
8520–8534 Nucleic Acids Research, 2021, Vol. 49, No. 15 Published online 31 July 2021
https://doi.org/10.1093/nar/gkab638

CellCall: integrating paired ligand–receptor and
transcription factor activities for cell–cell
communication
Yang Zhang1,*,†, Tianyuan Liu1,†, Xuesong Hu2,†, Mei Wang2, Jing Wang1, Bohao Zou3,
Puwen Tan1, Tianyu Cui1, Yiying Dou1, Lin Ning1, Yan huang1, Shuan Rao4, Dong Wang 1,*

and Xiaoyang Zhao2,5,6,*

1Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515,
China, 2State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic
Medical Sciences, Southern Medical University, Guangzhou 510515, China, 3Department of Statistics, University of
California Davis, Davis, CA, USA, 4Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University,
Guangzhou 510515, China, 5Guangdong Key Laboratory of Construction and Detection in Tissue Engineering,
Southern Medical University, Guangzhou 510515, China and 6Department of Gynecology, Zhujiang Hospital,
Southern Medical University, Guangzhou 510280, China

Received April 06, 2021; Revised June 24, 2021; Editorial Decision July 12, 2021; Accepted July 16, 2021

ABSTRACT

With the dramatic development of single-cell RNA
sequencing (scRNA-seq) technologies, the system-
atic decoding of cell-cell communication has re-
ceived great research interest. To date, several in-
silico methods have been developed, but most of
them lack the ability to predict the communication
pathways connecting the insides and outsides of
cells. Here, we developed CellCall, a toolkit to infer
inter- and intracellular communication pathways by
integrating paired ligand-receptor and transcription
factor (TF) activity. Moreover, CellCall uses an em-
bedded pathway activity analysis method to identify
the significantly activated pathways involved in in-
tercellular crosstalk between certain cell types. Ad-
ditionally, CellCall offers a rich suite of visualization
options (Circos plot, Sankey plot, bubble plot, ridge
plot, etc.) to present the analysis results. Case stud-
ies on scRNA-seq datasets of human testicular cells
and the tumor immune microenvironment demon-
strated the reliable and unique functionality of Cell-
Call in intercellular communication analysis and in-
ternal TF activity exploration, which were further val-
idated experimentally. Comparative analysis of Cell-
Call and other tools indicated that CellCall was more
accurate and offered more functions. In summary,

CellCall provides a sophisticated and practical tool
allowing researchers to decipher intercellular com-
munication and related internal regulatory signals
based on scRNA-seq data. CellCall is freely available
at https://github.com/ShellyCoder/cellcall.

INTRODUCTION

In multicellular organisms, intercellular communication al-
lows multiple cells to coordinate with one another to form
tissues, organs or systems and then accomplish various bi-
ological tasks (1–3), and aberrant loss or gain of extracellu-
lar recognition functions can contribute to various diseases
(4,5). Despite advances in technology, a comprehensive un-
derstanding of intercellular communication, the associated
internal signal cascades, and its highly integrated and ex-
tremely dynamic nature remain largely mysterious (6). Re-
cently, with the rapid development of single-cell RNA se-
quencing (scRNA-seq) technologies, the systematic deci-
phering of the intercellular crosstalk mediated by ligand-
receptor (L–R) interactions quickly became a research fo-
cus (7–10). For example, analysis of intercellular commu-
nication in the alveolar niche revealed functional pathways
that mediate the growth and self-renewal of alveolar type 2
progenitor cells, including IL-6/Stat3, Bmp, and Fgf signal-
ing (9). Hepatocyte-derived VEGFA has been found to ac-
tivate PLVAP in tumor endothelial cells and likely promote
oncofetal reprogramming of the tumor immune microen-
vironment (TIME) (10). In a sense, scRNA-seq technolo-
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gies have greatly facilitated the development of intercellu-
lar communication research and have become an essential
bioinformatics pipeline for scRNA-seq processing.

To date, many algorithms have been developed to infer
cell-cell communications, such as CellPhoneDB (11), Nich-
enet (12), SingleCellSignalR (13), NATMI (14) CellChat
(15) and RNA-Magnet (16). Most of these methods in-
fer intercellular communication based only on the expres-
sion intensity and/or specificity of L–R pairs, such as
their coexpression (sum, mean or product) (11,17), differ-
ential expression (18,19) and expression correlation (20).
In addition, some of these methods introduced thresh-
olds for the inferred communication scores by evaluating
the specificity of paired L–R, with methodologies such
as differential expressed analysis of ligands/receptors and
nonparametric tests (permutation test and rank-sum test)
(11,15,18). However, there are certain limitations for infer-
ring intercellular communication based on the expression
intensity/specificity of paired L–R. First, the expression of
some receptors is not closely correlated with cell-cell com-
munication because they usually exhibit a constant/stable
expression level in cells (21), and mRNAs encoding some
surface receptors usually show low abundance, which likely
leads to these receptors not being detected at the single-
cell level (16,22). More importantly, cell-cell communica-
tion includes not only intercellular signaling but also the
intracellular transmission and amplification of the signal
through specific signaling pathways, generally culminat-
ing in altered activity of downstream transcription factors
(TFs) and gene regulatory networks (GRNs) (12,23). To ad-
dress these problems, several methods have taken intracel-
lular signaling into account, including Nichenet (12) and
SoptSC (24). Nichenet was applied to predict ligand-target
gene (TG) links between cells by combining their expression
data with prior knowledge on extracellular signaling and
downstream GRNs (22). The integrated network (includ-
ing L–R interactions, intracellular signaling and gene reg-
ulatory interactions) embedded in Nichenet was collected
from multiple sources with patchy data quality (some inter-
actions were predicted). Nichenet could not provide defini-
tive lines of communication connecting the outside and in-
side of the cells. SoptSC predicts intercellular communica-
tion by combining the expression of L–R interactions and
the genes in its downstream signal transduction pathway
but does not collect intracellular signaling pathway data.

Here, to infer the pathways connecting the inside and out-
side of the cells, we developed CellCall, a toolkit to infer
intercellular communication networks and internal regula-
tory signals by integrating intracellular and intercellular sig-
naling. (i) CellCall collects ligand–receptor–transcript fac-
tor (L–R–TF) axis datasets based on KEGG pathways.
(ii) According to prior knowledge of L–R–TF interactions,
CellCall infers intercellular communication by combining
the expression of ligands/receptors and downstream TF ac-
tivities for certain L–R pairs. (iii) CellCall embeds a path-
way activity analysis method to identify the crucial path-
ways involved in communications between certain cell types.
(iv) CellCall offers a rich suite of visualization options (Cir-
cos plot, Sankey plot, bubble plot, ridge plot, etc.) to intu-
itively present the analysis results. In addition, we demon-
strated the overall features of CellCall by applying it to

case studies on scRNA-seq datasets of human testicular
cells and TIME, evaluated the reliability and functionality
of CellCall predictions by immunofluorescence assays, and
performed comparison analysis with other tools.

MATERIALS AND METHODS

Collection of L–R–TF axis and TF–TG interaction data

The L–R–TF axis dataset was extracted from the KEGG
pathway analysis using the following steps. (1) We collected
human L–R interactions from the NATMI (14), Cellinker
(25), CellTalkDB (26), CellChat (15) and STRING v11
databases (only literature or experimental supported data
were collected) (27); ligand/receptor complexes were in-
cluded among the L–R interactions. (2) We extracted the
TFs downstream of the L–R interaction from the KEGG
pathway. Only the L–R interaction and downstream TFs in
the same branch of a given pathway were identified as an
L–R–TF axis. A total of 19 144 human L–R–TF axes were
obtained.

Human TF–TG interactions were collected from
TRANSFAC (28), JASPAR (29), RegNetwork (30),
Pathway Commons (31), TRRUST (32), Ontogenet (33),
ReMap (34), EVEX (35), HTRIDB (36), CHEA (37),
ENCODE (38) and MOTIFMAP (39). A total of 587,248
human experimental supported interactions were collected.
Moreover, a total of 12 069 mouse L–R–TF axes and 554
207 TF–TG interactions were obtained by the orthology
majority-voting scheme described in Cellinker (25).

Inferring intercellular communication

To infer the cell-cell communications between different cell
types, Sk is defined as the communication score of an L–R
interaction k between cell types i and j, which is evaluated
by integrating the L2 norm of the L–R interaction

−−→
LRk and

the activity score of the downstream TF TFk. The formula
is as follows:

Sk = ‖−−→LRk‖2 × TFk (1)

where TFk is the activity score of the TF downstream of
L–R interaction k.

−−→
LRk is a two-dimensional vector repre-

sented by the normalized expression value (normalized by
the softmax function) of the ligand and receptor for L–R
interaction k:

−−→
LRk = (

sof tmax (Li,k) , sof tmax
(
Rj,k

))
(2)

where Li,k is the mean expression value of the ligand in cell
type i and Rj,k is the mean expression value of the receptor
in cell j. In addition, to prevent the influence of dropout of
the scRNA-seq data, users can also choose the quantile ex-
pression value (25%, 50% and 75%) of the ligand/receptor
to represent Li,k and Rj,k.

If the ligand is a complex containing n subunits, L is de-
fined as the geometric mean of the expression value of all
subunits:

L = n

√√√√ n∏
g=1

lg (3)
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where lg is the expression value of subunit g in the ligand
complex.

Similar to the case for ligands, if a receptor is a complex
containing n subunits, R is defined as the geometric mean
of the expression value of all subunits:

R = n

√√√√ n∏
h=1

rh (4)

where rh is the expression value of subunit h in the receptor
complex.

The TF activity score TFk was evaluated according to the
expression of the TF regulon. According to SCENIC (40),
a regulon is defined as the set of TGs of a TF that are co-
expressed with the TF in the single-cell expression profile.
The formula is as follows:

Regulon = GTG

⋂
Gcoexp (5)

where GTG is the gene set of all TGs for a TF, and Gcoexp
is the gene set of all coexpressed genes of a TF. Gene co-
expression was calculated by Spearman’s rank correlation
coefficient (P < 0.05, |R| > 0.1).

Then, TFk is the gene set enrichment analysis (GSEA)
enrichment score (ES) (41) for the regulon. The formula is
as follows:

TFk =
{

0. ad just.p ≥ α

GSE A(FC, Regulon), ad just.p < α
(6)

where FC is the fold change (receiver cells / other cells) of
all TGs in Regulon, and adjust.p is the significance level of
GSEA. If adjust.p is lower than the threshold α (default as
0.05), then TFk is equal to the ES of GSEA; otherwise, TFk
is equal to 0.

If there are n TFs (n > 1) downstream of L–R interaction
k, the activity score TFk is defined as the weighted sum of
all TFs. The formula is as follows:

TFk =
n∑

i=1

1/Mk,i∑n
i=1 1/Mk,i

× TFk,i (7)

where M is the shortest step from TFk,i to receptor k in a
pathway.

Pathway activity analysis

CellCall embeds a pathway activity analysis method to help
explore the main pathways involved in communication be-
tween certain cells. First, CellCall quantifies the activity of
pathway i based on the Jaccard similarity coefficient. The
formula of the pathway activity score nPASi is as follows:

n P ASi = P ASi − P ASi

σ
(8)

where nPASi is the z-score normalized PASi, and the PASi
was calculated as follows:

P ASi = CLR
⋂

PLR

CLR
⋃

PLR
(9)

where CLR is the L–R interaction between certain cell types
inferred by intercellular communication analysis. PLR is the
L–R interaction in the pathway.

CellCall also estimated the significance of pathway activ-
ity by hypergeometric testing. The formula is as follows:

P = 1 −
q−1∑

k = 0

(
t
k

) (
m − t
n − k

)
(

m
n

) (10)

where m is the number of all L–R interactions and t is the
number of L–R interactions inferred by intercellular com-
munication analysis between two cell types. n is the number
of L–R interactions in a pathway. q is the overlap of t and
n.

Data collection and processing of scRNA-seq datasets

The scRNA-seq data of 2532 human testicular cells were
collected from our previous study (GSE106487) (Supple-
mentary Table S1) (42), and the expression levels were
normalized by log2[TPM/10 + 1] (transcripts per million,
TPM). The 10 processed TIME scRNA-seq datasets were
collected from the TISCH database (Supplementary Table
S2) (43). A standardized analysis workflow based on MAE-
STRO v1.1.0 (44) was applied for quality control, batch ef-
fect removal, cell clustering and cell type annotation based
on the expression matrix, with the expression in each cell
scaled to 10 000.

Immunofluorescence of the human testicular cells

Human seminiferous tubules were fixed with 4%
paraformaldehyde and stored in 70% ethanol. Then,
fixed samples were embedded in paraffin and sliced into
5-�m sections by microtome (Leica RM2235). Immunos-
taining was performed as described previously (42).
Deparaffined and rehydrated sections were washed in PBS
for 5 min after antigen retrieval and then blocked with
5% BSA at room temperature for 1 h. Subsequently, the
sections were incubated with primary antibodies at 4◦C
for more than 8 hours and secondary antibodies (Jackson
ImmunoResearch, Alexa 488-, Alexa 594-) for 1 h at room
temperature. Nuclei were counterstained with 10 �g/ml
Hoechst 33342 for 15 min at room temperature. All images
were captured with a ZEISS LSM880 confocal microscope.
The experiments performed in this study were approved
by the Third Affiliated Hospital of Guangzhou Medical
University (2017-055). And informed consents to every
donor in our study have been signed.

The following primary antibodies were used: mouse
anti-�H2AX (Abcam, ab26350), mouse anti-FGFR3
(Santa Cruz, sc-13121), mouse anti-BMPR1B (Abcam,
ab1565836), mouse anti-DDX4 (Abcam, ab27591), rabbit
anti-INHBB (Abcam, ab69286), mouse anti-ACVR2B
(R&D Systems, MAB3392), rabbit anti-pSMAD2 (Cell
Signaling Technology, #18338), rabbit anti-GDF5 (Abcam,
ab93855), rabbit anti-pSMAD1 (Abcam, ab226821) and
rabbit anti-ACVR1B (Abcam, ab109300).
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Comparison of CellCall with CellPhoneDB, CellChat,
iTALK and SingleCellSignalR

All the methods were applied to infer intercellular commu-
nications using their own default parameters. An scRNA-
seq dataset of human testicular cells was adopted as the test-
ing data (from STs to SSCs). Meanwhile, the 1,141 L–R in-
teractions from the dataset embedded in CellCall were used
for the other four methods. The Wilcoxon rank-sum test was
used to detect the differentially expressed genes analysis for
iTALK (P < 0.05, |log2(FC)| > 1). The rules of literature
curation are as follows: (i) the ligand and/or receptor has
been mentioned to be expressed in testicular cells; (ii) the
receptor has been reported to be located in SSCs and (iii)
the L–R interaction has been reported to be related to sper-
matogenesis.

Statistical analysis

Spearman correlation tests, survival analyses and Fisher’s
exact tests were performed in R. The correlations between
TFs and target genes were evaluated using Spearman cor-
relation analysis in the R package ‘psych’. Kaplan–Meier,
log-rank test and univariate Cox regression in the R pack-
age ‘survival’ were used to assess the relationships between
TF expression and survival time. Hypergeometric tests and
Fisher’s exact tests were used in the R package ‘stats’, en-
richment analysis was used in the R package ‘clusterPro-
filer’. The receiver operating characteristic (ROC) curve was
used in the R package ‘pROC’.

RESULTS

Overview of CellCall

The core algorithm of CellCall and the underlying inter-
cellular communication model are shown in Figure 1. Ba-
sically, the schematic diagram and biological model of in-
tercellular communication can be described as follows: cell
signals are transmitted from sender cells to receiver cells
through intercellular L–R interactions, and then the signals
are transduced to the receiver cell interior through a spe-
cific signaling pathway, generally culminating in changes in
the activity of downstream TFs and GRNs (Figure 1A and
B). According to this biological model, we built a statisti-
cal model for intercellular communication consisting of two
parts, an L–R pair (intercellular signaling) and a regulon
(intracellular signaling) (Figure 1C). The L–R pair was de-
fined as a two-dimensional vector represented by the expres-
sion value of the ligand and receptor. The regulon was de-
fined as the set of TGs for a TF that were co-expressed with
the TF. Then, the cell-cell communication score of an L–R
pair is calculated by integrating intercellular signaling (ex-
pression of ligand and receptor) and intracellular signaling
(activity score of downstream TFs). Notably, the activity
status (active or inactive) and score of downstream regulons
were estimated by gene set enrichment analysis (GSEA).
When multiple regulons could be activated by one L–R in-
teraction, the activity score was defined as the weighted sum
of all activated regulons. Ultimately, CellCall was able to
not only quantify intercellular communication for certain
L–R pairs but also infer its internal regulatory signaling

as reflected by TF activity. In addition, CellCall embeds a
pathway activity analysis method to help explore the main
pathways involved in intercellular crosstalk among certain
cells (see method for details) (Figure 1D).

The accuracy of the prior knowledge of L–R interac-
tions and downstream TFs is crucial for inferring mean-
ingful intercellular communications (15). Therefore, we ex-
tracted the data for the L–R–TF axis construction from the
KEGG database, and only the L–R interactions and down-
stream TFs in the same branch of a pathway were identified
as an L–R–TF axis. Experimentally supported TF–TG in-
teractions were collected from multiple databases. The soft-
ware package CellCall was implemented in R. In addition
to intercellular communication analysis and pathway activ-
ity analysis, CellCall also offers a rich suite of visualization
tools to intuitively present the results of the analysis, includ-
ing heatmap, Circos plot, bubble plot, Sankey plot, TF en-
richment plot and ridge plot (see Figure 1D). The usage of
these visualization kits is demonstrated in the case studies
as follows.

Inferring cell-cell communication between the human sper-
matogenic niche and germ cells

The testicular niche plays important roles in spermatogene-
sis through a complex intercellular signal transduction cas-
cade (45,46). Hence, we applied CellCall to an scRNA-seq
dataset of human testicular cells from our previous study
(42) (see Figure 2A and Supplementary Table S1). As Ser-
toli (ST) cells are the only somatic cells located in the semi-
niferous tubule that could support the development of germ
cells and act as a spermatogenic niche (47,48), we analyzed
intercellular signaling from Sertoli cells to 14 other types of
germ cells, including spermatogonial stem cells (SSCs), dif-
ferentiating spermatogonia (Diff.ing SPG), differentiated
spermatogonia (Diff.ed SPG), three consecutive stages of
leptotene spermatocytes (L1, L2 and L3), zygotene (Z),
pachytene (P), diplotene (D), spermatocyte 7 (SPC7) and
spermatids at four stages (S1, S2, S3 and S4). As seen in
Figure 2B and Supplementary Figure S1, SSCs were the
prominent receiver of signals from Sertoli cells compared
to other germ cell types. Pathway activity analysis showed
that intercellular signaling from Sertoli cells to SSCs was
enriched mainly in the Notch signaling pathway, Hippo sig-
naling pathway, MAPK signaling pathway, PI3K-Akt sig-
naling pathway and human cytomegalovirus infection path-
way (Figure 2C). These pathways have been reported to be
critical for spermatogenesis (49–51).

A total of 47 intercellular communication pathways from
Sertoli cells to SSCs were identified (Figure 2D and Sup-
plementary Figure S1), most of which (41/47, see Supple-
mentary Table S3 for details) have been implicated in sper-
matogenesis or SSC differentiation. For instance, FGF1-
FGFR1/3 signaling is required for the maintenance of SSCs
(52–55). BMP8B-BMPR/1A/1B/2 signaling could regu-
late the proliferation and differentiation of spermatogo-
nia by activating SMAD1/2/3/5/8 (56,57). Activin signal-
ing (INHBB-ACVR2A/1B/2B) can influence germ cell de-
velopment through the phosphorylation of SMAD2/3(58).
EphB/ephrin-B signaling (EFNB1/2-EPHB4/6) may mod-
ulate spermatogenesis and spermiation (59). Further analy-
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Figure 1. Overview of CellCall. (A) The schematic diagram of intercellular communication. (B) The biological model of intercellular communication.
(C) The statistical model of intercellular communication. (D) CellCall provides a variety of functions including intercellular communication analysis and
pathway activity analysis and offers a rich suite of visualization tools to intuitively present the results of the analysis, including heatmap, Circos plot, bubble
plot, Sankey plot, TF enrichment plot and ridge plot.

sis of the TFs downstream of these intercellular communi-
cations revealed that most of these TFs were related to sper-
matogenesis (see Figure 2E). For example, HES1, RBPJ and
SMAD1/2 are intracellular effectors of the Notch signaling
pathway, which plays critical roles in SSC proliferation and
differentiation (60,61). FOXOs are crucial effectors of the
PI3K/Akt signaling pathway in SSCs and are required for
both SSC homeostasis and the initiation of spermatogen-
esis (62). Enrichment analysis of these TFs indicated that
all TFs were obviously activated (see Figure 3A), and most
fold change (FC) values of TGs were larger than 1 (Figure
3B).

To confirm the intercellular communications inferred
by CellCall, an immunostaining assay was performed
to colocalize the expression of the INHBB-ACVR2A/B-
SMAD2 axes between STs and SSCs. The results showed
that ACVR2B (red) costained with INHBB around
FGFR3 + SSCs in adult human testicular paraffin sec-

tions (Figure 3C, D and Supplementary Figure S2),
and ACVR2B costained with phosphorylated SMAD2
(pSMAD2) in FGFR3 + SSCs (Figure 3E). In addi-
tion, ACVR1B was also identified to be expressed in
FGFR3 + SSCs (Figure 3F).

Inferring cell-cell communication among germ cells

Previous studies have mainly focused on crosstalk be-
tween the spermatogenic niche and germ cells. However, re-
cent studies have implied that intercellular communication
among different germ cells also plays roles in spermatoge-
nesis and deserves further investigation (63). Hence, we ap-
plied CellCall to infer the candidate intercellular commu-
nications between SSCs and other differential germ cells.
As shown in Figure 4A, B and Supplementary Figure S1,
intercellular communication from P to SSCs may play crit-
ical roles in crosstalk between SSCs and other differential
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Figure 2. Case study of the application of CellCall on human testicular cells. (A) UMAP of 2532 human testicular cells. (B) Circos plot of intercellular
communication from Sertoli cells to other germ cells. (C) Pathway activity analysis of intercellular communications from Sertoli cells to other germ cells. (D)
The intercellular communications from Sertoli cells to other germ cells (normalized score greater than 0.5). (E) Sankey plot of intercellular communications
from Sertoli cells to SSCs.
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Figure 3. Enrichment analysis of downstream TFs and immunofluorescence of the INHBB-ACVR2A/B-pSMAD2 axes. (A) Enrichment analysis of the
six top TFs in SSCs. (B) Ridge plot of the density distribution of FC of TGs for the six TFs. (C) Dual immunofluorescence of VASA (red) and INHBB
(green) in adult human testicular paraffin sections. (D) Dual immunofluorescence of ACVR2B (red) and INHBB (green) in adult human testicular paraffin
sections. (E) Dual immunofluorescence of ACVR2B (red) and pSMAD2 (green) in adult human testicular paraffin sections. (F) Dual immunofluorescence
of FGFR3 (red) and ACVR1B (green) in adult human testicular paraffin sections. Triangles and circles indicate SSCs, and arrows indicate Sertoli cells.
The scale bars represent 10 �m.

germ cells. As shown in the Sankey plot, TFs downstream
of the intercellular communication from P to SSCs, such
as HES1, SMAD1/9, TCF7 and ID4, have also been re-
ported to be involved in spermatogenesis (60,64) (see Fig-
ure 4C). We also confirmed a communication axis from
P to SSCs (GDF5-BMPR1B-SMAD1) by immunostain-
ing (Figure 4D). The results showed that BMPR1B+ (re-
ceptor) and pSMAD1 + SSCs costained with GDF5+
(ligand) spermatocytes in adult human testicular sections
(see Figure 4E). GDF5-BMPR1B signaling has been re-
ported to play important roles in chondrogenesis and os-
teogenesis (65). The potential roles and mechanisms of this
novel communication in spermatogenesis deserve further
elucidation.

Inferring intercellular communication among immune cells in
the TIME

Increasing studies have shown that intercellular crosstalk
between immune cells in the tumor niche is involved in
the linkage of inflammation, immunity and tumorigenesis,
which is crucial to tumor development (66). In this study,
we applied CellCall to 10 TIME scRNA-seq datasets (see
Supplementary Table S2), which comprised 6 types of can-
cer, including two liver hepatocellular carcinoma (LIHC)
datasets, one non-Hodgkin lymphoma (NHL) dataset, two
nonsmall cell lung cancer (NSCLC) datasets, one kidney
renal clear cell carcinoma (KRIC) dataset, three colorec-
tal cancer (CRC) datasets and one breast invasive carci-
noma (BRCA) dataset. All datasets included both tumor
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Figure 4. Analysis of intercellular communication from other germ cells to SSCs. (A) Circos plot of intercellular communication from other germ cells
to SSCs. (B) The intercellular communications from other germ cells to SSCs (normalized score greater than 0.5). (C) Sankey plot of intercellular com-
munications from P to SSCs. (D) The expression of GDF5, BMPR1B and SMAD1 across different cell types. (E) Dual immunofluorescence of �H2AX
(red) and GDF5 (green) in adult human testicular paraffin sections. Dual immunofluorescence of BMPR1B (red) and GDF5 or pSMAD1 (green) in adult
human testicular paraffin sections. Yellow triangles indicate P, white triangles and circles indicate SSCs. The scale bars represent 10 �m.
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and normal samples. First, intercellular communication
among six immune cell types, namely, B cells (B), conven-
tional CD4 T cells (CD4Tconv), CD8 T cells (CD8 T), ex-
hausted CD8 T cells (CD8Tex), monocytes/macrophages
(Mono/Macro) and natural killer (NK) cells, was analyzed
by CellCall. As shown in Figure 5A and Supplementary
Figure S3, compared to other cell types, Mono/Macro
cells received significantly more signals from other immune
cells across all datasets, indicating the dominant role of
Mono/Macro in the intercellular crosstalk of immune cells
in the TIME (67,68). Then, to investigate the difference
in intercellular communication between normal and tumor
tissues, we identified tumor-specific intercellular communi-
cations (i.e. those occurring only in tumor samples) for all
datasets. Seven common tumor-specific intercellular com-
munications identified in more than four datasets were ob-
tained (see Figure 5B), all of which mainly involved inter-
cellular communication from other cells to Mono/Macro,
including CCL3/4/5-CCR1/5 and TNF–TNFRSF1B sig-
naling (see Figure 5C). Many studies have revealed that C–C
motif chemokines (CCL3/4/5) secreted in the TIME play
important roles in monocyte/macrophage differentiation,
activation, polarization and recruitment by binding spe-
cific C|C motif chemokine receptors (CCR1/5) (69). TNF–
TNFRSF1B signaling has been reported to be a central neg-
ative regulator of M2 tumor-associated macrophages (70).

Moreover, we also investigated the TFs activated down-
stream of these communications. Most of the activated
TFs involved in cancer progression and the TIME (Figure
5D) (71,72), such as the NF�B family (NFKB1, NFKBIA,
NFKBIB and RELA) and STAT family (STAT1, STAT2,
STAT3 and STAT5B) occupy central roles in M1 and M2
macrophage polarization (71). To further certify the func-
tionality of these TFs in cancer and the capacity of Cell-
Call, we investigated the association of the expression of
the top 10 TFs with patient survival using TCGA pancancer
data. As shown in Figure 5E and Supplementary Figure S4,
all TFs significantly affected the overall survival of patients
with different cancers. For example, STAT5B had positive
effects on long-term survival in most cancers, such as LIHC
and KIRC (Figure 5E and F). However, IKBKB had op-
posite effects on survival in different cancer types, such as
BLCA versus LGG (Figure 5E and F). These results sug-
gested that CellCall is able to effectively infer the crucial in-
tercellular communications of the TIME and identify the
underlying intracellular processes affected by intercellular
crosstalk.

Comparison of CellCall with other tools

We systematically compare the general features of CellCall
with those of nine other tools in three aspects: data, ap-
proach and visualization. As shown in Table 1, CellCall,
Nichenet and SingleCellSignalR collected intracellular sig-
naling data in addition to L–R interactions. CellCall col-
lected 19 144 L–R–TF axes from KEGG pathway analy-
sis. Nichenet built an integrated network including ligand
receptors, intracellular signaling and GRNs from multiple
data sources with patchy data quality (some interactions
were predicted). Although SingleCellSignalR collected in-

tracellular signaling data from KEGG pathways and Reac-
tome (73), it did not consider intracellular signaling in pre-
dicting intercellular communication. Conversely, SoptSC
accounted for intracellular signaling but did not include
intracellular signaling data. The remaining tools include
L–R interactions from known databases and the literature
(ranging from 380 to 3251 entries). In addition, CellCall
CellPhoneDB, CellChat (15) and ICELLNET (74) con-
tain ligand/receptor complex information, which should
not be ignored because many ligands/receptors act as mul-
tisubunit complexes (25). CellCall and Nichenet scored in-
tercellular communication based on L/R/TG expression.
SoptSC is based on L/R/downstream gene expression, but
the remaining tools are based on L/R expression only.
Meanwhile, CellCall, CellPhoneDB, CellChat, iTALK (18)
and SingleCellSignalR offer thresholds for communication
scores. CellPhoneDB and CellChat evaluate the statistical
significance of the communication by permutation tests.
iTALK identifies positive L–R communication based on the
differential expression of ligands/receptors. SingleCellSig-
nalR uses ad hoc benchmarking to generate a customized
threshold for different scRNA-seq datasets. In contrast,
CellCall filters the intercellular communication scores ac-
cording to the activity status of the downstream TFs. More-
over, CellCall uses an embedded pathway activity analysis
method to help explore the pathways involved in crosstalk
between certain cells. In terms of visualization, CellCall
provides a rich suite of display options to intuitively present
the analysis results, including heatmap, Circos plot, bubble
plot, Sankey plot, TF enrichment plot and ridge plot, pro-
viding a greater abundance of visualization choices than is
available in other tools.

Next, we compared the performance of CellCall with that
of four other tools that offered thresholds for communica-
tion scores (CellPhoneDB, CellChat, iTALK and Single-
CellSignalR) on a dataset of human testicular cells (42).
As shown in Figure 6A, CellCall, CellPhoneDB, CellChat,
iTALK and SingleCellSignalR identified 47, 54, 42, 63
and 70 intercellular communications from Sertoli cells to
SSCs by their own default cut-offs, respectively (see Sup-
plementary Table S3 and Supplementary Materials for de-
tails). In the curated literature related to these intercellu-
lar communications, over 87% of CellCall-identified inter-
cellular communications (41/47) have been reported to be
involved in spermatogenesis (see Figure 6B and Supple-
mentary Table S3). This high literature support rate is su-
perior or comparable to those of CellPhoneDB (81.48%,
Fisher’s exact test P = 0.396), CellChat (78.57%, Fisher’s
exact test P = 0.586), iTALK (55.56%, Fisher’s exact test
P = 3.7e–04) and SingleCellSignalR (31.43%, Fisher’s ex-
act test P = 1.5e–09). Then we used ROC curves to compare
these methods, as the results shown in Figure 6C, CellCall
achieved the highest area under curve of receiver operating
characteristic (AUC) (CellCall: 0.731, CellPhoneDB: 0.725,
CellChat: 0.680, iTALK: 0.691, SingleCellSignalR: 0.586).
And the results of these methods with their own optimal
cut-point values (the black dots on the curves, which de-
fined by Youden Index) are shown in Figure 6D. These re-
sults suggest that CellCall might infer intercellular commu-
nication with greater accuracy than these existing methods.
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Figure 5. Case study of the application of CellCall in the TIME. (A) Circos plot of intercellular communication among immune cells in the NSCLC
dataset (GSE139555). (B) Common tumor-specific intercellular communications in 10 TIME datasets. (C) Intercellular crosstalk from other immune cells
to Mono/Macro cells in the TIME. (D) Sankey plot of seven common tumor-specific intercellular communications and downstream TFs. (E) Association
of TF expression with patient survival in the TCGA pan-cancer data. (F) Kaplan–Meier curves of selected TFs. Statistical significance and hazard ratios
were calculated using multivariate Cox regression.
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DISCUSSION

Cells rely on intercellular signal transduction to recognize
and respond to cues in their environment (25). This pro-
cess not only promotes the proper functioning of individ-
ual cells but also allows communication and coordination
among groups of cells to carry out tasks no single cell could
accomplish on its own (75). Hence, investigation of intercel-
lular communications could facilitate understanding of the
fundamental basis of biological activities and help to reveal
the pathogenic mechanisms of diseases (76,77). Here, we de-
veloped CellCall, a toolkit for intercellular communication
analysis, by integrating paired L–R and internal TF activ-
ities. Case studies on scRNA-seq data of human testicular
cells and TIME suggest that CellCall could effectively infer
candidate intercellular communications and internal signal-
ing under physiological and pathological conditions. In ad-
dition, comparative analysis with other tools indicated that
CellCall has superior accuracy and richer functionality.

A case study on human testicular cells indicated promi-
nent signal crosstalk between ST cells and SSCs. Most
of the inferred intercellular communications (41/47) from
ST cells to SSCs have been implicated in spermatogene-
sis or SSC differentiation (53,54,56,58,59), and some of
them were confirmed by immunofluorescence assays. Inter-
cellular communication analysis also indicated that inter-
cellular crosstalk among germ cells may play roles in sper-
matogenesis, and a communication axis from P to SSCs
(GDF5-BMPR1B-SMAD1) was confirmed by immunos-
taining. BMPR1B has been reported to receive extracellular
signals from BMPs such as BMP4/8A/8B and then regu-
late the differentiation of SSCs by activating SMAD1/5/8
(78). GDF5 is also a BMP, and GDF5-BMPR1B signal-
ing has been reported to play an important role in chon-
drogenesis and osteogenesis (65). Therefore, the potential
role and mechanism of this communication in spermato-
genesis deserves further elucidation. Furthermore, a case
study on multiple TIME datasets indicated the dominant
role of the Mono/Macro cell population in the intercellu-
lar crosstalk of immune cells in the TIME (67,68), and all
of the inferred common tumor-specific intercellular com-
munications and internal TFs have been reported to be
involved in monocyte/macrophage differentiation, activa-
tion, polarization and recruitment (69,70,79). Survival anal-
ysis of these TFs using TCGA pancancer data showed that
all the identified TFs were significantly associated with the
overall survival of patients with different cancers. All these
results indicate the reliable and distinct function of CellCall
in intercellular communication analysis and internal TF ac-
tivity exploration.

A systematic comparison of its general features with
those of other tools show that CellCall has certain advan-
tages for intercellular communication analysis. CellCall in-
cludes high-quality inter- and intracellular signaling data
from KEGG pathways and considers ligand/receptor com-
plex information. In terms of approach, CellCall infers in-
tercellular communication by combining ligand/receptor
expression and the downstream TF activities for a given
L–R pair. The algorithm not only takes into account in-
tracellular signaling but also offers a threshold for inter-
cellular communication scores by evaluating downstream
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Figure 6. Comparison of the performance of CellCall with CellPhoneDB, CellChat, iTALK and SingleCellSignalR on the scRNA-seq dataset of human
testicular cells (from ST cells to SSCs). (A) UpSetR plot of results from the five tools with their own default cut-offs. (B) Comparison of the literature
support rates of CellCall and four other tools (Fisher’s exact test). (C) The ROC curves of these methods. (D) UpSetR plot of results from the five tools
with their own optimal cut-point values (the black dots on the curves, which defined by Youden Index).

TF activities, which is more reasonable than assessing just
the expression intensity and/or specificity of the L–R pair.
In addition, CellCall uses an embedded pathway activity
analysis method to identify the crucial pathways involved
in crosstalk between certain cells. In terms of visualiza-
tion, CellCall offers the most abundant visualization op-
tions among the available tools. Furthermore, a compara-
tive analysis of the performance of CellCall and four other
tools on the dataset of human testicular cells suggested that
CellCall has superior accuracy in deciphering intercellular
communication. All these results indicate that CellCall is a
valuable and powerful tool for intercellular communication
analysis and internal signal cascade exploration.

Although CellCall has special advantages and character-
istics in comparison with other methods, it still has some
limitations. First, all existing tools, including CellCall, in-
fer intercellular communication based on scRNA-seq tech-
nologies (which contain only the gene expression values in
single cells), meaning that CellCall considers only the down-
stream GRNs (regulation of gene expression) of L–R in-
teractions. However, this type of L–R–TF model is only
one part of the full picture of intercellular signal transduc-
tion. Some signaling pathways do not fit this model; for ex-
ample, intracellular signaling related to autophagy involves
multiple protein modifications, interactions, and enzyme
reactions rather than changes in gene expression. Mean-
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while, all the existing tools, including CellCall, are focused
on only those L–R pairs in which both partners are pro-
teinaceous and ignore other nonpeptidic molecules (such as
small molecules, carbohydrates, lipids and nucleic acid lig-
ands) (80). However, these limitations will be remedied by
the appearance of new single-cell technologies for monitor-
ing metabolites and protein modifications in the future.

In this study, we presented CellCall, a toolkit for inter-
cellular communication analysis that integrates intracellu-
lar and intercellular signaling. The case study on scRNA-
seq of human testicular cells and TIME suggest the reli-
able and unique function of CellCall in intercellular com-
munication analysis and internal TF activity exploration.
Meanwhile, comparative analysis with other tools indicated
that CellCall was more accurate and multifunctional and
is a useful and powerful method for deciphering intercellu-
lar communication. In summary, CellCall provides an elab-
orate and practical tool enabling researchers to infer in-
tercellular communication and internal signaling based on
scRNA-seq data. We believe that this proposed method will
promote intercellular communication research and acceler-
ate the development of related algorithms for scRNA-seq
data.
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