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The Kibble-Zurek mechanism at exceptional points
Balázs Dóra1, Markus Heyl2 & Roderich Moessner2

Exceptional points (EPs) are ubiquitous in non-Hermitian systems, and represent the complex

counterpart of critical points. By driving a system through a critical point at finite rate induces

defects, described by the Kibble-Zurek mechanism, which finds applications in diverse fields

of physics. Here we generalize this to a ramp across an EP. We find that adiabatic time

evolution brings the system into an eigenstate of the final non-Hermitian Hamiltonian and

demonstrate that for a variety of drives through an EP, the defect density scales as τ−(d + z)ν/

(zν + 1) in terms of the usual critical exponents and 1/τ the speed of the drive. Defect

production is suppressed compared to the conventional Hermitian case as the defect state

can decay back to the ground state close to the EP. We provide a physical picture for the

studied dynamics through a mapping onto a Lindblad master equation with an additionally

imposed continuous measurement.
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The Kibble–Zurek mechanism of universal defect produc-
tion is a paradigmatic phenomenon in non-equilibrium
many-body physics1–4. While the adiabatic theorem

ensures that a system can follow its ground state upon dynami-
cally changing a Hamiltonian parameter sufficiently slowly as
long as the spectrum remains gapped, this is no longer the case
when crossing a continuous phase transition5. As a consequence,
excitations are generated and the number of defects n exhibits
universal behavior with a scaling that is determined solely by the
universality class of the underlying phase transition:

n � τ�dν=ðzνþ1Þ: ð1Þ

Here, 1/τ denotes the rate at which the parameter is dynami-
cally varied, d the spatial dimension, and ν and z the correlation
length and dynamical critical exponent, respectively.

The Kibble–Zurek mechanism in quantum many-body systems
applies to unitary real-time evolution. However, recent develop-
ments suggest rich features appearing for non-Hermitian
Hamiltonians describing intrinsically non-unitary dynamics6–9,
as recently realized also in experiments10,11. While the eigenva-
lues of a non-Hermitian Hamiltonian can still be interpreted in
terms of energy bands, already the meaning of its eigenvectors
cannot be treated conventionally as they are not orthogonal, and
therefore possess finite overlap already in the absence of any
additional perturbation. Particularly important in this context are
exceptional points12 (EPs), where the complex spectrum becomes
gapless. These can be regarded as the non-Hermitian counterpart
of conventional quantum critical points5,13. At EPs, two (or
more) complex eigenvalues and eigenstates coalesce, which then
no longer form a complete basis.

In this work we study the defect production at EPs upon slowly
changing a system parameter in the spirit of the Kibble–Zurek
mechanism. We identify a channel for defect suppression unique
to EPs, absent from Hermitian dynamics. Due to non-
orthogonality of wavefunctions, only a small fraction of the
excited state, which points perpendicular to the ground state,
accounts for defect production. Remarkably, however, while we
find that the number of defects n differs from the unitary
Kibble–Zurek result in Eq. (1), it still obeys a universal scaling
form where d in Eq. (1) is replaced by a modified effective
dimension deff= d+ z, involving also the dynamical critical
exponent z associated with the EP. We study defect production
for a set of different, but complementary, protocols of parameter
ramps, which allows us to address different aspects of defect
production in non-Hermitian systems. We provide a physical
interpretation of our results in terms of an open quantum system
described by a Lindblad master equation with an additionally
imposed continuous measurement.

Results
The model and observables. We consider Hamiltonians of the
form14–17

H ¼
X
p

Hp; Hp ¼ pσx þ Δσy þ iΓσz ð2Þ

which can be decomposed into different momentum sectors
labeled by p. For iΓ 2 R; the problem is Hermitian. For Γ 2 R;
instead, the above Hamiltonian becomes non-Hermitian with a
spectrum given by E± ðpÞ ¼ ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ Δ2 � Γ2

p
. When Δ > Γ, Hp

has real eigenvalues for each p. For Γ > Δ on the other hand Hp

has, in general, complex eigenvalues. At sufficiently large
p>

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ2 � Δ2

p
, however, the spectrum becomes real again. A

Hamiltonian is PT-symmetric if it commutes with the combined
parity and time reversal operators. Its spectrum is real if PT-
symmetry is not spontaneously broken, i.e., the eigenstates also

respect PT symmetry. With broken PT-symmetry, the spectrum
becomes complex. The analysis of higher-order exceptional
points12 is beyond the scope of the current investigation. Non-
Hermitian Hamiltonians of the kind in Eq. (2) can be emulated
by optical waveguides6,10,15, distributed-feedback structures18,
microcavities11, or electric circuits19. Eq. (2) also accounts for the
low energy dynamics of the quantum Ising chain in an imaginary
transverse field20,21 or an imaginary mass fermion (i.e., tachyon)
system17. The last term in Eq. (2) assumes balanced gain and loss
without loss of generality: one can shift the diagonal term in the
Hamiltonian by any complex value without affecting the results
(see Methods).

Hermitian dynamics. We investigate several natural scenarios for
time-dependent Δ and Γ. Let us start with the Hermitian
Kibble–Zurek mechanism, which is contained in our model by
choosing Δ= 0, Γ=−iΔ0t/τ. This is the conventional
Landau–Zener problem22,23 starting exactly from the critical
point, thus it represents only a half crossing. This yields (see
Methods) 〈σy(τ)〉= 0, while

hσzðτÞi þ
Δ0

π
ln 2W=Δ0ð Þ � τ�1=2; ð3Þ

with W the high energy cutoff. Defect production is effective
when the adiabatic condition is violated24,25, namely when dln|Γ|/
dt ~ |Γ|. This gives the transition time τ1/2, and the defect density
scales inversely with this, in accord with ref. 26. This also follows
from the scaling behaviour of the momentum resolved defect
density

σzðp; τÞ ¼ σeqz ðpÞ þ fLZ
p
Δ0

ðτΔ0Þ
1=2

� �
; ð4Þ

which is typical for the Hermitian Landau–Zener problem,

σeqz ðpÞ ¼ �Δ0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ Δ2

0

q
. fLZ(x) is a universal scaling function in

the near-adiabatic limit, which decays exponentially with x. For a
general quantum critical point, the momentum resolved defect
density is

nðp; τÞ ¼ ~fLZ pzτzν=ðzνþ1Þ
� �

; ð5Þ

and the defect density follows the Kibble–Zurek scaling1,2 as

nðτÞ ¼
Z

ddp

ð2πÞd
nðp; τÞ � τ�dν=ðzνþ1Þ ð6Þ

with d, z, and ν being the spatial dimension, dynamical critical
exponent, and the exponent of the correlation length,
respectively.

Gapless quench. This is realized for Δ ¼ Γ ¼ Δ0
2 t=τ. The eigen-

values of the Hamiltonian are always ±|p|, irrespective of the
value of Δ0, which makes this parameter ramp exactly solvable by
plugging these parameters into the non-Hermitian Schrödinger
equation (see Methods). The dynamics is nevertheless non-trivial
and as Δ and Γ evolve with time, defects are produced in spite of
the fact that the instantaneous eigenvalues do not change. Starting
from the ground state at t= 0, for p < 0 the wavefunction only
picks up a phase factor as expð�iptÞ½1; 1�T=

ffiffiffi
2

p
. On the other

hand, the p > 0 ground state at t= 0 evolves to

ΨpðτÞ ¼
1� iΔ0

2p

�1� iΔ0
2p

2
4

3
5 expðipτÞffiffiffi

2
p þ

1

1

� �
iΔ0sinðpτÞ
2
ffiffiffi
2

p
p2τ

; ð7Þ

where the second term is generated by the time dependence. For
τ→∞, this expression agrees with the right eigenfunction of the
final Hamiltonian (up to normalization). Not only does the
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instantaneous eigenvalue remain unchanged, i.e., E±(p)= ±|p|,
but also the time evolution is only sensitive to the instantaneous
eigenenergies, namely the wavefunction contains exp(±ipt)
exponential factors only. This is then used in Eq. (15) to yield
〈σy(τ)〉+ Δ0ln(2W/Δ0)/2π ~ τ−2 and 〈σz(τ)〉 ~ τ−1. In this case,
the τ→∞ solution coincides with the instantaneous expectation
value after the time evolution and an adiabatic theorem seems to
hold. Since the instantaneous spectrum remains unchanged and
gapless throughout, the above scaling cannot originate from the
usual argumentation of Kibble–Zurek scaling. This is analogous
to quenching along a gapless line27 within the Hermitian realm.

In order to appreciate the role of wavefunction normalization
in Eq. (15), we have also evaluated it without the denominator:
〈σz(τ)〉 approaches a constant, while 〈σy(τ)〉 ~ ln(τ), without any
well-defined adiabatic limit for τ→∞.

PT-symmetric ramp. Now we consider a fully PT-symmetric
Kibble–Zurek problem, when the instantaneous spectrum is
always real. We choose Δ= Δ0, Γ= Δ0t/τ such that the time
evolution ends exactly at an EP. The spin expectation values are
〈σy(τ)〉+ Δ0ln(W/Δ0)/π ~ τ−2/3, and

hσzðτÞi � τ�2=3; ð8Þ

as shown in Fig. 1 from the numerics. The wavefunction for t=
τ→∞ agrees with the non-normalized right eigenfunction of the
final non-Hermitian Hamiltonian, similarly to the gapless
quench.

The gap in the instantaneous spectrum reads ~Δ ¼
Δ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� t2=τ2

p
� Δ0

ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðτ � tÞ=τ

p
for t ~ τ. The distance from

the critical point is t̂ ¼ τ � t, which is used to obtain the critical
exponents zν= 1/2 from the scaling of the gap5, ~Δ � ĵtjzν . Then,
the transition time24,25 separating a/diabatic dynamics is

determined from ~Δ
2 � d~Δ=dt̂, which gives the transition time

t̂tr � τ1=3, in agreement with Kibble–Zurek scaling1,2 ttr ~ τzν/(zν
+1). Note that similar critical exponents apply also to the
Hermitian Rabi model28.

Since the spectrum ±|p| is linearly gapless at the critical point,
this defines z= 1, leaving us with ν= 1/2 for the exponent of the
correlation length. Therefore, the Kibble–Zurek scaling of the

defect density in one dimension predicts ~τ−dν/(zν+1)= τ−1/3

scaling. However, this exponent is different from Eq. (8). We
demonstrate that the correct exponent is indeed −2/3 and present
a generalized Kibble–Zurek scaling to account for that.

First of all, the numerical data indicate that the momentum
resolved defect density, σz(p, τ), follows the scaling relation

σzðp; τÞ ¼
1

ðτΔ0Þ
1=3

fPT
p
Δ0

ðτΔ0Þ
1=3

� �
ð9Þ

with fPT(x) the universal scaling function shown in Fig. 2. Upon
integrating this with respect to p by changing variable x= p(τΔ0)
1/3/Δ0, the τ−2/3 scaling of the defect density follows. In Eq. (9),
the τ exponent 1/3 originates from the zν/(zν+ 1) combination of
critical exponents and the p stems from the z= 1 dynamical
critical exponents. Therefore, this expression is generalized to an
arbitrary critical point for the momentum resolved defect density
as

nðp; τÞ ¼ 1

τzν=ðzνþ1Þ
~fPT pzτzν=ðzνþ1Þ
� �

; ð10Þ

which, after performing a d-dimensional momentum integral,
gives n ~ τ−(d+z)ν/(zν+1). Notice the τ-dependent prefactor of the
scaling functions in Eqs. (9) and (10) compared to the Hermitian
case Eq. (4).

We next provide three complementary explanations for this
modified scaling. In an a/diabatic picture, excitations are created
by populating the excited state similarly to Hermitian dynamics,
but only its component perpendicular to the ground state
represents defect production. As we approach the EP with
increasing time, we enter into the diabatic regime at the transition
time t̂tr, where adiabatic time evolution breaks down, the
dynamics gets frozen and defect production kicks in. The
component of the excited state perpendicular to the ground state
at this instance has an amplitude sin(θp) as the ground and
excited states are not orthogonal in general29. For Eq. (2), this is
evaluated for small momentum states close to the EP, which are
the most sensitive to diabatic time evolution, as sinðθp�0Þ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 � Γ2

p
=Δ � 1=t̂tr at the adiabatic-diabatic transition: namely

the angle becomes proportional to the energy gap. This results in
a τ−zν/(zν+ 1) suppression factor for the defect density. For the
Hermitian case, orthogonality ensures that sin(θ)= 1.
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Fig. 1 The numerically determined defect density. We plot the defect
density from the normalized (blue circles) and unnormalized wavefunction
(red squares) for the PT-symmetric ramp, as well as for the full non-
hermitian drives (green triangles), measured from its adiabatic value. The
black dashed lines denote the τ−1/3, τ−2/3, and τ−1 scaling. The cutoff |p| <
W= 10Δ0 and 10Γ0, respectively, does not alter the dynamics, with other
values yielding similar scaling
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Fig. 2 Momentum resolved defect density for the PT-symmetric ramp. The
scaling and data collapse of the numerically determined momentum
resolved defect density, fPT(x) in the near-adiabatic limit is shown for
several values of τ for the PT-symmetric ramp
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In a more dynamical picture, defects are created directly in the
state perpendicular to the ground state, which decays to the
ground state with a rate 1=̂ttr reducing the Hermitian
Kibble–Zurek scaling by the probability to remain in the
perpendicular state, 1=̂ttr. At an EP, there is only a single
eigenstate and any perpendicular component decays30. Close to
an EP, the state perpendicular to the ground state initially decays
towards the ground state, which is followed by revival and
periodic oscillation with frequency E+(p). An unnormalized state
perpendicular to the ground state evolves as |⊥(t)〉= 2icot(θp)sin
(E+(p)t)|GS〉+ exp(iE+(p)t)|⊥〉 due to a time independent non-
Hermitian Hamiltonian, where θp is the angle between the ground
state and the excited state, 〈GS|⊥〉= 0 and θp vanishes at EP. For
t ~ π/2E+(p), it develops a large component parallel to the ground
state with length cot(θp). However, when the driving rate,
∂tE+(p)/E+(p) is larger than the revival frequency, the system
does not have enough time for revival and only the initial decay is
probed. This gives the very same condition as the a/diabatic
transition and the decay time is t̂tr.

Mathematically, the prefactor in Eq. (10) arises because the
norm of the wavefunction also changes due to non-unitary time
evolution. This follows from31 d〈Ψp(t)|Ψp(t)〉/dt= 2Γ(t)〈Ψp(t)|σz|
Ψp(t)〉. Due to the slow time evolution, states with large
momentum p have large energy, and are hardly affected by the
time-dependent term and the corresponding wavefunction norm
hardly changes. The low energy and small momentum states are
the most influenced by the non-Hermitian and non-adiabatic
time evolution. At short times t � τð Þ, both the small matrix
element and the Γ(t) prefactor block the growth of the
wavefunction norm, but at a distance t̂tr from the critical point,
adiabaticity breaks down. Afterwards, diabatic time evolution
takes place, and the norm of the wavefunction gets enhanced by
t̂tr � τ1=3, thus suppressing the defect density.

Full non-Hermitian drive. A full non-Hermitian drive is realized
for Δ= 0, Γ= Γ0t/τ, which represents the non-Hermitian
Kibble–Zurek problem and is equivalent to quenching the ima-
ginary tachyon mass17. The instantaneous spectrum contains EPs
located at |p|= Γ. By expanding around the EP, the spectrum
scales as E± ðp≳ΓÞ ¼ ±

ffiffiffiffiffi
2Γ

p ffiffiffiffiffiffiffiffiffiffiffi
p� Γ

p
in the PT-symmetric regime,

and as E± ðp≲ΓÞ ¼ ± i
ffiffiffiffiffi
2Γ

p ffiffiffiffiffiffiffiffiffiffiffi
Γ� p

p
in the broken PT-symmetry

sector. Altogether the dynamical critical exponent is thus z= 1/2,
while ν= 1. During the time evolution, all instantaneous eigen-
values are imaginary for Γ(t) > |p| and real for Γ(t) < |p|, separated
by an EP. This critical point, which is located at p= Γ0t/τ, moves
in momentum space during the time evolution at a speed Γ0/τ,
producing defects in the process. This results in 〈σy(τ)〉= 0 and

hσzðτÞi � Γ0=4 � τ�1: ð11Þ

This is depicted in Fig. 1 from the numerical solution of Eq.
(14) (see Methods). Here, it is again crucial to properly normalize
the wavefunction as in Eq. (15). Without the normalization, the
spin expectation value changes exponentially in time due to the
imaginary energy eigenvalues.

The numerically obtained adiabatic value for 〈σz(τ→∞)〉 is
also corroborated from diagonalizing the non-Hermitian Hamil-
tonian analytically, and using its normalized right eigenfunction:

hσzieq ¼
1
2π

ZΓ0
�Γ0

dp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ20 � p2

p
Γ0

¼ Γ0
4
: ð12Þ

By taking a closer look at near-adiabatic dynamics, we calculate
the momentum resolved spin expectation value, σz(p,τ) numeri-
cally. This is illustrated, together with its critical scaling, in Fig. 3.

There is a clear difference in the contribution of states with
imaginary as opposed to real instantaneous eigenvalues to this
expectation value. This also differs significantly from the
Landau–Zener transition probability of the corresponding
Hermitian system3. From the numerical data, the defect density
obeys the scaling function

σzðp; τÞ ¼ σeqz ðpÞ þ
1

ðτΓ0Þ
1=3

fnh
ðp� Γ0Þ

1=2

Γ1=20

ðτΓ0Þ
1=3

 !
ð13Þ

with fnh(x) the corresponding universal scaling function, depicted

in Fig. 3 and σeqz ðpÞ ¼ <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðp=Γ0Þ

2
q

. Upon integrating this
with respect to p, the 1/τ scaling of the defect density follows.

This allows us to conjecture that for a general EP, the
momentum resolved defect density satisfies the same form as Eq.
(10), which agrees with Eq. (13) with z= 1/2. Therefore, the
induced defect density vanishes as τ−(d+ z)ν/(zν+ 1) upon
traversing the EP adiabatically, similarly to the PT-
symmetric ramp.

Discussion
Throughout this work, a non-Hermitian Hamiltonian was used to
generate the time evolution. From a more direct physical per-
spective, such dynamics follow from a Lindblad master equation
in combination with a continuous measurement16,32,33. More
specifically, consider a system, described just by the Hermitian
part of our Hamiltonian, coupled to an environment inducing
radiative decay in the individual two-level systems for each
momentum p with a rate Γ. In terms of a Lindblad equation, this
results in quantum jump operators equal to σ− describing an
incoherent decay upon emitting a photon. Equivalently, one can
map the Lindblad dynamics for the system’s density matrix onto
a quantum jump trajectory picture, where pure states are evolved
upon averaging over trajectories according to the following pre-
scription. A single trajectory is specified by a set of quantum
jumps at times, that can be sampled from a given probability
distribution. At those times the quantum jump operator of the
related Lindblad master equation is applied onto the quantum
state. In our case this is the σ− operator and a quantum jump
event can therefore be identified with the emission of a photon. In
between the quantum jumps the dynamics is solely given by a
non-Hermitian Hamiltonian, which in our case is the one in Eq.
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Fig. 3 Momentum resolved defect density for the non-hermitian drive. The
scaling of the numerically determined momentum resolved defect density,
fnh(x) in the near-adiabatic limit is shown for several values of τ for the full
non-hermitian drive around the equilibrium EP
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(2). In order to only select those trajectories without any photon
emission event, which is the non-Hermitian evolution targeted in
this work, we can further continuously monitor the system and
measure the number of emitted photons. In case we only consider
those realizations, where no emission event has taken place, we
end up with an evolution precisely captured by our non-
Hermitian Hamiltonian. Note that the measurement modifies the
state of our system, since the absence of emission events effec-
tively gradually forces the system over time towards the ground
state of the two-level system as otherwise an emission event
becomes too likely32. This continuous measurement further
ensures that the wavefunction is always properly normalized.
While the anti-Hermitian contribution forces the system towards
the ground state of the two-level system, the Hermitian part
counteracts this tendency by coherently transferring population
back into the excited state. At an EP, these processes compete
most strongly and generate a non-trivial attractor of the
dynamics: this is the single eigenstate of the non-Hermitian
system. This provides the additional channel for defect annihi-
lation that we identified in our analysis. Far away from the EP, the
Hermitian part of the Hamiltonian dominates for our setups, so
that the dynamics is almost fully coherent. Finally, we note that a
distinct non-Hermitian Kibble–Zurek scaling describing a dif-
ferent physical realization with different definition of the expec-
tation value and the scalar product was studied in ref. 34.

Single particle Hamiltonians of the form of Eq. (2) have already
been realized in non-conservative classical and quantum
systems6,10,11,35. The time-dependent control of the non-
Hermitian term together with measuring the spin components
are possible. By creating several copies of this two-level system,
corresponding to distinct p’s, the effective many-body dynamics
and the non-Hermitian Kibble–Zurek scaling could in principle
be detected.

To sum up, the universal features of non-Hermitian dynamics
across EPs were investigated. We find that the adiabatic time
evolution drives the initial wavefunction to a right eigenstate of
the final non-Hermitian Hamiltonian, up to normalization,
indicating that an adiabatic theorem probably exists for the sys-
tems under consideration. For a near-adiabatic crossing of an EP,
defects are produced at a reduced rate, whose density obeys a
generalized Kibble–Zurek scaling as τ−(d+ z)ν/(zν+ 1). For the
future it remains an open question how our results extend also to
higher-order exceptional points.

Methods
Non-Hermitian time evolution. For the purpose of this work we consider time-
dependent parameters Δ(t) and/or Γ(t) yielding a Hamiltonian H(t). Initially,
before we start our parameter ramps, we choose the Hamiltonian always to be
Hermitian, i.e., Γ= 0, so that the initial condition as the ground state of the
Hamiltonian is well-defined. At time t= 0 we start our time-dependent protocol
over a time span τ. The time evolution follows from

i∂t jΨðtÞi ¼ HðtÞjΨðtÞi; ð14Þ
with |Ψ(t)〉=⊗p|Ψp(t)〉 for a given mode p. In general, the norm of the wave-
function is not conserved when time evolution is driven by a non-Hermitian
Hamiltonian, so that an additional prescription for performing measurements in
such states has to be given. When interpreting such dynamics as a result of dis-
sipation in the framework of a Lindblad master equation with an additional con-
tinuous measurement, expectation values of an operator O have to be evaluated
as16,31,36

hOðtÞi ¼ hΨðtÞjOjΨðtÞi
hΨðtÞjΨðtÞi ; ð15Þ

where the left state, 〈Ψ(t)| is taken as the Hermitian conjugate of the time evolved
right state, |Ψ(t)〉. Since the initial condition at t= 0 is chosen to be the ground
state of a Hermitian system, the initial right and left states also satisfy this con-
dition. In the following we will quantify the defect production via

hσαðtÞi ¼
1
N

X
p

σαðpÞ; σαðpÞ ¼
hΨpðtÞjσαjΨpðtÞi
hΨpðtÞjΨpðtÞi

ð16Þ

with α= y, z, and N denoting the number of considered momentum states. In the
absence of balanced gain and loss, one can shift the diagonal term in the Hamil-
tonian by any complex value, which does not affect the results. The reason is that
such a shift leaves the expectation values in Eq. (16) invariant, since a simple (time-
dependent) change of the norm of the wavefunction is cancelled by explicitly using
normalized expectation values.

Calculation of the defect density. The total defect density for the four considered
settings are evaluated from the momentum resolved defect density after momen-
tum integration. For example, by taking the PT-symmetric ramp, Eq. (9) defines
the momentum resolved defect density. The total defect density is

σzðτÞ ¼
Z

dp
2π

σzðp; τÞ: ð17Þ

By changing variable x= p(τΔ0)1/3/Δ0, this becomes

σzðτÞ ¼
1

ðτΔ0Þ
1=3

Δ0

ðτΔ0Þ
1=3

Z
dx
2π

fPTðxÞ � τ�2=3: ð18Þ

Data availability
The data that support the plots within this paper and other findings of this study are
available from the corresponding author on request.
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