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Abstract

In the twenty-first century, ticks and tick-borne diseases have expanded their ranges and

impact across the US. With this spread, it has become vital to monitor vector and disease dis-

tributions, as these shifts have public health implications. Typically, tick-borne disease sur-

veillance (e.g., Lyme disease) is passive and relies on case reports, while disease risk is

calculated using active surveillance, where researchers collect ticks from the environment.

Case reports provide the basis for estimating the number of cases; however, they provide

minimal information on vector population or pathogen dynamics. Active surveillance monitors

ticks and sylvatic pathogens at local scales, but it is resource-intensive. As a result, data are

often sparse and aggregated across time and space to increase statistical power to model or

identify range changes. Engaging public participation in surveillance efforts allows spatially

and temporally diverse samples to be collected with minimal effort. These citizen-driven tick

collections have the potential to provide a powerful tool for tracking vector and pathogen

changes. We used MaxEnt species distribution models to predict the current and future distri-

bution of Ixodes pacificus across the Western US through the use of a nationwide citizen sci-

ence tick collection program. Here, we present niche models produced through citizen

science tick collections over two years. Despite obvious limitations with citizen science collec-

tions, the models are consistent with previously-predicted species ranges in California that

utilized more than thirty years of traditional surveillance data. Additionally, citizen science

allows for an expanded understanding of I. pacificus distribution in Oregon and Washington.

With the potential for rapid environmental changes instigated by a burgeoning human popula-

tion and rapid climate change, the development of tools, concepts, and methodologies that

provide rapid, current, and accurate assessment of important ecological qualities will be

invaluable for monitoring and predicting disease across time and space.
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Introduction

Tick-borne disease (TBD) diagnoses have steadily risen over the last 20 years across the US,

emphasizing the increasing importance of such zoonotic diseases [1]. The rise in TBD has

been attributed to several factors, including changes in climate and land-use patterns that

influence vector distribution and densities [2, 3]. Historically, TBD surveillance has been con-

ducted at the county, state, or national scale through the National Notifiable Diseases Surveil-

lance System (NNDSS), which requires providers and public health agencies to report cases of

specific diseases to the Centers for Disease Control and Prevention (CDC). Several TBDs

(Lyme disease, babesiosis, anaplasmosis, tularemia, and rocky mountain spotted fever) are

reportable to the CDC [4]. The NNDSS provides important insight into case burdens; how-

ever, there are several pitfalls. First, only diagnosed cases are reported, leading to possible

under-reporting or over-reporting [5]. Second, cases are reported based on county of resi-

dence and not the location of exposure [6]. Third, the presence and population dynamics of

the vectors are not considered. These characteristics limit the ability of NNDSS data to predict

and explain TBD risk and vector distribution.

Measures of TBD risk, the likelihood of exposure to infected ticks, have traditionally relied

on active vector surveillance, requiring researchers to collect ticks from the environment.

These collections are most often conducted by either flagging a piece of cloth across vegetation

or dragging a piece of cloth across the ground to collect questing ticks [7]. Active vector sur-

veillance has been extensively used to identify and model tick distribution and densities, path-

ogen prevalence, nymphal infection prevalence, pathogen diversity in sylvatic cycles,

seasonality of vectors, risk of spillover, and suitable habitat [8–13]. Active surveillance has long

been considered the “gold-standard” for sylvatic TBD surveillance; however, it is resource-

intensive, requiring the majority of spatial modeling approaches to aggregate multiple years of

data [10, 11], resulting in a loss of temporal resolution (Table 1). For example, some distribu-

tion models have utilized active surveillance, collected over three decades, or historical data,

collected over the last century, to model current tick distributions. In a stable environment,

these methods would likely not impact the outcomes; however, in today’s dynamic world of

changing weather patterns, climate, and land use, aggregation of data across multiple years or

decades could impact the validity and accuracy of model predictions [14]. Ideally, vector distri-

bution and movement data should be related as closely as possible to appropriate environmen-

tal conditions. To achieve that, surveillance methods may be more successful if they trend

towards low cost, continuous, rapid, and spatially diverse sample collection.

Opportunistic citizen science tick collections have the potential to fulfill these characteris-

tics. Citizen science or passive surveillance campaigns have been implemented at both state

and national scales by encouraging members of the public to mail ticks to a laboratory for sub-

sequent identification or pathogen testing [32–36]. These programs have been proven to be an

efficient method for tick collection and can help to inform on a variety of topics that cannot be

easily gathered through a single surveillance technique [32]. Citizen science tick collections

have generated large datasets that have provided insights on vector spread, links between tick

submission frequencies and reported human TBD cases, seasonality of human-tick exposure,

human activity during tick exposure, and pathogen prevalence in submitted ticks [30, 33–35,

37, 38]. Additionally, opportunistic and passive surveillance programs have been used to

model or inform on a wide variety of TBD topics. For example, these programs have been used

extensively to identify the tick species that people interact with, pathogen prevalence data, and

the timing of human-tick exposure at a national level or finer scale [32–34, 36–40]. Recently,

these data have also been utilized to accurately model human case data from the number of

tick submissions received [35, 38].
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Table 1. Previously published models identifying tick distribution through species distribution models.

Tick Species Area of

Interest

Data Acquisition

Method

Years

(Range)

Total

Size

Modelled Models Resolution Climate Data Other Data Citation

Amblyomma
americanum

Eastern US

(770 km from

presence

points)

Historical Records

(Walter Reed

Biosystematics

Unit)

1995–

2015 (20)

14,831

points

181

points

Maxent ~17 km WorldClim 1.4 None [15]

Amblyomma
americanum

Eastern US Historical Records

[16]

1898–

2012 (114)

653

Counties

653

Counties

Ensemble ~1 km WorldClim 1.4 None [17]

Amblyomma
americanum

Kansas Historical Records

and Active

Surveillance

Not

Specified

826

points

682

points

Maxent 10’ or 30’ CliMond None [18]

Amblyomma
americanum

Florida Active surveillance 2015–

2016

33 points 23 points GLM 100m WorldClim Landcover [19]

Dermacentor
variabilis

United States Historical

(Smithsonian

National Museum

of Natural History)

1950–

1998 (48)

1,695

points

336

points

Maxent ~1 km PRISM Climate

Group

Land Cover,

Elevation

[20]

Haemaphysalis
longicornis

North America Historical Records

(Walter Reed

Biosystematics

Unit)

1990–

2017 (27)

~11,000

points

304

points

Maxent ~17 km MERRAClim None [21]

Haemaphysalis
longicornis

North America Historical Unknown ~200

points

~200

points

Maxent 10 km WorldClim Ecological

Zone

[22]

Ixodes pacificus California Historical Records 1980–

2014 (34)

4,546

points

621

points

Ensemble ~1 km Daymet (1980–

2014)

Elevation,

Land Cover

[11]

Ixodes pacificus California Historical Records 1980–

2015 (35)

585

points

406

points

Maxent 90 m California Basin

Characterization

Model (1980–2010)

Land cover [23]

Ixodes pacificus Western US

(WA, OR, CA,

ID, NV, UT,

AZ)

Historical Records

(Dennis 1998) [24]

1907–

2015 (108)

111

Counties

111

Counties

Ensemble County WorldClim 1.4 None [25]

Ixodes pacificus Western US

(WA, OR, CA,

ID)

Citizen Science

Tick Collections

2016–

2018

2,332

Ticks

477

points

Maxent ~1 km Daymet 2009–2018 Elevation,

Landcover

Present

Study

Ixodes
scapularis

Midwestern

and Eastern US

Historical Records

[24, 26]

1907–

2015 (108)

1,420

Counties

1,420

Counties

Ensemble County WorldClim 1.4 None [25]

Ixodes
scapularis

Midwestern

and Eastern US

Historical Records

[24, 26]

1907–

2015 (108)

1,420

Counties

14,200

points

Maxent ~4 km WorldClim 1.4 None [27]

Ixodes
scapularis

Midwestern

and Eastern US

Historical Records

[24, 26]

1907–

2015 (108)

1,420

Counties

1,420

Counties

Ensemble County WorldClim 1.4 None [28]

Ixodes
scapularis

Minnesota Field Collections 2005–

2014 (10)

122

points

25 points Maxent <1km WorldClim 1.4 Elevation,

Landcover

[29]

Ixodes
scapularis

Ottawa,

Canada

Passive

Surveillance

2013–

2015 (2)

306

points

63 points Maxent 15 m None Elevation,

Landcover,

Population

[30]

Ornithodoros
hermsi

Western US Historical Records Not

Specified

96 points 96 points Maxent ~1 km WorldClim 1.4 Elevation [31]

Haemaphysalis
longicornis

North America Historical Records

(Walter Reed

Biosystematics

Unit)

1990–

2017 (27)

~11,000

points

304

points

Maxent ~17 km MERRAClim None [21]

Haemaphysalis
longicornis

North America Historical Unknown ~200

points

~200

points

Maxent 10 km WorldClim Ecological

Zone

[22]

Dermacentor
variabilis

United States Historical

(Smithsonian

National Museum

of Natural History)

1950–

1998 (48)

1,695

points

336

points

Maxent ~1 km PRISM Climate

Group

Land Cover,

Elevation

[20]

https://doi.org/10.1371/journal.pone.0244754.t001
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A promising avenue of TBD research uses citizen science to collect data on locations of

ticks and employs species distribution models (SDMs) to identify the distribution or niche of

specific tick species, e.g., this technique created SDMs for Ixodes scapularis in Canada and vali-

dated predictions with active surveillance [30]. SDMs are commonly used in vector ecology

and conservation biology, as they explore variables that may dictate distribution and identify

areas potentially supporting current populations. Additionally, SDMs can be projected across

future climate scenarios to help predict species distribution changes in response to climate

change [41]. These models often incorporate both abiotic (elevation, climate, etc.) and biotic

(land cover, other species, etc.) variables as predictors [41]. SDMs have been previously used

to model tick distributions of several tick species in North America (Table 1). The majority of

these models rely on presence records derived from active surveillance that have been aggre-

gated across time (e.g., over several decades) and/or space (e.g., county-level presence/absence

data), inhibiting the ability to identify accurate distributions of changing populations.

Monitoring the current and future distribution of medically important ticks has significant

public health implications and can assist in identifying high disease risk areas. On the US West

Coast (California, Oregon, and Washington), Ixodes pacificus, the western black-legged tick, is

the most medically important tick vector and is responsible or implicated in the transmission

of Borrelia burgdorferi sensu stricto (Lyme disease), B. miyamotoi (hard-tick relapsing fever),

and Anaplasma phagocytophilum (anaplasmosis) [42–47]. Here we investigate the application

of the dataset from our free national citizen science tick collection program to model the cur-

rent and future distribution of I. pacificus across the Western US. We hypothesize that the abil-

ity to rapidly collect large datasets with citizen science will provide comparable results to

previous SDMs and will supplement traditional surveillance programs.

Materials and methods

Citizen science tick collection

Between January 2016 and December 2018, 18,881 ticks were submitted by citizen scientists

who contributed to a free tick collection program [32]. The details of the citizen science pro-

gram can be found in Nieto et al. (2018), but we provide a brief overview here. Citizen scien-

tists were recruited to the program through an initial public relations campaign and a public

website (https://www.bayarealyme.org/lyme-disease-prevention/tick-testing/). Additionally,

individuals and TBD public awareness groups, not related to the funders or researchers, dis-

seminated information about the program though social media and other advertising plat-

forms. The citizen scientists participated in the program by mailing collected tick(s) and

associated data (location of exposure) to the laboratory. The submission form covered infor-

mation related to locations and characteristics of exposure (date, activity, environment, etc.).

Ticks were identified to species using morphological characteristics and tested for the presence

of several TBD pathogens.

For the purposes of this study, I. pacificus submissions from the West Coast with GPS

points that corresponded to the associated reported county of exposure were included; though

further accuracy of the GPS points was not verified by the researchers. GPS points were con-

verted to correspond to the center of each 1km x 1km grid cell and spatially duplicated grid

cells were removed from the dataset, so each 1 km x 1 km pixel had a maximum of a single

presence point.

Predictor variables

We collected a combination of seasonal climatic and land cover variables to build our species

distribution model. We had two goals for this analysis. First, to predict the current distribution
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of I. pacificus (ecological niche model), we used a model that had both abiotic (climate and ele-

vation) and biotic variables (landcover) to accurately predict the true ecological niche or distri-

bution of I. pacificus across today’s landscape. Second, we sought to predict I. pacificus’ future

distribution in response to climate change. To assess these changes and predict the future dis-

tribution we created a climate niche model using the current climate (bioclimatic variables

only) and predicted it into the future using CMIP5 climate projections. We were limited by

the available variables in CMIP5 climate projections, therefore, we had to remove several vari-

ables from the ecological niche model (e.g., land cover, seasonal data). Removal of these vari-

ables removes important factors that impact tick distribution, however, including these

variables without proper future projections would not allow us to accurately model the poten-

tial future distribution.

Biotic variables (Climate and elevation)

We collected daily measures of three weather variables (minimum temperature, maximum

temperature, and precipitation) from Daymet for the years 2009–2018, which were processed

to produce nineteen summary statistics for use in the SDMs [48]. All analyses were performed

in the statistical package “R,” version 3.5.2 [49]. Daymet files were downloaded and processed

in R through the “FedData” package with a native resolution of 1km x 1km [50]. The maxi-

mum temperature, minimum temperature, and cumulative precipitation were calculated

across each month and averaged across each year. Bioclimatic variables were then derived

through the “biovars” function within the “Dismo” package [51]. In addition to these biocli-

matic variables, day length, solar radiation, snow water equivalent, and vapor pressure were

also incorporated as predictor variables. Similar to the bioclimatic variables, these were down-

loaded from “Daymet” through the “FedData” package and were averaged across each month

and year between 2009–2018. Additionally, these variables were also averaged across each sea-

son (Winter: December-February; Spring: March-May; Summer: June-August; Fall: Septem-

ber-November). Finally, an elevation layer was also included with a native resolution of 1km x

1km [52].

Abiotic variables (Land cover)

Four National Land Cover Database (NLCD) variables were utilized to explain biotic interac-

tions [53]. The native resolution of the NLCD data was 0.03km x 0.03km and was aggregated

into four separate rasters with a 1km x 1km resolution, to match the presence data and climate

data resolution, by calculating the percentage of each 1km x 1km grid cell that contained (1)

forest, (2) scrub, (3) urban low-density, or (4) urban high-density cells. This produced four

final variables (% forest, % scrub, % urban low-density, and % urban high density) at a 1km x

1km resolution, while differentiating cells that are heterogeneous. Forest was defined as decid-

uous forest (NLCD: [41]), evergreen forest (NLCD: [42]), and mixed forest (NLCD: [43]).

Scrub was classified using shrub/scrub (NLCD: [52]) and grassland/herbaceous (NLCD: [71]).

Urban low density was classified as developed open space (NLCD: [21]) and developed low

intensity (NLCD: [22]). Finally, high intensity urban was defined as developed medium inten-

sity (NLCD: [23]) and developed high intensity (NLCD: [24]).

Species distribution modeling

SDMs were created through “R,” utilizing maximum entropy models accessible through the

“ENMeval” package [54]. Maxent models were produced using the maximum entropy algo-

rithm [55, 56] and were assessed through the utilization of area under the curve (AUC) calcu-

lations where a value of 1.0 indicates a model that perfectly can classify presence vs. absence
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(e.g. no false positives or false negatives) [56]. Maxent was utilized as it is specifically designed

to handle presence only datasets and utilize background points instead of absence locations. A

total of 1600 background points were randomly selected from the study area (California,

Nevada, Oregon, Washington, and Idaho). In Maxent models, background points are com-

pared to the presence points to identify specific patterns that are indicative of a species niche.

This allows the AUC statistic to differentiate inter-model performance, which is described as

ability to identify presence points vs. background points. However, this statistic should be

interpreted with caution when assessing the overall model performance (e.g. accuracy), which

is heavily influenced by the ratio of presence points to background points and the area of inter-

est [56, 57].

Preliminary models were built to select and identify high contribution variables. Within

each stack, the presence and background locations were bootstrapped, from the original data-

sets, 100 times and subsequently modeled. After locations were bootstrapped, locations were

split into training and testing data sets utilizing “checkerboard2” algorithm from the ENMeval

package. Feature classes were not restricted in the models, and 0.1, 0.25, 0.5, 1, 2, 4, 8, and 10

were used as regularization multipliers accounting for a total of 48 unique models within each

bootstrap iteration. In total, 4,800 models were built for each variable stack (suitable habitat

model and climate niche model) during the preliminary analysis.

Variable selection was performed with a similar method to Jueterbock et al. (2016). Differ-

ing from Jueterbock et al. our methods incorporated bootstrapped model evaluation and do

not serially remove variables, instead our methods utilize moderate to high performing models

to remove variables that had low maximum contribution values across all models [58]. Prelim-

inary models with a testing AUC greater than 0.8 were used to remove variables that had a

maximum contribution across all models of less than 10 percent. Remaining variables were

added to a final stack based on average percent contribution (high to low). Variables with high

correlation (< -0.8 and > 0.8 Spearman correlation) to previously included variables were

removed (S1 Table).

After predictor variable reduction, presence and background points were again bootstrapped

100 times and 4,800 models were generated for each raster stack (ecological niche model and cli-

mate niche model). The model with the highest average AUC across 100 bootstrap iterations was

selected as the best model and further analyses were conducted with that model. If any variables

had a percent contribution of less than 0.5%, it was removed to simplify the model. The ecological

niche model of I. pacificuswas then predicted over the bioclimatic/climate/elevation/landcover

variables to identify current suitable habitat for I. pacificus. Maxent raw output was converted to

three sensitivity threshold values by forcing 90%, 95%, or 99% of collected presence points to be

predicted as suitable habitat. The 90% and 99% sensitivity thresholds predictions for California

were then qualitatively and quantitatively compared to the 90% and 99% ensemble raster from a

previous SDM of I. pacificus in California, generated by active collection of ticks by public health

biologists [11]. For the comparison, areas that had 1 or more models predicting suitable habitat

in the Eisen et al. ensemble raster were considered as suitable habitat. Our predictions were con-

verted to the same spatial extent (California). We then calculated percent agreement of suitable

habitat between the models (i.e. percent area that was predicted as suitable in both models)

(Percent Agreement of Suitable Habitat ¼ Area Agreed as Suitable
Area Agreed as SuitableþArea Predicted by 1 model as suitable� 100) and

overall percent agreement between both projections (i.e. percent area that was predicted as suitable

or unsuitable in both models) (Overall Percent Agreement ¼ Area Agreed as Suitable or Unsuitable
Total Area � 100).

The climate niche model (bioclimatic variables only) was predicted over future climate pre-

dictions using the CMIP5 multi-model ensemble to identify the future climate niche of I. paci-
ficus [59]. Future projections were computed for two Representative Concentration Pathways
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(RCP) emission scales (RCP 6.0, and 8.5) at 2.5-degree resolution [60]. Suitable habitat esti-

mates in 2050 were generated through the use of 12 (RCP 6.0), and 17 (RCP 8.5) different cli-

mate models. Projections were set to a threshold based on a 95% sensitivity and projections

from each RCP value were combined to create a final projection. The final projection shows

the number of models that predict suitable habitat across the area of interest. A complete list of

models and average bioclimatic variables for the area of interest is available in S2 Table.

Results

Citizen science I. pacificus collection

Of the 2,332 I. pacificus submitted, 767 (33%) were submitted with valid GPS position information

that corresponded to the reported county of exposure. Multiple submissions within each predictor

variable pixel (1km x 1km) were removed, producing a total of 477 unique presence points across

the study area: California (n = 397), Oregon (n = 54), and Washington (n = 26) (Fig 1).

Ecological niche model

The final ecological niche model utilized a total of eight predictor variables: average vapor

pressure in the spring, isothermality (BIO3), temperature seasonality (BIO4), land cover- for-

est, land cover- scrub, land cover- urban low density, average day length (summer), and pre-

cipitation of the driest month (BIO14). Average vapor pressure in the spring was the largest

contributor (36.7%) to the distribution identifying an increase in the likelihood of suitable

habitat with increasing vapor pressure. Isothermality (BIO3) was the second largest contribu-

tor (30.4%), predicting increased likelihoods with increased isothermality (Figs 2 and 3; S3

Table). Isothermality (BIO3) had the largest permutation importance with 46.8%, followed by

average vapor pressure (spring), and land cover- forest (Fig 3). At a 90% and 95% sensitivity

threshold, final predictions showed widespread predicted habitat across the coastal areas of

California, western Oregon and western Washington (Fig 4). Additionally, suitable habitat was

identified along the Sierra Nevada foothills.

Qualitatively, our model predictions of California were similar to an earlier SDM of I. paci-
ficus distribution that used active surveillance by public health biologists (Eisen et al. 2018)

(Fig 5A). Quantitatively, when comparing maps that used the 90% sensitivity threshold (i.e.

90% of the citizen science GPS points are predicted as suitable habitat), overall suitable habitat

projections had a 51% overlap of suitable habitat between the two projections. When consider-

ing overall agreement, the models had an 80% agreement. The majority of the differences in

predictions arise from our model predicting suitable habitat within the Sacramento/San Joa-

quin Valley and urbanized areas (e.g., San Francisco, Los Angeles) (Fig 5A, green areas). Addi-

tionally, Eisen et al.’s predictions identify additional suitable habitat in adjacent areas to areas

that were predicted as suitable habitat in both models (Fig 5A, red areas).

Qualitatively, at a 99% sensitivity, the predictions produced here begin to diverge from

Eisen et al. predicting widespread suitable habitat across the study area. Quantitatively, suitable

habitat predictions had a 64% overlap between both projections and an overall agreement of

76% (Fig 5B). These discrepancies arise from a lack of specificity at high sensitivities that are

encountered with the citizen science generated model (Fig 5B, green areas).

To build the final model, the preliminary bootstrap analysis and variable selection identified

a total of 16 (16/40) variables that were predictive of I. pacificus presence. In decreasing impor-

tance, these variables were: isothermality (BIO3), temperature seasonality (BIO4), percent of

land cover with low density urban, vapor pressure during the spring, percent of land cover

with forest, percent of land cover with scrub, precipitation of driest month (BIO14), average

snow water equivalent during winter, percent of land cover with high density urban,
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precipitation of coldest quarter (BIO19), average day length during the summer, average eleva-

tion, average vapor pressure during the summer, precipitation seasonality (BIO15), mean diur-

nal range (BIO2), and average snow water equivalent in the summer. After variable selection,

final bootstrap analysis produced a total of 1,832 (38%) models that had an average testing

AUC greater than 0.9 and 3,568 (74%) models had an average testing AUC greater than 0.8.

Overall, the models with a linear and quadratic feature classes and a regularization multiplier

of 10 had the highest average testing AUC (AUC = 0.95, sd = 0.007). After final model selec-

tion, several variables still had minimal percent contribution (< 0.05%) and were removed in

Fig 1. Distribution of collected I. pacificus (n = 477) corresponding to unique presence points across the Western

US.

https://doi.org/10.1371/journal.pone.0244754.g001
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the final variable selection step; these included: elevation, percent of land cover with high den-

sity urban, precipitation seasonality (BIO15), precipitation of coldest quarter (BIO19), mean

diurnal range (BIO2), average snow water equivalent in the summer, average snow water

equivalent in the winter, and average vapor pressure in the summer. This created the final

model with a total of 8 variables (S3 Table).

Climate niche model

When we restricted the data set to only the climate variables, so that we could use the model to

forecast based on future climate projections, the climate niche model of I. pacificus showed similar

patterns to the ecological niche model; however, in general, the climate niche model identified a

more contiguous niche. Additionally, with a 0.99% sensitivity threshold, the model predicted a

widespread climate niche across much of the area of interest (Fig 6). Ensemble future predictions

using 2050 RCP 6.0 and RCP 8.5 climate projections identified an overall net loss in the climate

niche of I. pacificus. The majority of this loss occurred along the boundaries of the climate niche

of I. pacificus (Fig 7). A small amount of range expansion was predicted in the northern ranges of

I. pacificus, however, this expansion was predicted in a minority of climate scenarios.

To produce the final climate niche model, the preliminary bootstrap analysis and variable

selection identified a total of 7 (7/19) variables that were predictive of I. pacificus presence and

included in the final projection. In decreasing percent contribution, these variables were:

Fig 2. Predicted variable response curves for the suitable habitat model with a linear and quadratic feature class and regularization multiplier

of 10.

https://doi.org/10.1371/journal.pone.0244754.g002
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temperature seasonality (BIO4), isothermality (BIO3), precipitation of driest month (BIO14),

minimum temperature of coldest month (BIO6), precipitation seasonality (BIO15), and mean

diurnal range (BIO2) (Fig 8). However, permutation importance included precipitation of the

coldest quarter (BIO19) and precipitation if the driest month (BIO14) as the most important

variables accounting for ~60% of permutation importance (Fig 8). In general, bioclimatic vari-

ables with percent contribution greater than 10% were included in the ecological niche model

and the climate niche model. Differences in permutation importance and percent contribution

between the two presented models are likely due to additional variables (e.g. land cover and

vapor pressure) being included in the ecological niche model. During the preliminary variable

selection, the final bootstrap analysis produced a total of 2,033 (42%) models that had an aver-

age testing AUC greater than 0.9 and 2,454 (51%) models that had an average testing AUC

greater than 0.8. Overall, models with a linear and quadratic feature classes and a regulariza-

tion multiplier of 2 had the highest average testing AUC (AUC = 0.95, sd = 0.006) and the indi-

vidual variable contribution was above the 0.5% cutoff for all of the variables (Fig 9; S3 Table).

Discussion

Traditionally, SDMs identifying suitable habitat for ticks have relied on active surveillance or

historical collections that frequently span decades (Table 1). We demonstrate that data from

Fig 3. Variable contribution (A) and permutation importance (B) in the final ecological niche model.

https://doi.org/10.1371/journal.pone.0244754.g003
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citizen science collections, collected in a two-year timeframe, generated SDMs for I. pacificus
that closely reproduced predictions generated through traditional public health surveillance.

Data from previous surveillance methods provide a valuable resource for validating new meth-

ods, assessing longitudinal changes, and providing long-term average species predictions. Citi-

zen science collections complement these efforts by providing large and spatially diverse

sample collections and can be rapidly generated.

In California, citizen science tick collection based suitable habitat and climate niche esti-

mates, presented here, were similar to predictions based on SDMs that were previously gener-

ated through active surveillance over a ~30-year period, identifying suitable habitat and

climate niches along the Californian coast, the northern bay area to Sacramento and along the

Sierra Nevada mountains [11, 23]. Quantitatively, our predictions were extremely similar at a

90% sensitivity (a threshold that forces 90% of collected presence points to be predicted as suit-

able habitat). Areas that are not consistent could be artifacts of the modeling processes. For

example, Eisen et al. restricted their predictions to areas that were classified by land-cover

analysis to be forest, grass, scrub-shrub, or riparian, and excluded agricultural and urban

areas. Alternatively, our predictions incorporated the percent of landcover types in a 1km x

1km grid cell as variables into the model, allowing suitable habitat to be predicted in areas that

may not have been considered by the Eisen et. al model (Fig 5A). An example of this would be

Fig 4. Current suitable habitat of I. pacificus across the Western US based on climate and land cover variables. Normalized raw output (A) and suitable habitat

based on a 90% sensitivity threshold (Blue), 95% sensitivity threshold (Green), and 99% sensitivity (Gray) (B).

https://doi.org/10.1371/journal.pone.0244754.g004
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areas that were classified as urban but have enough fragments of natural habitat to support tick

populations. Through this modeling difference, we include areas within our predictions that

are regarded as unlikely habitats for I. pacificus (e.g., metropolitan areas and San Joaquin Val-

ley) that may not have enough fragmented habitat to be suitable for I. pacificus populations.

Additionally, Eisen et al. utilized climate data from Daymet aggregated across 35 years, while

we used data aggregated across 10 years.

Our 99% sensitivity projections significantly diverged from those presented by Eisen et al.,

predicting large-scale suitable habitat across California (Fig 5B). This is likely an artifact of

extreme sensitivities (> 95%) and citizen science sample collections, which can be prone to

inaccurate or mistaken geographical information [32]. With high sensitivities, these samples

are forced to be classified as suitable habitat and cause the projections to diverge from previous

work. These uncertainties need to be considered when utilizing citizen science collected data-

sets and can be resolved through using lower sensitivity ranges (< 95%) or through incorpo-

ration of targeted active surveillance campaigns to verify tick presence in select locations.

Citizen science approaches have weaknesses: e.g., the impacts of non-structured data collec-

tion can produce spatial biases within datasets [61]. These factors are indeed challenging to

control for and result in some level of bias. Citizen science tick collections inherently collect

ticks that are found by citizens over the collection period; thus, our presence locations reflect

where ticks and humans interact, introducing geographical and temporal biases associated

with variable sampling effort across space and time, which can over and underestimate distri-

butions. Additionally, our presence points are likely influenced by advertising strategies of the

Fig 5. Comparison of predicted suitable habitat presented here (Porter Suitable) and presented in Eisen et al. 2018 at a 90% sensitivity (A) and a 99%

sensitivity (B).

https://doi.org/10.1371/journal.pone.0244754.g005
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collection program, probably selecting for a high response rate from the San Francisco Bay

Area and California. These biases were accounted for within our analysis through the use of

random background points and utilizing 90% and 95% sensitivity thresholds, which were

more representative of species distributions than continuous predictions. Such spatial biases

within presence-only datasets are not specific to citizen science collection methodologies. For

example, active surveillance tick collections can suffer from similar biases where ticks are only

collected from a few ecological environments (e.g., dense woodland, Eisen et al. 2006), or areas

that have established abundant tick populations (for pathogen surveillance); thus, failing to

represent tick populations inhabiting different ecological environments (e.g., coastal chapar-

ral), or low-density populations.

Another limitation, specific to citizen science, is that people often do not know precisely

where they contacted the tick. Citizen scientists were asked to report where they were exposed

to the tick; however, we expect some level of spatial uncertainty. We attempted to account for

such uncertainty by using a 1km x 1km spatial resolution and relying on lower sensitivity

thresholds. We believe that this variability could drastically impact a fine-scale area of interest

modeling campaign (sub-county level) due to the uncertainty of the exact location of the tick

exposure, however, at a large-scale (state or regional level), this effect would be relatively

Fig 6. Current climate niche of I. pacificus across the Western US based on averaged bioclimatic variables between 2009–2018. Normalized raw output (A) and

suitable habitat based on a 90% sensitivity threshold (Blue), 95% sensitivity threshold (Green), and 99% sensitivity (Gray) (B).

https://doi.org/10.1371/journal.pone.0244754.g006
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minor, and the sample size of citizen science collections likely overpowers this uncertainty spa-

tial uncertainty.

Despite these challenges, citizen science provides a method that supplements other surveil-

lance techniques, providing large-scale sample collection and species distribution monitoring

at a spatial and temporal resolution that would be impractical with any other surveillance

method. For example, our tick collection program collected specimens from geographical

areas (i.e., Oregon and Washington) with sparse active surveillance data. As a result, we could

predict an ecological niche of I. pacificus in Oregon and Washington, an area where suitable

habitat for I. pacificus, via species distribution model, has not previously been defined. Our

predicted current ecological niche in Oregon includes a distribution that extends north to

south along the western third of the state, consistent with previous active surveillance cam-

paigns which collected I. pacificus in the western third of the state [62]. Similarly, in Washing-

ton, our model predicts patchy suitable habitat along the western third of the state, which is

consistent with active surveillance [63].

As tick distributions continue to change due to ecological changes and climate change, pre-

dicting the potential future distribution will provide insight into disease/pathogen shifts that

could occur, allowing public health agencies to anticipate and combat these shifts. Utilizing

future climate predictions (2050, RCP8.5), we identified a 30% loss in the I. pacificus climate

niche. However, the accuracy of future model projections relies on shifts in climate and biotic

environments to the extent that the environment is no longer habitable for a target population.

This model relies on temperature seasonality (BIO4), which is predicted to increase in the

future resulting in a potential loss of suitable habitat in the future predictions (Figs 6 and 7).

The shrinking climate niche presented seems to counter the current range expansion of other

North American tick populations [3, 64], some of which have been attributed to climate

Fig 7. Current climate niche of I. pacificus based on a 95% sensitivity (A) and number of future climate scenarios (CMIP5) predicting suitable habitat across

the I. pacificus climate niche model in 2050, based on an RCP 6.0 (B) and RCP 8.5 (C) and 95% threshold. The grey line in panels B and C indicates outline of

current climate niche.

https://doi.org/10.1371/journal.pone.0244754.g007
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change, bird migrations [65–67], and human actions that facilitate tick movement (i.e., live-

stock transportation) [21].

Conclusions

As we continue to grapple with tick-borne diseases, we need to supplement our processes to

match the changing and growing needs. Citizen science tick collections and other collection

methods, such as mobile smartphone application-based citizen science programs (e.g., The

Tick App [68]) and photographic identification of passively collected ticks (e.g., TickSpotters

[69]), have the potential to fulfill this need and allow for a variety of questions to be answered

that relate to human exposure, clinical case data, and species distributions. Changing ecologi-

cal conditions will result in an inevitable shift in tick and disease patterns. Tick surveillance is

critical for predicting disease risk and must, in order to be most effective, capture small spatial

and temporal variations. Citizen science tick collections have the potential to fulfill this need

and allow for a variety of questions to be answered that relate to human exposure, clinical case

data, and species distributions. Citizen science collections do have some challenges (i.e., spatial

biases, biased sampling) that add complexities into analyses; however, the ability to collect

extensive and spatially/temporally diverse data, with limited effort, has significant potential

across scientific fields.

Fig 8. Variable contribution (A) and permutation importance (B) in the climate niche model.

https://doi.org/10.1371/journal.pone.0244754.g008
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