, the designation “non-AD” has been controversial. 
While the SNAP construct was initially described in cog-
nitively normal elderly [18] it has also been applied to cat-
egorize mildly impaired individuals.
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were categorized as SNAP [18, 22, 27, 37, 39, 41]. Of 277 
MCI subjects reported from 4 different studies, 68 (25 %) 
were categorized as SNAP [8, 30, 31]. Given the large 
numbers of subjects included in these studies (esp. cogni-
tively normal) the population frequency estimates of SNAP 
are likely reliable.

Second, APOE4 is underrepresented in both PART and 
SNAP. The frequency of APOE4 carriership among sub-
jects with definite PART ranges from 9.1 to 20 % for dif-
ferent Braak stages (Table 1, in Crary et al. [5]). Among 
cognitively normal SNAP subjects, reported frequencies of 
APOE4 carriership ranged from 12 to 30 % [18, 22, 27, 41]. 
In all these studies, the frequency of APOE4 in SNAP was 
dramatically lower than in subjects with preclinical AD.

Third, the cognitive/clinical profile of both SNAP and 
PART is one of no impairment to mild cognitive impair-
ment. Frank dementia appears to be rare in SNAP [24]. 
Mean MMSE scores among subjects with definite PART 
grouped by Braak stage (with average age in the 80 s) 
ranged from 28 to 24 Table 1 in Crary et al. [5]). SNAP 
in turn has been described in subjects who are either cog-
nitively normal or MCI. Furthermore, longitudinal clinical 
follow-up of cognitively normal SNAP subjects reveals a 
somewhat benign trajectory where the risk of clinical/cog-
nitive decline for SNAP is significantly less than subjects 
classified as both amyloidosis and neurodegeneration posi-
tive [22, 27, 34, 39, 41].

Caveats concerning parallels between PART and SNAP

Drawing parallels between SNAP and PART comes with an 
important caveat—neurodegenerative imaging/biomarker 
non-specificity. The imaging findings used to define neu-
rodegeneration in SNAP are not specific for temporal lobe 
tauopathy (i.e., PART). While hippocampal/medial tem-
poral atrophy on MRI correlates well with tau burden and 
Braak stage [15, 43], other pathologies also produce hip-
pocampal atrophy. These are well known to pathologists 
and include hippocampal sclerosis [15, 29, 33, 45], fron-
totemporal lobar degeneration (especially with TDP43 
pathology [42]), argyrophilic grain disease, and ischemia/
anoxia [7]. Temporal/parietal FDG-PET hypometabolism 
also occurs in conditions other than temporal lobe tauopa-
thy, for example, cerebrovascular disease [44]. The same 
caveat applies to elevated CSF tau, which is seen in condi-
tions other than PART including ischemic cerebrovascular 
disease, traumatic brain injury, and Creutzfeldt–Jakob dis-
ease [38].

These caveats notwithstanding, to date, autopsy results 
have been reported in 4 SNAP subjects [41]. Three of the 
four had low probability AD and the fourth was not AD 
by NIA–AA pathological criteria [12, 26]. Two of the four 

autopsy reports [41] described medial temporal tauopathy 
without amyloidosis—i.e., they met the definition of PART.

A solution for imaging/biomarker non-specificity may 
soon be at hand. Tau PET ligands have recently been devel-
oped [4, 25, 40] and the hope (or expectation) is that tau 
PET will reveal the contribution of tau to the neurodegen-
erative profile seen in subjects labeled SNAP on the basis 
of MRI, FDG-PET and CSF tau.

The chief controversy: is PART a non‑AD process or 
part of the AD spectrum?

As asserted in the accompanying commentary, the major 
controversy with PART is whether it should be considered 
an age-related non-AD entity or part of the AD pathologi-
cal spectrum. Precisely, the same controversy exists in 
the imaging/biomarker literature on SNAP. Some in the 
imaging/biomarker community argue that evidence of 
β-amyloid deposition is required to label an individual as 
being in the “AD pathophysiological pathway” on the basis 
of biomarkers and hence SNAP is correctly labeled a non-
AD condition. Others argue that because the neurodegener-
ative biomarkers in SNAP are AD-like, SNAP represents a 
“pre fibrillar amyloid” part of the AD spectrum [3]. Elegant 
arguments have appeared on both sides of this debate.

There may be a way, however, to reconcile these oppos-
ing viewpoints on both PART and SNAP. A series of recent 
publications in the imaging/biomarker literature have pro-
posed the following step-wise scenario as a common patho-
logical and biomarker sequence in late-onset AD [16, 17, 
19, 28]. This proposed pathological sequence is in fact 
based on earlier autopsy literature [6, 9, 32].

1. Essentially everyone in the population develops PART 
at some point in life. Typically this occurs prior to sig-
nificant fibrillar amyloid deposition. By itself, however, 
PART produces none to mild clinical symptomatology.

2. Independently from PART, β-amyloidosis develops in 
neocortical areas [10, 35].

3. At some point in time, which varies considerably from 
person to person and through as yet undetermined 
signaling mechanisms, β-amyloidosis begins to induce 
the spread of tauopathy from medial temporal to wide-
spread neocortical association areas.

4. Severe clinical symptoms are due to direct involvement 
of neocortical areas by the accelerated and expanding 
tauopathy, not due to direct involvement by β-amyloid 
deposition.

In this model of late-onset AD [6, 9, 16, 17, 19, 28, 
32], the role of β-amyloid is to induce the propagation of 
tauopathy, rather than to initiate the first tau deposition in 
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the brain (as is likely the case in genetically determined AD 
[11]).

In summary, the paper by Crary et al. [5] formalizes a 
key concept that links autopsy findings to imaging/bio-
marker findings and fills a void that the imaging/biomarker 
community has struggled with for several years. By intro-
ducing the term PART and characterizing this entity Crary 
et al. [5] have provided the clinical, imaging/biomarker 
community with an important foundation on which to rest 
future studies.
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