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Abstract

MicroRNAs (miRs) are short non-coding transcripts involved in a wide variety of cellular processes. Several recent studies have estab-
lished a link between hypoxia, a well-documented component of the tumour microenvironment, and specific miRs. One member of this
class, miR-210, was identified as hypoxia inducible in all the cell types tested, and is overexpressed in most cancer types. Its hypoxic
induction is dependent on a functional hypoxia-inducible factor (HIF), thus extending the transcriptional repertoire of the latter beyond
‘classic’ genes. From a clinical standpoint, miR-210 overexpression has been associated with adverse prognosis in breast tumours and
been detected in serum of lymphoma patients and could serve as a tool to define hypoxic malignancies. We discuss the role of miR-210
and its emerging targets, as well as possible future directions for clinical applications in oncology and ischaemic disorders.
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Introduction: miRs, small molecules
with wide impact

miRs are a family of short non-coding transcripts involved in the
regulation of at least a third of all translated genes [1–3]. They
are expressed as primary transcripts, which are subsequently
processed by the Drosha RNase, thus generating the hairpin-
shaped precursor miRs (pre-miRs). Pre-miRs are then cleaved
by another RNase III (Dicer), which leads to the formation of
mature duplexes (19–24-nucleotide long). One of the two
strands is selectively transferred to the RNA-induced silencing
complex (RISC), which interferes with gene expression at post-
transcriptional level [4]. The classic view of miR action was that
in mammalian cells miRs act predominantly, if not exclusively,
by blocking the translation of mRNA targets. However, more
recently, it has become apparent that the action is more com-
plex, with mRNA degradation being quite frequent, in a similar

fashion to siRNAs [5, 6]. To further increase the intricate nature
of miR action, cases of enhanced protein translation have been
recently reported [7].

miRs continue to be at the centrestage of the ‘non-coding RNA
revolution’, currently being suspected to regulate virtually all
known cellular mechanisms, such as cell differentiation, prolifera-
tion, death and metabolism [8–11]. An increasing number of miRs
have been associated with the various steps of tumourigenesis
[12]. On the one hand, specific miR expression profiles have been
associated with human cancers, and in some cases correlated
with clinico-pathological features [13–18]. On the other hand,
mechanistically individual miRs can function as bona fide onco-
genes (such as miR-17-92 [19], miR-10b [20], miR-21 [21, 22],)
or tumour suppressor genes (such as miR-15-16 clusters [23]).
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A role for hypoxia in the regulation
of miR expression

Recent studies have shed significant light into the regulation of
miR expression and information is accumulating on the impact of
specific stresses on the ‘miR-nome’. Arguably, the best-docu-
mented cellular stress is oxygen deprivation (hypoxia), which is of
relevance for a variety of diseases of major impact [24].

Hypoxia is an essential feature of the neoplastic microenviron-
ment. Tumours with extensive low oxygen tension tend to exhibit
poor prognosis and resistance to conventional therapy [25].
Moreover, hypoxia is also a crucial pathogenic component of
major cardiovascular diseases, such as myocardial infarction and
stroke [26]. The molecular mechanisms of response to oxygen
deprivation are extremely complex, a key role being played by
hypoxia-inducible factor (HIF), which orchestrates an expression
program involving in excess of 100 genes.

While gene induction by low oxygen has arguably dominated
hypoxia research, more recently the study of gene repression has
received increasing attention [27–30]. One of the interesting fea-
tures of the latter process is its relative selectivity. Thus, a large
percentage of genes continue to be expressed at quasi-normoxic
levels, while the translation(transcription of others is significantly
suppressed. It is entirely conceivable that specific miRs could be
a part of this process.

Studies from several groups identified a variety of hypoxia-reg-
ulated miRs, providing a link between a tumour-specific stress
factor and gene expression control [31–39]. The one miR that all
the studies had in common was miR-210. For example, one group
[31] identified a wide set of hypoxia-induced miRs in breast- and
colon-cancer cells, which in addition to miR-210 included miR-21,
23a, 23b, 24, 26a, 26b, 27a, 30b, 93, 103, 106a, 107, 125b, 181a,
181b, 181c, 192, 195 and 213. Of these, only miR-30b, 93 and
181b were independently confirmed by a separate study [38]. A
more recent set of data identified only three miRs (miR-210, ambi-
miR-7105 and mmu-miR-322–3p), which showed at least 2-fold
induction in response to hypoxia [33]. In non-cancer cells, miR-
210 was identified as a key player of endothelial cells response to
low oxygen tension [34], and therefore this miR is emerging as a
universal responder to hypoxia, with likely deep biological impact
in the response to this type of stress.

Finally, according to two studies, hypoxia can also lead to miR
down-regulation, including: miR-15b, 16, 19a, 20a, 20b, 29b and
197 [38, 39]. Whether these represent specific targets of HIF, or
this process is simply the result of cell cycle arrest, is not known
at this point.

As results from above, beyond general agreement with regards
to miR-210, there has been rather limited overlap in miRs regulated
by hypoxia. These discrepancies are not necessarily surprising,
and could be explained by the differences in cells examined, tech-
nology employed, differences in the thresholds and time investi-
gated, as well as oxygen concentrations [35, 36].

In most tumours, the expression of miR-210 is significantly
up-regulated compared to the corresponding non-malignant

tissue [14, 16, 18, 33]. The exception, according to one study, is
represented by the ovarian carcinomas that tend to lose the locus
encoding for miR-210, and as consequence exhibit decreased
expression of this miR [32]. More significantly than altered
expression in cancers, miR-210 has been shown to correlate with
a hypoxia signature score in human breast cancers and strongly
associate with an adverse clinical outcome [33].

Role of HIF in the regulation
of miR-210

A variety of transcription factors involved in the regulation of
‘classic’ genes are now known to regulate the expression of
specific miRs, therefore miRs may be rather common targets of
transcription factors. From a historic perspective, the first tran-
scription factors shown to involve miRs are c-MYC and E2F,
which activate the miR-17-92 oncogenic cluster [40–42].
Recently, miR-34a joined the targets of the transcription factor
(and tumour suppressor gene product) p53, and has been shown
to contribute to its function [43–45].

It is not surprising that the HIF was interrogated first with
regards to a role in miR regulation. At least for miR-210, HIF is
clearly a critical factor for the hypoxic induction, as determined in
several studies [31, 33, 34] by multiple strategies: transfection of
active HIFs, chromatin immunoprecipitation and luciferase-based
reporters driven by fragments of select HRM promoters.
Additionally, miR-210 hypoxic induction was shown to be depend-
ent on the von Hippel-Lindau (VHL) tumour suppressor gene in
RCC4 renal carcinoma cells. Inactivating mutations of the VHL
gene block proteolytic degradation of HIF, leading to constitutive
activation of hypoxia pathways, therefore further confirming the
central role of HIF in miR-210 induction (Fig. 1). Finally, siRNA-
mediated suppression of HIF-1 or HIF-2 in MCF7 cells led to abro-
gation of miR-210 induction under hypoxia. In primary endothelial
cells, the situation seems more complex: the knock-down of HIF2,
the main HIF species in this cell type, does not affect miR-210,
while siRNAs to HIF1 effectively prevents miR-210 induction, sug-
gesting a potential HIF isoform specificity, at least in certain cell
systems [34]. Moreover, the dynamic of miR-210 induction
exhibits a notable difference compared to HIF, as it continues to
increase beyond the peak of HIF protein level [31, 34].

Several issues remain to be elucidated with respect to miR-210
regulation, for example the existence of other possible mecha-
nisms. Growth factor deprivation, osmotic stress, acidosis and
oxidative stress did not elicit miR-210 increase, but additional
conserved candidate transcription factor sites are present in the
proximity of miR-210: Oct-C, AP2, PPAR � and E2F [35, 36].
These could potentially regulate its expression as part of the
hypoxia response - in the case of Oct-4, itself a hypoxia regulate
gene [46] - or as part of unrelated pathways.

While miR-210 was initially thought to be intergenic, a more
recent study showed that it is in fact contained within the
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sequence of a transcript with virtually unknown function
(AK123483) [33]. This transcript is also hypoxia inducible, consis-
tent with published observations of coordinated expression of
miRs and the corresponding host genes. Whether this transcript
encodes for a protein or plays any biological role in the hypoxia
response is not known as yet.

The ongoing search for
miR-210 targets

Identification of miRs targets remains without a doubt a highly
complex endeavour. An increasing number of prediction programs
for target identification are currently available, such as PicTar,
TargetScan and Miranda [47–49]. When more than one search
program is used, the in silico predictions often exceed one hun-
dred genes, thus posing significant challenges to the effort to
identify the biologically relevant targets.

The first clues about genes(pathways that may be targeted by
miR-210 were provided by a computational analysis [50]. Over
70 targets of miR-210 were predicted in Drosophila, with a sig-
nificant overrepresentation of genes involved in female gamete
generation (according to Gene Ontology), including: cut,
egghead, germ cell-less, gurken, lozenge, par-1, rhomboid-4,
RNA-binding protein 9, singed and slalom. Biochemically, these
genes belong to receptor tyrosine kinases, Notch, wingless, or
hedgehog signalling, and also function at more advanced stages
during embryogenesis. Based on the available prediction pro-
grams, most of these targets are not conserved in more complex
organisms, such as mammals.

For human miR-210, in silico searches reveal a highly complex
spectrum of candidate targets, including genes involved in prolif-
eration, DNA repair, chromatin remodelling, metabolism and cell
migration [31, 33–36]. This diversity, combined with the salient
discrepancies between prediction programs, raises experimental
challenges, one prediction being that manipulation of any individual
target will fail to fully capture the phenotypic impact of the corre-
sponding miR in low oxygen.

Despite the above challenges, biologically relevant miR-210
targets have started to emerge [32, 34] (Fig. 2). One study
focusing on the response of endothelial cells to hypoxia identi-
fied EphrinA3 as target of miR-210 in hypoxic conditions [34].
miR-210 was shown to play an important role in this system,
as its inactivation decreases the ability of HUVEC cells to form
capillary-like structures and migrate in response to VEGF.
Ephrin ligands and their corresponding receptors are known to
be involved in the development of the cardiovascular system,
and at least for the EFNA1/EphA2 system there is evidence for
involvement in VEGF signalling/angiogenesis [51–53]. The
finding that EFNA3 inhibition is necessary for miR-210-mediated
stimulation of tubulogenesis suggests that this particular ephrin
may also be part of angiogenic regulation. Whether this mech-
anism functions only in the cardiovascular system, or its sig-
nificance can be extended to neoplastic angiogenesis, remains
to beelucidated.

Another miR-210 target derived from computational analysis
and subsequently backed by experimental studies is the E2F tran-
scription factor 3 (E2F3). This protein plays a pivotal role in the
control of the cell cycle [54], therefore the study potentially
reveals a novel link between hypoxia and cell proliferation.
However, there are limited data about a possible biological impact
of this connection.

Fig. 1 The dual aspect of the hypoxic
response. In addition to the well-documented
hypoxia-inducible genes that are direct tran-
scriptional targets of HIF, the response to low
oxygen triggers expression of select miRs,
which in turn down-regulate select genes.
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Perspectives: towards clinical
applications of miR-210 manipulation

The recent study by Camps et al. [33] provided the first evidence
that miR-210 represents not only a marker of tumour hypoxia in
vivo, but is also a prognostic indicator of adverse prognosis in
breast cancer, and may represent a valuable drug target. Although
proteins represent the overwhelming majority of therapeutic tar-
gets, recent developments of miR derivatives such as anti-miR
oligonucleotides (AMOs) and locked nucleic acids (LNAs) are
regarded as important steps toward clinical applications [55–59].

While classic gene therapy strategies have failed to fulfil expecta-
tions in most cases, the small size of miRs and their high rate of
transduction in eukaryotic cells represent distinctive advantages.
Indeed, the feasibility of oligonucleotide-based therapeutics such
as microRNAs and siRNAs is already supported by ongoing clin-
ical trials. To list only a few, Sirna, Inc. developed siRNA-027
[60], which targets VEGFR-1 and is now in a Phase II clinical trial
for age-related macular degeneration. Additionally, Alnylam has
initiated a Phase I clinical trial of an inhaled siRNA-based drug for
the treatment of Respiratory Syncytial Virus (RSV) infections
[61], and Santaris Pharma has developed SPC3649 [62], which
specifically targets miR-122, which is important for hepatitis
C virus replication.

In cancer, one can hypothesize that inactivation of an miR crit-
ically important for the response to lox oxygen could have a ben-
eficial effect against a tumour compartment notoriously resistant
to therapy [24–26]. miR-210 analysis also serves as proof of prin-
ciple for a novel class of non-invasive cancer diagnostic tools, as
it is readily detectable in the serum from patients with diffuse large
B-cell lymphoma (DLBCL) versus healthy controls [63].

The impact of miR-210 (and by extension, of other less thor-
oughly validated hypoxia-regulated miRs) may not be limited to
cancer. Hypoxia represents a central component of other clinical
conditions with major impact on morbidity and mortality, such as
cardiac ischaemia and cerebrovascular diseases. Although to date
there are no formal data to substantiate a mechanistic role in such
disorders, miR-210 was recently found up-regulated in a mouse
model of cardiac hypertrophy/cardiac failure and in response to
brain transient focal ischaemia in rats [64–66].

Another example of disease with a hypoxic component is
preeclampsia, which is associated with accumulation of HIF-alpha
proteins at placental level [67]. Consistent with its status of HIF
target, miR-210 was found up-regulated in placentas from
patients with preeclampsia, compared to normal pregnant women.
Again, whether miR-210 contributes to the clinical manifestations
of this condition is yet to be determined.
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