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Therapeutic potential of PIMSR, a novel CB1 receptor neutral
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Cannabinoid CB1 receptors (CB1Rs) have been major targets in medication development for the treatment of substance use
disorders. However, clinical trials with rimonabant, a CB1R antagonist/inverse agonist, failed due to severe side effects. Here, we
evaluated the therapeutic potential of PIMSR, a neutral CB1R antagonist lacking an inverse agonist profile, against cocaine’s
behavioral effects in experimental animals. We found that systemic administration of PIMSR dose-dependently inhibited cocaine
self-administration under fixed-ratio (FR5), but not FR1, reinforcement, shifted the cocaine self-administration dose-response curve
downward, decreased incentive motivation to seek cocaine under progressive-ratio reinforcement, and reduced cue-induced
reinstatement of cocaine seeking. PIMSR also inhibited oral sucrose self-administration. Importantly, PIMSR alone is neither
rewarding nor aversive as assessed by place conditioning. We then used intracranial self-stimulation (ICSS) to explore the possible
involvement of the mesolimbic dopamine system in PIMSR’s action. We found that PIMSR dose-dependently attenuated cocaine-
enhanced ICSS maintained by electrical stimulation of the medial forebrain bundle in rats. PIMSR itself failed to alter electrical ICSS,
but dose-dependently inhibited ICSS maintained by optical stimulation of midbrain dopamine neurons in transgenic DAT-Cre mice,
suggesting the involvement of dopamine-dependent mechanisms. Lastly, we examined the CB1R mechanisms underlying PIMSR’s
action. We found that PIMSR pretreatment attenuated Δ9-tetrahydrocannabinol (Δ9-THC)- or ACEA (a selective CB1R agonist)-
induced reduction in optical ICSS. Together, our findings suggest that the neutral CB1R antagonist PIMSR deserves further research
as a promising pharmacotherapeutic for cocaine use disorder.
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INTRODUCTION
Cocaine use disorder (CUD) is characterized by continued drug use
despite clinically significant distress and other negative conse-
quences. Currently, there is no available pharmacological treatment
that has proven effective in replicated, randomized, placebo-
controlled clinical trials. To remedy this, medication discovery
research has prioritized the search for effective CUD medications.
Over the past decade, CB1 receptors (CB1Rs) have been given much
attention because of their abundant presence in the central nervous
system (CNS) [1–4] and critical involvement in addiction [5–7].
Preclinical studies have demonstrated that mice with genetic
ablation of CB1Rs can acquire drug self-administration after
extensive training but generally tend to self-administer lower
amounts of psychostimulants and are less motivated to seek the
drug than their control littermates [6–8]. In contrast, cannabinoid
receptor agonists such as Δ9-THC, CP55,940 or WIN55,212-2 have
been shown to excite midbrain dopamine (DA) neurons [9],
produce conditioned place preference (CPP) [10], enhance electrical
brain stimulation reward [11, 12] and trigger reinstatement of

extinguished drug seeking [13] under certain experimental condi-
tions, which has been generally believed to be mediated mainly by
activation of CB1Rs [5, 11–13].
Given the importance of CB1Rs in drug-related behavior, CB1R

antagonists have been proposed as potential therapeutic candi-
dates for the treatment of drug abuse and addiction [14–17]. A
number of preclinical studies with rimonabant and AM251,
selective CB1R antagonists with inverse agonist profiles, suggested
that they reduce self-administration of heroin [18–20], metham-
phetamine [21, 22], alcohol [23–26], nicotine [27], and to some
extent cocaine[7, 28]; but see [29–31]. In addition, pharmacological
blockade of CB1Rs can significantly attenuate the development
and expression of cocaine-induced CPP [32, 33] and prevent
relapse to addictive drug use (including nicotine, alcohol, and
psychostimulants [34–42]), making CB1R ligands promising candi-
dates for the treatment of CUD.
Despite CB1R antagonists being effective in reducing drug

reward and relapse in experimental animals (for comprehensive
reviews, see [5, 43]), CB1R antagonists have significant adverse
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side effects including nausea, emesis, depression, and suicidal
tendencies in humans [15, 44–48]. As a consequence, clinical trials
with CB1R antagonists were abruptly terminated and the US Food
and Drug Administration (FDA) decided not to approve CB1R
ligands until better safety and efficacy data become available.
Recently, the medication discovery community has shifted

research interest to CB1R neutral antagonists presuming that the
inverse agonist profile of CB1R antagonists may underlie their
unwanted side effects. We and others recently reported that CB1R
neutral antagonists such as AM4113 offer attractive prospects for
pharmacotherapeutic exploration as they do not produce psycho-
tropic side effects [49–52], nor do they produce aversive or
rewarding effects on their own [19]. Here we evaluated the
therapeutic potential of PIMSR, a novel CB1R neutral antagonist, for
the treatment of CUD, using a series of animal models of drug
abuse and addiction. In vitro radioligand binding assays indicate
that PIMSR has as high affinity (Ki= 17–57 nM) for human
CB1Rs expressed in cultured HEK cells as does rimonabant
(Ki= 1.8–18 nM) [53]. Computational molecular modeling (CB1R
docking) and Ca++ channel assays indicate that PIMSR is able to
block WIN55,212-2-induced inhibition of Ca++ influx, while itself
failing to alter Ca++ influx [53]. PIMSR also stabilizes both the active
and inactive states of CB1Rs, revealing the molecular interactions
that mechanistically confer the property of neutral antagonism
[53]. Electrophysiological assays indicate that co-administration of
PIMSR can reverse the inhibitory effects of Δ9-THC or synthetic
cannabinoids (AM2201, AM018) on excitatory glutamate transmis-
sion in the hippocampus [54]. Pharmacodynamic assays indicate
that PIMSR displays relatively low brain penetration — reflected by
a brain: plasma concentration ratio of 0.24 after intraperitoneal
(i.p.) administration of 10mg/kg [55]. Importantly, systemic
administration of PIMSR significantly reduces body weight, food
intake, and adiposity as well as improving glycemic control and
lipid homeostasis in high-fat diet-induced obese mice, but also
shows increased alanine transaminase (ALT) and liver weight as
markers of liver injury with chronic administration [55]. This is
unlikely due to neutral CB1R antagonism itself since other neutral
antagonists (AM6545) do not produce liver injury or other
unwanted side effects [56]. In contrast, repeated (3-day) adminis-
tration of PIMSR significantly reduced high-dose alcohol-induced
acute hepatic injury and steatosis in C57BL/6J mice [55],
suggesting the additional potential utility of PIMSR in the
treatment of obesity and alcohol use disorder.
Therefore, in the present study, we first systemically evaluated

PIMSR’s pharmacological efficacy in reducing cocaine-taking and
cocaine-seeking behavior in experimental animals, and then
explored the underlying neural mechanisms using electrophysio-
logical, optogenetic, and transgenic approaches. We found that
PIMSR reduces cocaine reward and relapse by inhibition of the
mesolimbic DA system via both CB1R and non-CB1R mechanisms.

MATERIALS AND METHODS
Animals
Subjects consisted of 48 male Long-Evans rats (purchased from Charles River
Laboratories, Frederick, MD), 42 male and female wildtype (C57/BL6J) mice,
and 15 heterozygous DAT-cre mice (breeders purchased from Jackson
Laboratory, Bar Harbor, ME; B6.SJL-Slc6a3tm1.1(Cre)Bkmn/J; stock # 006660),
aged 4–24 weeks. Rats and mice were chosen based on the availability of
the test drug (PIMSR), transgenic animals (DAT-cre), and equipment systems
(rat electrical ICSS vs. mouse optical ICSS) in the laboratory. To the best of our
knowledge, there are no reports of sex differences in animal behavioral
responses to PIMSR. Animals were housed in climate-controlled animal
colony rooms on a reversed light-dark cycle (lights on at 7:00 p.m., lights off
at 7:00 a.m.) with free access to food and water throughout the study. The
housing conditions and animal care were consistent with the Guide for the
Care and Use of Laboratory Animals (National Research Council, 2011). All
experimental procedures were approved by the National Institute on Drug
Abuse Animal Care and Use Committee.

Exp. 1: Cocaine self-administration and cue-induced reinstatement of drug
seeking in rats. Intravenous catheterization surgery and cocaine self-
administration procedures were performed as described previously
[19, 28]. After stable cocaine self-administration was achieved, the effects
of PIMSR (3, 10, 30 mg/kg, i.p.) or vehicle (equal injection volume of 5%
Kolliphor EL) on cocaine self-administration under fixed-ratio (FR1, FR5),
progressive-ratio (PR), and multiple cocaine dose conditions were
evaluated. In addition, the effects of PIMSR on cue-induced reinstatement
were also evaluated in separate groups of rats (see more details in the S.I.).

Exp. 2: Oral sucrose self-administration in mice. Procedures for oral sucrose
self-administration in mice were the same as we reported previously [57].
This experiment was designed to determine whether the same doses
of PIMSR inhibit non-drug reinforced behavior (see experimental details
in the S.I.).

Exp. 3: PIMSR-induced place conditioning in mice. This experiment was
designed to determine whether PIMSR itself is rewarding or aversive. The
experimental details are provided in the S.I.

Exp. 4: Electrical intracranial self-stimulation (ICSS) in rats. To determine
the neural mechanisms underlying PIMSR’s action, we observed the effects
of PIMSR on rewarding intracranial self-stimulation (ICSS) behavior in the
presence or absence of cocaine. The experimental procedures are the
same as we reported previously [12] (also see the S.I. for more details).

Exp. 5: Optogenetic intracranial self-stimulation (ICSS) in DAT-Cre mice. To
determine whether DA-dependent and CB1 receptor-dependent mechan-
isms underlie the effects of PIMSR on cocaine self-administration
and brain-stimulation reward, we measured the effects of PIMSR on Δ9-
THC- or ACEA-induced changes in ICSS maintained by optical activation of
ventral tegmental area (VTA) DA neurons in DAT-Cre mice expressing
Cre-recombinase under the DA transporter (DAT) promoter. The optical
ICSS procedures are the same as we reported previously [58] (see
details in the S.I.)

Exp. 6: Δ9-THC-induced tetrad effects in mice. Lastly, we examined the
ability of PIMSR to antagonize high dose Δ9-THC-induced classical
cannabinoid tetrad effects—analgesia, hypothermia, catalepsy and
immobility in mice. The procedures for the measurement of Δ9-THC-
induced tetrad effects are the same as we reported previously [59] (see
the S.I. for details).

Data analysis
All values were presented as means ± SEM. Animal group sizes were
chosen based on a power analysis (n= 6–12 per group) and extensive
previous experience with the animal models used. No data points
were excluded from the analysis in any experiment. The investigators
were blinded to the group allocation during the experiments and when
assessing the outcome. Where a variation in group size occurred, this was
due to animals being dropped from the experiment due to obstruction or
clogging of i.v. catheters.
To validate the use of parametric statistics, we performed a Shapiro Wilk

Test for data normality evaluation and Levene’s test for homogeneity for
between-subject ANOVA. The group size (n > 5) is the number of
independent values (individual animals), and statistical analysis was done
using these independent values. One-way or two-way repeated-measures
analysis of variance (RM ANOVA) was used to evaluate the effects of PIMSR
on cocaine or sucrose self-administration, cue-induced reinstatement, or
cannabinoid-induced changes in oICSS. The post-hoc group comparisons
were conducted only if the ANOVA F value achieved p < 0.05. Estimation
statistics were used when necessary (when data were not normally
distributed (www.estimationstats.com). The value of p < 0.05 was used to
indicate statistically significant differences among or between groups.

RESULTS
PIMSR fails to alter cocaine self-administration under FR1
reinforcement
We first examined the effects of PIMSR on cocaine self-
administration maintained by cocaine (0.5 mg/kg/infusion) under
FR1 reinforcement. Figure 1A shows the total numbers of cocaine
infusions earned within 3 h session under an FR1 reinforcement
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schedule, indicating that PIMSR, at 3, 10, and 30mg/kg, failed to
alter cocaine self-administration. A two-way RM ANOVA over
PIMSR doses revealed no significant main effects of PIMSR dose
(F3,28= 0.54; p= 0.6) and no PIMSR dose × phase (baseline vs. Test
with PIMSR) interaction (F3,28= 2.17; p= 0.11). Similarly, no
significant difference was observed in the number of active or
inactive lever presses before and after each dose of PIMSR (data
not shown), suggesting that PIMSR is unable to inhibit cocaine
self-administration when high dose cocaine is available under easy
access (FR1) conditions.
Next, we examined the effects of PIMSR on cocaine self-

administration maintained by the same dose of cocaine (0.5 mg/
kg/infusion) but under a FR5 reinforcement schedule, in which the
animals needed to work harder to receive a cocaine reward.
Figure 1B shows that the rats took less cocaine under FR5 than
under the FR1 reinforcement (averaged cocaine infusions
decreased from ~50 to ~20 within a 3-h session). PIMSR, at 10
and 30mg/kg, significantly inhibited cocaine self-administration. A
two-way RM ANOVA revealed a significant PIMSR treatment main
effect (F1, 7= 35.88, p < 0.001). Post-hoc individual group compar-
isons revealed a significant reduction in the total number of
cocaine infusions after 10mg/kg (p < 0.05) or 30 mg/kg (p < 0.01)
PIMSR compared to either vehicle or baseline. These findings
suggest that PIMSR was effective in attenuating cocaine self-
administration when a high dose of cocaine is unavailable without
effort or the cumulative dose of cocaine is not high.

PIMSR reduces low-dose cocaine self-administration under
FR2 reinforcement
We then assessed the pharmacological efficacy of PIMSR on a full
dose range (0.5, 0.25, 0.125, 0.06, 0.03 mg/kg/infusion) of cocaine
self-administration under a higher FR (FR2) requirement. We
observed a typical inverted U-shaped dose-response curve for
cocaine self-administration after vehicle treatment (Fig. 1C).

Systemic treatment with PIMSR (3, 10, or 30 mg/kg) dose-
dependently decreased cocaine self-administration maintained
by lower doses (<0.5 mg/kg/infusion) of cocaine under FR2
reinforcement and shifted the cocaine dose-response curve
downward. A two-way ANOVA revealed a significant cocaine
dose × PIMSR treatment interaction (F15,140= 3.19, p < 0.05). Post-
hoc Tukey tests for multiple group comparisons revealed that the
30mg/kg dose of PIMSR significantly reduced self-administration
of cocaine doses from 0.03 to 0.25 mg/kg/infusion, while the
10mg/kg dose of PIMSR significantly reduced self-administration
of cocaine doses from 0.03 to 0.12 mg/kg/infusion, and the 3mg/
kg dose of PIMSR significantly reduced self-administration of
cocaine doses from 0.06 to 0.12 mg/kg/infusion. PIMSR caused
dose-dependent reductions in overall cocaine intake (i.e., sum of
cocaine intake under the different doses of cocaine, mg/kg/
session), as shown in Fig. 1D. A one-way ANOVA revealed a
significant PIMSR treatment main effect (F3,28= 6.4, p < 0.01) with
10 and 30mg/kg being the effective doses.

PIMSR reduces motivation for cocaine as determined by self-
administration by PR reinforcement
To determine whether PIMSR reduces motivation to seek cocaine,
we examined the effects of PIMSR on cocaine self-administration
under PR reinforcement. Figure 2A shows that rats in all dose
groups displayed similar baseline (before PIMSR treatment)
cocaine infusions, while PIMSR produced a dose-dependent
reduction in the number of cocaine infusions under PR reinforce-
ment. A two-way ANOVA revealed a significant PIMSR dose main
effect (F3,24= 2.88, p < 0.05). Post hoc individual group compar-
isons revealed a significant reduction in the number of cocaine
infusions following 30mg/kg PIMSR (p < 0.05, Fig. 2A). Similarly,
PIMSR also produced a dose-dependent reduction in break point
for cocaine-taking behavior. A two-way ANOVA revealed a
significant PIMSR dose main effect (F3,24= 3.04, p < 0.05).

Fig. 1 The effects of PIMSR on cocaine self-administration in rats under different schedules of reinforcement. A, B PIMSR failed to alter
cocaine self-administration under FR1 reinforcement (n= 8), but dose-dependently inhibited cocaine self-administration under FR5
reinforcement in a separate group of rats (n= 8). C PIMSR significantly inhibited cocaine self-administration maintained by low-dose cocaine
(0.03, 0.06, 0.12, 0.25 mg/kg/infusion) under FR2 reinforcement and shifted the cocaine dose-response curve downward (n= 8). D PIMSR dose-
dependently reduced cocaine intake calculated from the data in C (i.e., sum of cocaine dose × infusions at each cocaine dose). *p < 0.05,
**p < 0.01, compared to vehicle.
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Post hoc individual group comparisons revealed a significant
reduction in break point following 30mg/kg PIMSR (p < 0.05,
Fig. 2B), suggesting that PIMSR (at a sufficiently high dose) was
effective in attenuating animals’ motivation for cocaine.

PIMSR reduces oral sucrose self-administration
To determine whether the PIMSR actions observed above are
drug- or cocaine-specific, we observed the effects of PIMSR on
oral sucrose self-administration in mice. We chose mice in this
experiment because of the limited drug source. We found that
PIMSR, at 10 and 30 mg/kg, also significantly reduced sucrose
self-administration (Fig. 2C). Two-way RM ANOVA revealed a
significant PIMSR treatment main effect (F1, 5= 21.32, p < 0.01).
Post-hoc individual group comparisons revealed a significant
reduction (p < 0.001) in sucrose deliveries after 10 or 30 mg/kg
PIMSR when compared to the vehicle control group. Figure 2D
shows the active and inactive lever responses for sucrose
reward. Two-way ANOVA revealed a significant PIMSR treatment
main effect (F2, 10= 72.36, p < 0.001). Post hoc-individual group
comparisons revealed a significant reduction (p < 0.001) in
active lever responding after 10 mg/kg or 30 mg/kg PIMSR
administration, while no difference was observed in inactive
active responses.

PIMSR reduces cue-induced reinstatement of cocaine seeking
We next examined the action of PIMSR on drug-paired environ-
mental cue-induced reinstatement of drug-seeking behavior.
Figure 3A, B shows the general experimental procedure and the
averaged active vs. inactive lever responses during the last three
sessions of cocaine self-administration, extinction, and reinstate-
ment testing. Rats in all PIMSR dose groups showed similar levels
of responding during the last days of self-administration and

extinction. On the reinstatement test day, re-exposure to cocaine-
associated cues (lights and tones) produced robust reinstatement
responding on the active lever in the absence of PIMSR (0 mg/kg).
However, PIMSR, at 10 and 30mg/kg, produced a significant
reduction in cue-induced active lever presses. A two-way ANOVA
performed on cue-induced reinstatement responding revealed a
significant PIMSR main effect (F3,26= 5.08, p < 0.001), inactive vs.
inactive lever response main effect (F1,26= 48.59, p < 0.001), and a
significant PIMSR × lever response interaction (F3,26= 5.35,
p < 0.01). Post-hoc individual group comparisons revealed a
significant reduction in cue-induced active lever responding after
10mg/kg or 30 mg/kg (p < 0.001), but not 3 mg/kg, PIMSR
pretreatment. These findings suggest that PIMSR has therapeutic
potential for relapse prevention.

PIMSR is neither rewarding nor aversive in mice
We then used CPP to examine whether PIMSR itself has similar
aversive or depressive effects as rimonabant. Figure 4A shows the
general experimental procedures. PIMSR, at 10 or 30 mg/kg, did
not produce rewarding or aversive effects as assessed by CPP
(Fig. 4B). A two-way RM ANOVA did not reveal a significant
conditioning main effect (F1,16= 0.33, p > 0.05), PIMSR dose main
effect (F1,16= 0.28, p > 0.05) or conditioning × dose interaction
(F1,16= 0.33, p > 0.05), suggesting a lack of rewarding or aversive
effects by PIMSR itself.

PIMSR attenuates cocaine-enhanced rewarding electrical ICSS
To determine possible mechanisms underlying PIMSR’s action, we
observed the interactions of cocaine and PIMSR on electrical ICSS.
Figure 5A shows that electrical stimulation of the medial forebrain
bundle (MFB) at the level of the hypothalamus produced robust
ICSS behavior (lever-pressing to receive the stimulation).

Fig. 2 The effect of PIMSR on PR cocaine self-administration and FR1 oral sucrose self-administration. A, B PIMSR inhibited cocaine self-
administration under PR reinforcement in a dose-dependent manner (n= 7), as assessed by the number of cocaine infusions (A) and break-
point (B). C, D PIMSR dose-dependently inhibited oral sucrose self-administration under FR1 reinforcement (n= 6), as assessed by the
number of sucrose deliveries (C) and active lever responses (D). PIMSR did not alter inactive lever responses. *p < 0.05, ***p < 0.001,
compared to vehicle.
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Figure 5B shows representative rate-frequency functions for ICSS,
indicating ICSS threshold (θ0), Ymax, and the effects of cocaine in
the presence or absence of PIMSR. Cocaine (2 mg/kg, i.p.)
significantly shifted the curve to the left and decreased the ICSS
θ0 value without affecting asymptotic rates of responding (i.e., no
change in Ymax level) (Fig. 5B), indicating that cocaine produced an
enhancement (additive or synergistic effects) on ICSS. PIMSR (3, 10
or 30mg/kg, i.p.) pretreatment significantly attenuated cocaine-
enhanced ICSS as assessed by θ0 value (Fig. 5C). A one-way ANOVA

with PIMSR dose as a within-subjects factor revealed a significant
PIMSR treatment main effect (F3,33= 3.79; p= 0.019). Post-hoc
Tukey tests showed that PIMSR significantly attenuated cocaine-
enhanced ICSS. Strikingly, PIMSR itself failed to alter the ICSS
threshold θ0 value (Fig. 5D, F3,33= 2.475, p= 0.101), suggesting
that PIMSR is not rewarding or aversive by itself, which is
consistent with the finding in the CPP experiment and its neutral
CB1R antagonist profile.

PIMSR reduces optical ICSS in DAT-Cre mice
We then examined whether a DA-dependent mechanism under-
lies PIMSR action against cocaine’s rewarding effects. Figure 6A
illustrates the experimental set-up, demonstrating that AAV-ChR2-
eYFP was injected into the VTA ipsilaterally, and optrodes (optical
fibers) were surgically implanted 1mm above the VTA in DAT-cre
mice. Figure 6B shows fluorescent ChR2-eYFP and tyrosine
hydroxylase (TH) colocalization confirming that ChR2 was
expressed in VTA DA neurons. Unexpectedly, PIMSR (10, 30mg/
kg) alone caused significant reductions in optical ICSS maintained
by stimulation of VTA DA neurons as shown in Fig. 6C. A two-way
RM ANOVA with stimulation frequency and PIMSR dose as within-
subjects factors revealed significant main effects of PIMSR dose
(F2,14= 12.73, p < 0.001), frequency (F5,35= 92.47, p < 0.001 and a
stimulation frequency × PIMSR interaction (F10,70= 3.41, p < 0.001).
Post-hoc Tukey tests for multiple group comparisons revealed that
10 or 30 mg/kg PIMSR were effective in attenuating oICSS
responding (p < 0.05).

PIMSR attenuates Δ9-THC-induced reduction of oICSS in DAT-
cre mice
Next, we examined whether PIMSR is able to block the action
produced by Δ9-THC using oICSS. We have previously demon-
strated that Δ9-THC inhibits oICSS caused by optical stimulation of
VTA DA neurons [60] in mice. In line with these findings, systemic
administration of Δ9-THC, at 3.5 mg/kg, significantly inhibited
oICSS in DAT-Cre mice (Fig. 6D). A two-way RM ANOVA revealed a
significant Δ9-THC treatment main effect (F3,18= 11.65, p < 0.001).
Unexpectedly, pretreatment with PIMSR (30min prior to Δ9-THC)
failed to effectively block Δ9-THC-induced reduction in oICSS
(Fig. 6F). A two-way RM ANOVA with frequency and treatment as
within-subjects factors revealed significant main effects of
treatment (Fig. 6E, F3,18= 18.07, p < 0.001) and stimulation
frequency (F5,30= 33.27, p < 0.001) and a significant frequency ×
treatment interaction (F15,90= 6.40, p < 0.001). Post-hoc Tukey
tests for multiple group comparisons revealed attenuated
responding in the groups administered 3.5 mg/kg Δ9-THC in the
presence or absence of PIMSR (Fig. 6E).
Given that PIMSR displayed a trend toward reduction in Δ9-THC

action in a dose-dependent manor, we then re-analyzed the data
using the area under curve (AUC) for the data shown in Fig. 5E. We
found that PIMSR pretreatment produced a significant reduction
in Δ9-THC’s action on oICSS (Fig. 6F). One-way RM ANOVA revealed
a significant PIMSR treatment main effect (F3,18= 24.34, p < 0.001).
Post-hoc individual group comparisons revealed a significant
reduction in Δ9-THC action on oICSS after 30 mg/kg PIMSR
pretreatment, suggesting that a CB1R mechanism at least in part
underlies Δ9-THC-induced attenuation of oICSS.

PIMSR attenuates ACEA-induced reduction of oICSS in DAT-cre
mice
To further explore this finding, we examined the effects of PIMSR
pretreatment on ACEA (a selective CB1R agonist)-induced reduc-
tion of oICSS. Figure 6G, H shows that ACEA, at 3 mg/kg, produced
a significant reduction in oICSS, an effect similar to that which we
reported previously [60]. Pretreatment with PIMSR, at 3 mg/kg,
significantly blocked the action produced by ACEA, although this
blockade effect is not PIMSR dose-dependent. A two-way RM
ANOVA for the data shown in Fig. 6G revealed a significant PIMSR

Fig. 4 PIMSR-induced CPP or CPA in mice. A General CPP
procedures. B The CPP score (i.e., the averaged value of the two
tests) after 10mg/kg or 30mg/kg PIMSR-conditioning (n= 9),
indicating that PIMSR is neither rewarding nor aversive.

Fig. 3 Effects of PIMSR on cue-induced reinstatement of cocaine
seeking in rats. A General experimental procedures for cue-induced
reinstatement of cocaine seeking; B The averaged active and
inactive lever responses during the last three days of cocaine self-
administration, the last three days of extinction, and reinstatement
testing. PIMSR, when administered 30min prior to reinstatement
testing, dose-dependently reduced cue-induced reinstatement of
cocaine-seeking behavior (n= 6–10 per group). ***p < 0.001, com-
pared to vehicle.
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treatment main effect (F4, 20= 3.21, p < 0.05), stimulation fre-
quency main effect (F5, 25= 8.68, p < 0.001), and treatment ×
frequency interaction (F20, 100= 2.95, p < 0.001). One-way ANOVA
for the AUC data shown in Fig. 6H also revealed a significant
PIMSR treatment main effect (F4,20= 7.83, p < 0.001). Post-hoc
individual group comparisons revealed a significant reduction
(p < 0.05) in ACEA action after 3 mg/kg, but not 10 mg/kg or
30mg/kg, PIMSR administration.

PIMSR fails to block Δ9-THC-induced tetrad effects in mice
Lastly, we examined whether PIMSR antagonizes the effects of
Δ9-THC in the tetrad test. As shown in Fig. S1, Δ9-THC, at 10 mg/kg
or 30mg/kg (i.p.), produced characteristic cannabimimetic effects
— hypothermia, analgesia, catalepsy, and immobility in wildtype
mice. Systemic pretreatment with PIMSR (10mg/kg, i.p.) failed to
block Δ9-THC-induced analgesia, catalepsy, hypothermia, and
immobility, suggesting that PIMSR, at the dose tested, doesn’t
exert a clear CB1R antagonist behavioral profile. This finding
suggests that higher doses of PIMSR may be required to block
such high dose Δ9-THC-induced tetrad effects or other non-CB1R-
mediated mechanisms may be involved in Δ9-THC’s action(s) in
the tetrad test [59].

DISCUSSION
In the present study, we demonstrate that PIMSR failed to alter
cocaine self-administration under a low cost (FR1) and high
payoff (i.e., high dose cocaine − 0.5mg/kg/infusion) reinforcement
schedule, but dose-dependently inhibited cocaine self-
administration under high cost (FR5) reinforcement or self-
administration maintained by lower doses of cocaine (0.03, 0.06,
0.12, and 0.25mg/kg/infusion) under a FR2 reinforcement schedule.
PIMSR shifted the cocaine dose-response curve downward, and
decreased cocaine intake. PIMSR also dose-dependently decreased
break-point (a measure of incentive motivation) for cocaine taking
under a PR schedule of reinforcement. Cue-induced reinstatement

of cocaine-seeking was attenuated by PIMSR pretreatment,
suggestive of an ability to reduce relapse. In addition, PIMSR also
dose-dependently inhibited oral sucrose self-administration, sug-
gesting that PIMSR action is not cocaine-specific. This is consistent
with previous reports that CB1Rs are critically involved in the
modulation of body weight, food intake, and energy metabolism
[23, 44, 45, 47, 49, 50, 52, 55]. The observed reduction in cocaine (or
sucrose) taking and seeking is unlikely caused by PIMSR-induced
motoric incapacitation since PIMSR pretreatment failed to alter
cocaine self-administration under a FR1 reinforcement schedule or
reduce inactive lever responding under multiple experimental
conditions. Neither did PIMSR affect Ymax values in electrical ICSS,
a reliable indicator of locomotor incapacity. PIMSR alone also failed
to produce locomotor impairment as assessed by catalepsy and
rotarod locomotor performance. Importantly, PIMSR itself is neither
rewarding nor aversive as assessed by CPP/CPA in mice, suggesting
that PIMSR may not have abuse potential or produce unpleasant
dysphoria in humans.
The above findings are supported by our electrical ICSS data

demonstrating that systemic administration of PIMSR signifi-
cantly reduced cocaine-enhanced ICSS. The anti-reward effects
of PIMSR indicate that the mesolimbic DA system could be its
target. Importantly, PIMSR by itself failed to alter electrical ICSS
in rats and as such may not produce unwanted side effects such
as depressed mood.

CB1R antagonists and inverse agonists for cocaine use
disorder
As mentioned above, CB1R full antagonists with inverse agonist
profiles (such as SR141716A, AM251, and taranabant) were once
thought to be promising candidates for the treatment of
substance use disorders [5, 43, 61]. Indeed, SR141716A (commonly
known as rimonabant) was shown to effectively reduce cocaine-
induced hyperlocomotion [62], cocaine sensitization [30, 63],
cocaine-induced CPP [64], and cue- or drug-induced, but not
stress-induced reinstatement of cocaine seeking [30, 34, 39].

Fig. 5 The effects of PIMSR on electrical ICSS in rats. A A schematic diagram showing the experimental methods. B Representative
stimulation-response curves, illustrating the stimulation threshold (θ0), Ymax, and the effects of cocaine and/or PIMSR on the stimulation-
response curve. Cocaine (2 mg/kg, i.p.) shifted the stimulation-response curve to the left and decreased the stimulation threshold (θ0 value),
which was ameliorated by PIMSR. C Cocaine-induced reduction in the θ0 value (% baseline) in the absence or presence of PIMSR, indicating
that cocaine alone produced an enhancement in ICSS (as less stimulation current was required to initiate ICSS in the presence of cocaine). This
effect was attenuated by pretreatment with PIMSR. D PIMSR alone (n= 12) did not alter the θ0 value, suggesting that it is not rewarding or
aversive by itself. *p < 0.05, compared to vehicle.

E. Galaj et al.

6

Translational Psychiatry          (2022) 12:286 



Fig. 6 Effects of PIMSR on oICSS maintained by optical stimulation of VTA DA neurons in DAT-Cre mice. A A diagram showing the
experimental methods for oICSS. B Representative images of TH-immunostaining (red) and fluorescent ChR2-eYFP expression (green) in the
VTA, illustrating TH and ChR2-eYFP colocalization in VTA DA neurons. C Systemic administration of PIMSR inhibited optical ICSS (n= 8).
D Δ9-THC alone also inhibited oICSS at a high dose (3.5 mg/kg) and shifted the stimulation-response curve downward (n= 7). E Pretreatment
with PIMSR failed to significantly alter Δ9-THC-induced reduction in oICSS (n= 7). F However, the AUC assays for the data shown in E revealed
a significant reduction in Δ9-THC’s action on oICSS after PIMSR pretreatment. G PIMSR also attenuated ACEA-induced reduction in oICSS
(n= 6). H The AUC assays for the data shown in G revealed a significant reduction in ACEA action on oICSS after 3 mg/kg PIMSR pretreatment.
*p < 0.05, compared to vehicle at each stimulation frequency. #p < 0.05, compared to Δ9-THC or ACEA treatment group.
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However, prior work examining the ability of other CB1R ligands
to suppress cocaine self-administration has been inconsistent.
For example, we have previously demonstrated that
AM251 significantly lowered the break-point for cocaine self-
administration under PR reinforcement in rats while rimonabant
did not [28]. Neither AM251 nor SR141716 altered cocaine self-
administration under a FR schedule of reinforcement [28–31, 61],
suggesting that AM251 and SR141716A are not efficacious in
attenuating cocaine self-administration under low cost (FR1,
FR2) and high-payoff (cocaine doses from 0.5 to 1.0 mg/kg/
infusion) experimental conditions. Furthermore, although mice
with a genetic deletion of CB1Rs (CB1-KO) can acquire cocaine
self-administration after extensive training [7, 8], they take less
drug relative to wildtype mice [8, 65] and show a significant
reduction in PR responding [7], suggesting an important role for
CB1Rs in cocaine self-administration.

CB1R neutral antagonists for cocaine use disorder
In contrast to CB1R antagonists/inverse agonists, neutral CB1R
antagonists appear to be devoid of negative side effects and
became a target of interest in medication development research
for this reason. We recently demonstrated that AM4113, another
CB1R neutral antagonist, inhibited self-administration of heroin,
but not cocaine or methamphetamine, under FR2 reinforcement
conditions in rats without producing aversion [19]. Others
showed that AM4113 reduced alcohol consumption [16] and
nicotine intake in rats [52]. In addition, AM4113 has been shown
to effectively reduce nicotine [52] and cocaine seeking in rats and
non-human primates [27]. During a substitution test, when the
drug of abuse (nicotine, Δ9-THC or cocaine) was replaced by
AM4113, monkeys failed to self-administer it [27], indicating low
abuse liability.
Similar to the findings with AM4113, PIMSR also failed to alter

cocaine self-administration maintained by a high dose of
cocaine (0.5 mg/kg/infusion) under low effort (FR1) reinforce-
ment conditions. However, when the work demand for cocaine
was increased from FR1 to FR5 or the cocaine doses were
decreased from 0.5 mg/kg/infusion to 0.25, 0.125, 0.06, or
0.03 mg/kg/infusion, PIMSR dose-dependently inhibited cocaine
self-administration under FR and PR reinforcement schedules,
suggesting that PIMSR is effective in reducing cocaine’s
rewarding effects when high doses of cocaine are not freely
available. In addition, PIMSR dose-dependently attenuated cue-
induced reinstatement of drug-seeking, suggesting that this
compound may be also efficacious in attenuating relapse to
drug-seeking behavior.

Rewarding vs. aversive effects of neutral CB1R antagonists
In the present report, some conflicting findings emerged
between electrical ICSS vs. oICSS. Neither PIMSR nor AM4113
have any effect on ICSS in rats [19], which suggests that both
neutral CB1R antagonists produce no affective valence on their
own. In contrast, a high dose of SR141716A produces significant
inhibition of ICSS [19], which aligns with clinical reports
demonstrating mood-depressant side effects of SR141716A.
However, in the oICSS assay PIMSR produced a mild, but
significant, reduction in oICSS maintained by stimulation of VTA
DA neurons in DAT-Cre mice, suggestive of an aversive or
reward-attenuating effect. Caution is warranted in interpreting
this finding for a number of reasons. First, PIMSR inhibition of
oICSS may not necessarily equate to a diffuse negative effect on
mood as this compound likely acts on CB1Rs expressed in
multiple cell types. CB1R blockade on different neuronal
phenotypes may have varied or opposite effects on brain
reward function. For example, optical stimulation of DA neurons
or glutamate neurons within the VTA is rewarding [60, 66, 67],
while stimulation of VTA GABA neurons is aversive as assessed
by oICSS and optical real-time place preference [58]. It is well

known that VTA DA neurons receive both GABAergic and
glutamatergic inputs [4, 68] and that CB1Rs are highly expressed
on both GABA and glutamate neurons in the VTA and substantia
nigra pars compacta (SNc) [66]. Thus, blockade of CB1Rs on both
GABA and glutamate neurons by PIMSR would produce opposite
effects in the mesolimbic DA system, and therefore, no-net
change in DA-dependent behavior. This is supported by our
finding that PIMSR is neither rewarding nor aversive in the CPP/
CPA paradigm. This may also explain why PIMSR has no effect on
electrical ICSS since electrical stimulation activates multiple
phenotypes of neuronal fibers in the medial forebrain bundle,
and PIMSR’s actions on different neural substrates may counter-
act each other. Second, PIMSR may not be a highly selective
CB1R antagonist. We have recently reported that CB2Rs are
highly expressed in midbrain DA neurons [5, 8]. Systemic
administration of either CB2R agonists (BCP) or inverse agonists
(Xie2-64) produces a significant reduction in oICSS by activation
of CB2Rs in DA neurons [69, 70]. Thus, if PIMSR also has a binding
affinity for CB2Rs, it would produce an inhibitory effect on oICSS.
As such, the above finding implies that the mesolimbic DA
system could be a particularly important and responsive target
for PIMSR intervention.

Receptor mechanisms underlying PIMSR effects
As stated above, computational modeling and in vitro receptor
binding and functional assays indicate that PIMSR is a neutral CB1R
antagonist [53]. Ex vivo electrophysiological studies have demon-
strated that local bath perfusion of PIMSR is able to block
cannabinoid (Δ9-THC, AM108, AM2201)-induced inhibition of
presynaptic glutamate release or excitatory synaptic transmission
in hippocampal brain slices [54]. In the present study, we found that
pretreatment with PIMSR significantly attenuated Δ9-THC- or ACEA-
induced reduction in oICSS, suggesting that CB1R blockade, at least
in part, underlies cannabinoid action in oICSS and PIMSR-induced
reduction in cocaine self-administration, cocaine-enhanced ICSS
and cue-induced reinstatement of cocaine-seeking behavior
observed in the present experiments.
We note that PIMSR failed to completely block Δ9-THC- or

ACEA-induced reduction in oICSS nor did it alter high dose (10,
30 mg/kg) Δ9-THC-induced tetrad effects in mice. One possibility
is that Δ9-THC is not a selective CB1R agonist. It also binds to
other cannabinoid receptors such as CB2, GPR55, and PPARβ
receptors [59, 69]. This may in part explain why PIMSR, a selective
CB1R antagonist, cannot completely block Δ9-THC’s action.
Another possibility is that in addition to binding to CB1Rs [53],
PIMSR may also bind to other non-CB1 receptors at high doses,
producing a reduction in DA-dependent oICSS that compromises
the action produced by the blockade of CB1Rs. A third possibility
is that PIMSR may be metabolized faster in rodents, and therefore,
it may be difficult to maintain sufficient PIMSR levels to block
CB1Rs in the brain. This is supported by tissue distribution assays
demonstrating that following an acute i.p. dosing of 10 mg/kg,
extremely high levels of PIMSR were found in the liver and in fat
tissue, while a markedly lower level of PIMSR was found in the
brain (brain:plasma concentration ratio of 0.24) [55]. Thus, more
studies are needed to further assess PIMSR’s potential off targets
and its pharmacokinetic profiles in other species such as rats,
nonhuman primates—including oral bioavailability and brain
penetration ability.
In summary, the present study demonstrates that the neutral

CB1R antagonist PIMSR produces significant inhibitory effects on
cocaine self-administration, cocaine-enhanced brain-stimulation
reward, and cue-induced reinstatement of drug-seeking, suggest-
ing that PIMSR could be a candidate for the treatment of cocaine
use disorder. Given the poor outcome of CB1R antagonists/inverse
agonists in clinical trials, a thorough investigation and validation
of PIMSR’s efficacy and safety across preclinical and clinical trials
are recommended.
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