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Cancer resistance to therapy presents an ongoing and unsolved obstacle, which has clear impact on patient’s survival. In order to
address this problem, novel in vitro models have been established and are currently developed that enable data generation in a
more physiological context. For example, extracellular-matrix- (ECM-) based scaffolds lead to the identification of integrins and
integrin-associated signaling molecules as key promoters of cancer cell resistance to radio- and chemotherapy as well as modern
molecular agents. In this paper, we discuss the dynamic nature of the interplay between ECM, integrins, cytoskeleton, nuclear
matrix, and chromatin organization and how this affects the response of tumor cells to various kinds of cytotoxic anticancer
agents.

1. Introduction

Resistance to radiotherapy, chemotherapy, and novel molec-
ular drugs still represents one of the major obstacles in cancer
therapy [1–3]. Limited effectiveness of therapy inevitably
results in progressive disease or recurrence, thereby reducing
the chance of cure for the patients. Phenotypically, two
types can be distinguished: pretherapeutically existing and
acquired resistances [4, 5]. Acquired resistance to irradiation
is not known, but anticancer drugs, both conventional and
molecular, frequently induce defense mechanisms [6–8]. To
optimize the efficacy of cytotoxic agents, it is necessary
to ameliorate drug delivery to the tumor and to better
understand the underlying molecular mechanisms causing
the resistance or evolving the defense process [5, 9].

In order to address the latter, we and others focused on
a particular cellular substructure called focal adhesion (FA)
[10–17]. FAs are membrane areas, which cells employ to
interact with the surrounding extracellular matrix (ECM)
via integrin adhesion receptors [10, 17–22]. Due to their
multiprotein composition including growth factor receptors,

signaling, and adapter proteins, FAs are huge hubs for
signaling downstream to control critical cell functions such
as cell survival, proliferation, differentiation, and invasion
[11, 13, 14, 18, 20, 22–30]. The highly complex interplay
between all of these signaling molecules secures homeostasis
of single cells as well as of tissues in the context of responses
to external signals from the microenvironment.

In tumor cells, according to the hallmarks of cancer
[31], the proper physiological communication with the
extracellular space is massively disturbed as a consequence of
gene mutations and epigenetic modifications. Despite tumor
growth-driving gene mutations, malignant cells often retain
a high degree of susceptibility to certain extracellular factors
[13, 31–34]. Prime examples are microenvironmental signals
induced by cell adhesion to the ECM, adhesion to neigh-
bouring cells, and growth factor receptor-ligand interactions,
which all contribute to tumor progression and resistance to
cytotoxic injury resulting from chemotherapeutic drugs and
irradiation [12, 32, 35].

Keeping these facts in mind, a lot of effort was put in
the improvement of in vitro models that best reflect in vivo
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growth conditions [11, 33, 36–40]. Since the advent of ECM-
based 3D cell culture assays, a large body of evidence has
suggested that conventional monolayer models do not reflect
the complexity of tissues, phenotypes of cells, and mod-
ifications in transcriptome, proteome, phosphoproteome,
protein-protein interactions, and signal transduction as the
3D models [11, 40–53].

From the therapeutic point of view, flat monolayer cell
cultures contain an ECM-integrin-cytoskeleton connection
very different from 3D grown cells [22, 40, 45, 46, 50,
51, 54, 55]. Moreover, cell growth in 3D ECM shows
additional features like 3D multicellular spheroid growth
[38, 56, 57]. Common to all 3D conditions is that the
responsiveness to extracellular signals, drug, and radiation
sensitivity as well as the physical forces between ECM and
cytoskeleton for controlling chromatin organization and
gene expression is very different from cells cultured in 2D.
In this paper, we discuss cell-adhesion-mediated radio- and
chemoresistance in the context of signaling and interplay
between ECM, integrins, cytoskeleton, nuclear matrix, and
chromatin organization.

2. Microenvironmental Signals Including
Integrin Signaling Regulate Cellular
Radio- and Chemosensitivity

Next to genetic alterations, the microenvironment plays an
important role for carcinogenesis, tumor progression, and
development of therapy-resistant phenotypes [31]. A closer
look at the initiators and promoters of this multistep process
suggests that a combination of both extra- and intracellular
events commonly occurs to activate proto-oncogenes and
deactivate tumor suppressor genes [31]. With regard to car-
cinogenesis, the particular reasons for cancer development
can only be assumed in the minority of cases. Exploring
a “mature” tumor provides a picture of the accumulated
alterations in the various molecular determinants, which
maintain unlimited growth and cause both existing and
de novo therapy resistance mechanisms. In addition to
the aforementioned genetic modifications, various soluble
and structural microenvironmental factors like cytokines,
chemokines, growth factors, and ECM essentially contribute
to anticancer therapy defense mechanisms [13, 58–63].

Importantly, the ECM has structural, signaling, and stor-
age functions. Thus, cells communicate with the surrounding
ECM by mechanotransduction, by integrin-mediated adhe-
sion, and by growth factor release and subsequent binding
to their cognate receptors [21, 64–68]. For the role of
mechanotransduction, only one issue has been evidently
shown: changes in ECM stiffness induce perturbations of
normal cell physiology preparing the ground for malignant
transformation [42, 50, 69–71]. Open questions are, for
example, how changes in ECM expression pattern of tumors
impact on tumor cell behavior or how therapy-related alter-
ations in tumor structure influence integrin-ECM interac-
tions and intracellular signaling. For cell-adhesion-mediated

radioresistance (CAM-RR) and cell-adhesion-mediated drug
resistance (CAM-DR), integrins play critical roles [59, 72,
73].

Integrins are transmembrane receptors consisting of an
α and a β chain. The 18 α and 8 β subunits form 24
known αβ-heterodimers dependent on cell type and function
[20]. Integrin signals are transferred via the cell membrane
in both directions. The binding activity of integrins is
regulated from the inside and is called inside-out signaling;
the interaction of integrins with ECM proteins for signal
transduction into the cell is called outside-in signaling
[10, 17–22]. These interactions essentially contribute to the
regulation of various cellular functions like proliferation,
survival, adhesion, differentiation, migration of cells, and
tissue integrity [29, 41, 74–77].

For many years, it remained unknown how integrin
signaling mediates tumor cell resistance. Well known were
increased survival and reduced apoptosis in irradiated or
drug-treated tumor cells of varying origin like head and
neck, lung, pancreas, glioma, colon, breast, cervix, prostate,
myeloma, and leukemia [58, 78–83]. But which signaling
cascades do transmit these biochemical prosurvival signals?
Physiologically, a large set of signal transduction and adapter
molecules assembles at the cytoplasmic integrin domain
upon integrin binding to ECM [17, 20]. Formation of mature
FAs is critical for robust cell adhesion to ECM as well
as accessibility to the intracellular signaling network for
optimized regulation of key cellular processes [10, 16, 17].
For this signaling, integrins and growth factor receptors need
to cooperatively and mutually interact [84]. Both adapter
and nonreceptor bound signaling proteins are recruited to
integrin or growth factor receptor tails upon activation.
Through proteins such as focal adhesion kinase (FAK),
small GTPases of the Rho family, PI3K/Akt, JNK, and
ERK as well as the ternary protein complex consisting of
integrin-linked kinase (ILK), PINCH1 and alpha-parvin
(IPP), talin, alpha-actinin, and vinculin, biochemical signals
are transferred as a result of integrin/RTK commitment
[14, 15, 17, 85]. Despite prosurvival signaling, it remains to
be solved what exact impact morphology has on cell survival.
ECM-integrin-actin cytoskeletal and cell-cell-intermediate
filament connections determine cell morphology, which
consequently define function and integrity of single cells
and tissues [33, 34, 37, 42, 62, 86]. A variety of molecules
involved in these interactions have been shown to be altered
in cancer. For example, integrins are overexpressed in many
human cancers originating from the head and neck region
[87], lung [88], prostate [89], ovary [90], and breast [91],
while E-cadherin, as one of the key cell-cell contact proteins,
is frequently reduced in its expression or absent [87, 92, 93].

These expression changes are highly likely to impact on
tumor cell behavior. We know that this physical linkage
between ECM and cytoskeleton via integrins is crucially
involved in translating mechanical into chemical signals
and in controlling cell morphology [37, 64, 68, 71, 94].
In vivo, the ECM determines the shape and stiffness of
tissues [34, 62, 95]. Under conventional cell culture con-
ditions, ex vivo cultured cells grow attached to artificial
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surfaces like cell culture plastic. Missing physiological cell-
matrix contacts, as optimally met in a 3D environment,
has dramatic impact on cell shape and cellular behavior
in vitro [12, 13, 37, 41, 69, 86, 96]. A large number of
studies demonstrated that 2D cultured cells lose important
features of their original phenotype due to severe genetic,
epigenetic, and signal transduction changes [42, 48, 71, 97].
As this is similarly true for normal and cancer cells, one
might realize that tumor cells have a preserved susceptibility
for external signals originating from the ECM or soluble
extracellular factors. Obviously, these facts are contrary to
observations demonstrating an independency from external
input signals by autonomous activation of intracellular
pathways or activating mutations in proto-oncogenes leading
to anchorage-independent growth [13, 31, 32]. Doubtless,
mutation-driven, constitutively activated oncogenes overrun
antiproliferative signals from the outside, but the myriad of
additional stimuli affecting the cells is very well perceived and
processed.

Taking these features into account, one can easily imag-
ine that ECM and integrins contribute to the regulation
of the cellular reaction to genotoxic injury. Onoda et
al. found that nonlethal irradiation of melanoma cells
induces alphaIIb/beta 3 integrin upregulation and increased
adhesion to fibronectin [98]. Further studies corroborated
these findings in a variety of normal and transformed
human cell lines [59, 72, 78, 99–101]. However, clinically
important is the fact that integrin-mediated cell adhesion
to the surrounding ECM confers resistance to ionizing
radiation, cytotoxic drugs, and molecular agents [59, 72,
102–104]. In addition to CAM-DR [59] and CAM-RR
[72], a new paradigm was entitled “Environment-Mediated
Drug Resistance” by Meads and colleagues (EMDR) [60].
Intriguingly, these three phenomena have been confirmed in
irradiated or drug-treated cells from various tumor entities
like glioma, leukemia, and melanoma as well as carcinomas
of the pancreas, lung, and head and neck [18, 25, 28, 59, 72,
105–107].

Besides increased cell survival, ECM attachment pro-
longed radiogenic G2/M cell cycle arrest [103, 108] and
reduced the number of residual DNA double-strand breaks
(DSBs) and lethal chromosomal aberrations [40]. Also apop-
totic cell death of small cell lung cancer cells was diminished
under adhesion to laminin, fibronectin, or collagen type IV
upon treatment with cytotoxic drugs [83].

Based on these findings, efforts are undertaken to
uncover the underlying mechanisms and identify the cellular
mediators and determinants involved in CAM-RR and
CAM-DR. To elucidate therapeutic possibilities, small inter-
fering RNA (siRNA) knockdown and antibody-mediated
integrin inhibition are evaluated in different tumor cell
lines with promising effects. In breast carcinoma, head and
neck carcinoma, glioma, and leukemia cells, beta1 integrin
targeting resulted in enhanced radiosensitivity and apoptosis
[26, 27, 47, 80, 102, 109]. The pseudokinase ILK was
clearly identified as antisurvival molecule in an attempt to
classify the pro- and antisurvival function(s) of molecules
acting downstream of integrins in cancer cells exposed to

radiotherapy (reviewed in [110, 111]). Amongst others, this
prosurvival group of molecules consists of FAK, JNK1, Akt1,
PINCH1, and Caveolin-1 [55, 104, 112–117]. For example,
overexpression of FAK protects 3D grown head and neck
squamous cell carcinoma (HNSCC) cells from radiation-
induced cell death [118], while siRNA-mediated silencing or
pharmacological inhibition of FAK increases the radiosen-
sitivity of different tumor cell lines from pancreatic cancer
[112], breast cancer, colorectal cancer [119], and HNSCC
[45, 55]. Furthermore, human melanoma cells become more
sensitive to the chemotherapeutic agent 5-fuorouracil when
FAK expression is downregulated [120]. In pancreatic cells,
a reduction of FAK expression using microRNA for RNA
interference leads to decreased FAK phosphorylation and
repressed chemoresistance to gemcitabine [121]. Another
interesting key player in this field is the LIM domain-
containing particularly interesting new cysteine-histidine-
rich 1 protein (PINCH1). Recent work from our group
showed that knockdown of PINCH1 diminished the chemo-
and radioresistance of diverse human carcinoma cells in
vitro and in vivo [43, 122]. Mechanistically, PINCH1 was
identified as novel Akt1 regulator by serving as platform
for a regulatory interaction between protein phosphatase 1α
(PP1α) and Akt1 [43]. According to the radiosensitization
upon PINCH1 depletion, increased numbers of radiogenic
DSBs were found in PINCH1 knockdown cell cultures
indicating a role of PINCH1 in DNA repair processes [122].
On the basis of these findings, identification and targeting of
molecules such as FAK or PINCH1 that critically regulates
the cytotoxic drug and radiation response of tumor cells is a
promising concept to overcome radio- and chemoresistance
of tumor cells to improve cancer patient survival.

Additionally and of high importance for the current
concepts of multimodal therapies, integrin-mediated cell-
ECM interactions confer reduced efficacy of novel molecular
agents/small molecules. In HNSCC, Eke and colleagues
showed that adhesion to fibronectin attenuates the antipro-
liferative effect of a potent pharmacological epidermal
growth factor receptor (EGFR) tyrosine kinase inhibitor
[104]. Recent findings provide evidence for an essential
role of ILK for EGFR targeting in HNSCC [113] and that
EGFR overexpression mediates hypersusceptibility to the
anti-EGFR antibody cetuximab in 3D grown HNSCC cell
lines in a FAK-dependent manner [55].

In summary, integrin-mediated adhesion to ECM pro-
tects cancer cells from varying types of cell death intended
by radiotherapy, chemotherapy, and molecular drugs. Mono-
therapeutic targeting of integrins and intracellular signaling
molecules to overcome adhesion-mediated resistance is
already part of first clinical trials [13]. Cilengitide, a peptide
potently blocking ανβ3 and ανβ5 integrin, is currently under
evaluation in clinical phase II trials in glioblastoma and other
malignancies [123, 124]. Identification of novel potential
cancer targets and evaluation of targeted approaches against
these targets require extensive examination and, most impor-
tantly, consideration and usage of preclinical tumor models,
which best reflect clinical circumstances.



4 Chemotherapy Research and Practice

Cell shape F-actin, DAPI

2D 3D

(a)

Chromatin density HP1α-EGFP, DAPI

2D 3D

(b)

∗

∗∗

∗

0 2 4 6

0.01

0.1

1

2D
3D

Radiation dose (Gy)

Cell survival of HP1α-EGFP transfectants

Su
rv

iv
in

g 
fr

ac
ti

on

(c)

Figure 1: Cell morphology, HP1α-EGFP distribution and clonogenic radiation survival of cells grown under three-dimensional (3D) growth
conditions. (a) Comparison of cell morphology under 2D and 3D growth conditions (green; DAPI, blue, F-actin, red). (b) Fluorescence
images of 2D and 3D grown A549 cells expressing HP1α-EGFP fusion protein. Images were acquired using laser scanning microscopy. (c)
2D and 3D clonogenic radiation survival of HP1α-EGFP expressing A549 cells irradiated with single doses of X-rays (0–6 Gy). Means ± SD
and Student’s t-test comparing 3D versus 2D conditions. ∗P < 0.05; ∗∗P < 0.01; n = 3; bar, 10 μm.

3. The Impact of Focal Adhesion-Chromatin
Linkage on Tumor Resistance against
Irradiation and Cytotoxic Drugs

Regardless of normal or malignant cells, extracellular factors
control critical cellular functions like survival, proliferation,
and differentiation in a tissue-specific context [23, 37, 71,
97]. Studies using ex vivo cell cultures show the loss of
morphological and functional properties in an artificial
environment such as cell culture plastic as compared to ECM
scaffolds [38, 69, 71]. Interesting studies in diverse tumor
cell lines and normal cells showed that 3D growth in a
matrix modifies gene and protein expression, cell survival,
proliferation, differentiation, and metabolism in comparison
to conventional 2D monolayer cell cultures [40, 42, 43, 46,
48, 116]. In line with these findings, osteosarcoma cells are

protected against doxorubicin treatment [125] and head and
neck and non-small-cell lung cancer cells display a reduced
radiation sensitivity when grown in a 3D matrix in contrast
to 2D [11, 40]. Beside these effects on cell survival upon
cytotoxic injury, 3D growth conditions result in differential
gene expression [126]. Global reorganization of chromatin
through varying ECM compositions has been shown to
be accompanied by changes in gene expression [94, 95,
127, 128]. Early work from Barcellos-Hoff and colleagues
indicated that although polarized monolayers are formed,
mammary epithelial cells fail to express milk proteins in
2D [23]. In 3D laminin-rich ECM, however, they formed
alveolar-like structures with a central lumen and secreted
milk proteins like casein [48, 49, 71, 95]. In this context,
genes with ECM-responsive elements (EREs) were identified
and helped to explain how the ECM participates in the
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Figure 2: Schematic of the interplay between extracellular matrix (ECM), cytoskeleton, and nuclear matrix and the physical forces that affect
cell morphology and chromatin organization.

regulation of gene expression [94, 128–130]. Furthermore,
the pattern of gene expression is controlled by chromatin
organization, which in turn is regulated by posttranslational
modifications, that is, acetylation, phosphorylation, and
methylation of nucleosomal histones [131, 132].

By integrating the above into an ECM-integrin-actin-
nuclear membrane-nuclear matrix scenario, the ECM serves
as one of the most powerful determinants of chromatin orga-
nization and gene expression [94, 130]. Concurrently, his-
tones are upregulated as shown in 3D grown neuroblastoma
cells [133] and tumor spheroids of melanoma cells [134], and
histone acetylation is decreased to cooperatively control gene
expression [46, 86, 135]. These highly dynamic actions are
facilitated by histone acetyltransferases (HAT) and histone
deacetylases (HDAC) [136, 137]. Gene expression in less
condensed, euchromatic DNA regions is associated with
histone hyperacetylation, while transcriptional repression
occurs in more dense, heterochromatic DNA regions, by
deacetylation [132, 138]. Recent own data demonstrate
that growth in 3D ECM scaffolds decreases the levels of
histone H3 acetylation in line with enhanced expression
of the heterochromatin protein HP1α indicating a higher
amount of heterochromatin [40]. Additionally, Le Beyec et
al. highlighted the impact of cell-shape-induced changes
in histone acetylation [46]. Cells cultured on polyHEMA
showed a round cell morphology that led to histone
deacetylation as consequence of changes in cell morphology
but not adhesion [46]. These observations indicate that
modifications in cell morphology impact on gene expression
and thereby fundamentally determine tissue homeostasis
and cellular responsiveness to external stress signals in a
microenvironment-specific context [69].

Hence, it is most likely that cells cultivated in 3D
show also differences in pathways of DNA repair after
treatment with DNA-damaging agents in comparison to 2D.
Little is known about the distribution of radiogenic DSBs

within areas with different chromatin condensation status.
With regard to the increased radiation survival caused by
reduced numbers of residual DSBs and a lower number
of chromosomal aberrations, 3D cell growth induces larger
amounts of heterochromatin in comparison to 2D (Figure 1)
[40]. Furthermore, these data show DSB localization in eu-
and heterochromatic DNA regions to be similar in 3D and
tumor xenografts. Conversely to this 1 : 1 distribution, 2D
cells show a 2 : 1 eu- to heterochromatin DSB distribution
[40]. These results underline the findings that 3D cell culture
models better mimic the in vivo situation than conventional
2D monolayers.

How are ECM and nuclear matrix linked? Cytoskele-
tal filaments physically bridge between integrins or other
cell adhesion molecules and the nuclear matrix including
chromatin structures (Figure 2) [17, 18, 64, 127, 139].
Thus, both cell-matrix-activated signal transduction and
mechanical forces sensed at the surface promote structural
rearrangements in the cytoplasm and in the nucleus [68,
127, 140]. The linkage between cytoskeletal filaments and
the nuclear matrix was identified as a complex termed linker
of nucleoskeleton and cytoskeleton (LINC) and contains
nesprins, sun, and lamin proteins [68, 141–143]. Nesprins
1 and 2 are nuclear membrane proteins that bind actin
filaments and interact with sun proteins at the inner nuclear
membrane. To control nuclear organization and gene func-
tion according to external stimuli, lamin proteins, which are
connected with the inner nuclear membrane, form a nuclear
scaffold that can bind chromatin directly or indirectly via
other nuclear proteins [142, 144].

Through this complex interplay between ECM, integrins,
cytoskeleton and nuclear matrix, many changes such as
genome reorganization and differential gene expression,
alterations in cell morphology, and integrin-mediated sig-
nal transduction occur in response to microenvironmental
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factors [13, 23, 33, 129]. Importantly, this focal adhesion-
chromatin linkage contributes to existing and acquired ther-
apy resistance in cancer. An increased understanding of the
underlying molecular mechanisms and the implementation
of better translational cancer models will assist our efforts to
optimize and personalize cancer therapy.
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