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Background: Tumor stem cells play important roles in the survival, proliferation,
metastasis and recurrence of tumors. We aimed to identify new prognostic biomarkers
for lung squamous cell carcinoma (LUSC) based on the cancer stem cell theory.

Methods: RNA-seq data and relevant clinical information were downloaded from The
Cancer Genome Atlas (TCGA) database. Weighted gene coexpression network analysis
(WGCNA) was applied to identify significant modules and hub genes, and prognostic
signatures were constructed with the prognostic hub genes.

Results: LUSC patients in the TCGA database have higher mRNA expression-based
stemness index (mRNAsi) in tumor tissue than in adjacent normal tissue. In addition,
some clinical features and outcomes were highly correlated with the mRNAsi. WGCNA
revealed that the pink and yellow modules were the most significant modules related
to the mRNAsi; the top 10 hub genes in the pink module were enriched mostly in
epidermal development, the secretory granule membrane, receptor regulator activity
and the cytokine-cytokine receptor interaction. The protein–protein interaction (PPI)
network revealed that the top 10 hub genes were significantly correlated with each other
at the transcriptional level. In addition, the top 10 hub genes were all highly expressed
in LUSC, and some were differentially expressed in different TNM stages. Regarding the
survival analysis, the nomogram of a prognostic signature with three hub genes showed
high predictive value.

Conclusion: mRNAsi-related hub genes could be a potential biomarker of LUSC.

Keywords: lung squamous cell carcinoma, cancer cell stemness, prognosis, WGCNA, TCGA

INTRODUCTION

Lung cancer ranks first in morbidity (11.6%) and mortality (18.4%) according to the latest
worldwide survey of 20 regions from five continents and is the leading male cancer in both
developed and developing countries (Bray et al., 2018) among all cancers. In February 2018, the
latest national cancer statistics released by China’s National Cancer Center revealed the same grim
situation: lung cancer is still the most common malignant tumor in China in terms of morbidity
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and mortality. Lung cancer is also the leading cause of death
from malignant tumors in all regions of China (Chen et al.,
2018). According to different histopathological characteristics,
lung cancer is divided into non-small cell lung cancer (NSCLC)
and small cell lung cancer (SCLC), and lung squamous cell
carcinoma (LUSC) is one of most common subtypes of NSCLC
(Barlesi et al., 2016).

Research on the pathogenesis and pathological mechanism of
NSCLC is still controversial; some studies (Friedmann-Morvinski
and Verma, 2014; Leon et al., 2016; Shibue and Weinberg,
2017) have shown that tumor stem cells play important roles
in tumor survival, proliferation, metastasis and recurrence. For
example, a recent study used bioinformatics methods found
that FOXM1 and MYBL2, which are involved in the process
of cell proliferation, can be used as potential biomarkers and
therapeutic targets of NSCLC (Ahmed, 2019). This theory
provides a new direction and idea for us to understand the
origin and nature of the tumor and clinical treatment. In
essence, tumor stem cells maintain the viability of tumor cell
populations through self-renewal and infinite proliferation. The
movement and migration capacities of tumor stem cells make
the metastasis of tumor cells possible. Tumor stem cells can
remain dormant for a long time and express a variety of resistant
molecules but are not sensitive to the external physical and
chemical factors that kill tumor cells. Therefore, tumor stem
cells provide a new direction and visual perspective for us
to re-understand the origin and nature of tumors, as well as
clinical tumor therapy.

In addition, based on the theory of tumor stem cells,
some scholars have introduced a new concept — stemness
indices (Malta et al., 2018). The expression profile and
methylation data of different tumor samples were collected
from The Cancer Genome Atlas (TCGA) and other public
databases. An innovative one-class logistic regression machine
learning algorithm (OCLR) (Sokolov et al., 2016) was used to
extract transcriptomic and epigenetic feature sets derived
from non-transformed pluripotent stem cells and their
differentiated progeny. Two independent stemness indices,
the mRNA expression-based stemness index (mRNAsi)
and the epigenetically regulated-mRNAsi (EREG-mRNAsi),
were calculated. Among them, the index range was 0–1;
the closer the value was to 1, the stronger the stem cell
characteristics of tumor cells.

With the continuous development of high-throughput
sequencing technology, it is convenient to explore the occurrence
and development of tumors at the genetic level and to identify
possible therapeutic targets (Goldfeder et al., 2017). Traditional
methods use differential expression detection to identify
potential biomarkers but may miss useful genes. Therefore,
weighted gene coexpression network analysis (WGCNA)
(Langfelder and Horvath, 2008) was adopted in the current
study. The WGCNA was based on two hypotheses: (1)
genes with similar expression patterns may share common
regulatory networks and/or functional correlations or be
involved in the same pathway; and (2) the gene network
conforms to scale-free distribution. Based on these two
hypotheses, the gene network can be divided into different

modules according to expression similarity, and hub genes
can be identified.

The purpose of this study was to obtain modules that are
closely related to stem cell characteristics and to further identify
the hub genes located in the regulatory center with the help of
high-throughput sequencing data from a public database and the
WGCNA method. We also determined whether these genes have
a clear effect on prognosis.

MATERIALS AND METHODS

Data Processing
The flow diagram of our study was shown in Supplementary
Figure S1. Level 3 RNA-seq data (HTSEQ-FPKM-UQ) and
clinical information were downloaded from the TCGA website1.
Ensembl IDs were converted to gene names via the Ensembl
database2, and log2 processing of the data was performed. If a
gene had multiple expression values, they were averaged. Each
sample from the TCGA and its corresponding mRNAsi and
EREG-mRNAsi data were downloaded from https://www.ncbi.
nlm.nih.gov/pmc/articles/PMC5902191/. Any samples that were
missing the stemness index or clinical information were excluded.

Correlation of the mRNAsi and Clinical
Characteristics
Differences in the mRNAsi between normal and LUSC tissues
were compared using the unpaired t-test. Relapsed and non-
relapsed patients who did not receive adjuvant therapy were
also compared based on their mRNAsi. One-way ANOVA was
used to compare significant differences in the mRNAsi between
groups of variables. GraphPad Prism version 7 (64 bit) was
used to perform the above analysis. To compare differences in
prognosis, two indicators were evaluated: overall survival (OS)
and progression-free survival (PFS). OS was defined as the time
between the diagnosis of a tumor and death from any cause. PFS
was defined as the time between the diagnosis of a tumor and the
time to progression (in any form) or death from any cause. X-tile
software (version 3.6.1) (Camp et al., 2004) was used to determine
the best cut-off value in the survival data. The working principle
of this software is to group different values as truncation values
for the statistical test, and the result with the smallest p value is
considered the best truncation value. Kaplan–Meier analysis was
performed, and the p-value for two groups was calculated by the
log-rank test with the survminer package in R software (v 3.6.0).
P < 0.05 was considered a significant difference.

Differentially Expressed Genes (DEGs)
The limma package (Ritchie et al., 2015) was used to identify
DEGs between LUSC and normal tissues. The inclusion criteria
for DEGs were log2-fold change (FC) > 1 and adjusted P < 0.05.

1https://cancergenome.nih.gov/
2http://asia.ensembl.org/index.html
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Weighted Gene Coexpression Network
Analysis
Construction of a Coexpression Network
We used the DEGs obtained in the previous step to construct
coexpression networks with the WGCNA package (Langfelder
and Horvath, 2008) in R software (v3.6.0). The goodSamplesGenes
function was used to determine whether the sample data were
complete. It was also used to perform sample clustering to
identify and remove outliers. Pearson correlation coefficients
between each group of genes were also calculated, and their
absolute values were used to construct the gene expression
similarity matrix according to the following formula: aij = |cor
(xi, xj)|β, where xi and xj represent nodes i and j of the
network, respectively. A β value was selected to build the
proximity matrix so that gene distribution conformed to
a scale-free network based on connectivity. The adjacency
matrix and topological overlap matrix (TOM) were constructed
after obtaining the β value. The TOM obtained was then
clustered by dissimilarity between genes, and the trees
were then cut into different modules by the dynamic shear
method (the minimum number of genes in the module
was 50). Some modules were combined according to the
correlation coefficient.

Identification of Significant Modules
We selected the hierarchical clustering module that was the
most closely related to the mRNAsi and EREG-mRNAsi for
further analysis. Genetic significance (GS), module significance
(MS) and the module eigengene (ME) were also calculated. GS
was defined as the level of correlation between gene expression
and the mRNAsi and EREG-mRNAsi. The calculation method
used was the log10 transformation of the p value in linear
regression. It represents the relevance of each gene in the
module to characteristics. MS was defined as the average of
significance of all genes in the module. We merged similar
modules using a cut-off value 0.55, and then the modules
that had the largest MS were considered the most sample
trait-related modules. ME was defined as the first principal
component obtained by principal component analysis of the
gene expression matrix of each module. Among all the modules,
the module with the highest MS was considered to be related
to the mRNAsi and EREG-mRNAsi and was selected for
further research.

Identification of Hub Genes
The GS and module membership (MM, correlation between the
module’s own genes and gene expression profiles) of each gene
were calculated after defining significant modules. The stronger
the correlation was between the genes and significant modules,
the stronger their relation to the stemness indices. Therefore, the
inclusion criteria for a hub gene were set as follows: MM > 0.6
and cor. gene GS > 0.4.

Functional Enrichment Analysis
The clusterProfiler package (Yu et al., 2012) was used to perform
functional enrichment for Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) analyses of the

selected module. GO analysis consists of three terms: biological
process (BP), cellular component (CC), and molecular function
(MF). An adjusted P < 0.05 was used as the threshold.

Relationships and Interactions Among Hub Genes
STRING (version 11.0)3 is an online database that can be used to
study and visualize the network of interactions among proteins.
Coexpression relationships among the hub genes were calculated
based on gene expression levels to determine their strength at
the transcriptional level. The Pearson correlation between genes
was calculated using the R corrplot package4, and the correlation
matrix was visualized.

Validation of Hub Genes
GEPIA5 is an online site that allows differential expression
profiling, pathological staging, and patient survival analysis of
tumors and normal tissues in the TCGA database. GEPIA
data are derived not only from the TCGA database but also
from the sequencing data of normal tissues in the Genotype-
Tissue Expression (GTEx) project6 (Tang et al., 2017), which
compensates for the shortage of normal tissue samples in the
TCGA database. Therefore, this database was used to verify
whether the expression of the hub gene was higher in tumor tissue
than in normal tissue and whether the hub gene was differentially
expressed in different TNM stages.

Survival Analysis
Establishment of the Prognostic Signature
The relationship between each hub gene’s expression level and
OS was assessed by univariate Cox regression analysis, and
hub genes with P < 0.05 were entered into the multivariate
Cox regression process using the Akaike information criterion
(AIC) (Yamaoka et al., 1978). A risk score formula was created
using the corresponding data obtained through multivariate
Cox proportional hazards regression analyses with the hub
genes whose p-value was <0.05. In Equation 1, n denotes
the number of prognostic hub genes, Gi represents the
expression value of the ith hub genes, and weight i denotes
the coefficient of each significant hub gene. Patients were
divided into high-risk (>median risk score) and low-risk
(<median risk score) groups according to the median risk
score. The Kaplan–Meier method was used to estimate
the survival outcomes of the high- and low-risk patients,
and differences in OS were evaluated with the log-rank
test. We generated a time-dependent receiver operating
characteristic (ROC) curve to verify the accuracy of this
signature. The classic ROC curve analysis method assumes
that individual events and outcomes are fixed over time, but
in practice, both disease status and outcomes change over
time. Moreover, the traditional ROC curve cannot be used to
analyze survival data; therefore, we adopted a time-dependent

3https://string-db.org/
4https://cran.r-project.org/web/packages/corrplot/index.html
5http://gepia.cancer-pku.cn/
6https://www.gtexportal.org/
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ROC curve (Kamarudin et al., 2017). P < 0.05 was considered
statistically significant.

Score =
n∑

i=1

Gi
∗ weighti (1)

Construction and Assessment of the Nomogram
To lessen the influence of confounding factors on the relationship
between gene expression and prognosis as much as possible,
univariate and multivariate Cox regression analyses were
performed to assess differences in clinical characteristics and
risk scores. P < 0.05 was considered statistically significant.
The nomograms of the 1-, 3-, and 5-year survival rates were
constructed using the rms package in R software to visualize
the prediction results7. The predictive ability of the nomogram
was evaluated by the AUC of the ROC curve and the calibration
curves for 1, 3, and 5 years.

RESULTS

Correlation of the mRNAsi and Clinical
Characteristics in Patients With LUSC
Ninety-two samples without enough clinical information and 12
samples without mRNAsi information from the TCGA database
were excluded. As shown in Figure 1A, there was a significant
difference between the mRNAsi of LUSC and normal tissues.
The mRNAsi of tumor tissues was higher than that of normal
tissues. Significant differences in T stage (Figure 1D) and N
stage (Figure 1E) were also observed in addition to AJCC stage
(Figure 1F). However, there was no significant difference in the
mRNAsi based on the treatment effect (Figure 1B) or whether
the patient had relapsed (Figure 1C). LUSC patients with a high
mRNAsi had significantly worse OS and PFS rates than those with
a low mRNAsi (Figures 1G,I).

Screening of DEGs
There was a significant difference between the mRNAsi in normal
tissues and LUSC tissues; therefore, we aimed to identify DEGs
based on the comparison between the two. After log2 processing
of the data, we found a total of 6122 DEGs, including 3427
upregulated genes and 2695 downregulated genes. The volcano
map is shown in Figure 1H.

WGCNA: Identification of the Most
Significant Modules and Genes
The results of WGCNA was shown in Supplementary Table
S1. All DEGs were included in the coexpression network after
excluding 48 outlier samples (Figure 2A). β = 3 met the soft-
threshold parameter of the construction requirements for scale-
free distribution, and the curve reached R2 = 0.925. MEDissThres
was set as 0.55 to merge the similar modules, and 13 modules
were ultimately obtained (Figure 2B). After the modules were
evaluated for their associations with the traits of LUSC and

7http://CRAN.Rproject.org/packagerms

the patient’s mRNAsi and EREG-mRNAsi, the pink (R2 = 0.68,
P = 6e−60) module was found to be positively correlated with the
mRNAsi of LUSC patients (Figure 2C), while the yellow module
(R2 = −0.76, P = 5e−58) was found to be negatively correlated
with the mRNAsi of LUSC patients (Figure 2C). In addition, the
genes in the pink (cor = 0.71, P< 1e−200) and yellow (cor = 0.74,
P < 1e−200) modules were characterized by high GS and MM
based on an intramodular analysis (Figures 2D,E). Therefore,
we chose the pink module as the most significant module
for subsequent research because it showed the highest positive
correlation. Based on the threshold for key genes (MM > 0.6 and
cor GS > 0.4), we ultimately obtained 10 hub genes.

Functional Enrichment Analysis
For the two modules that were most closely related to the
mRNAsi, GO and KEGG pathway enrichment analyses were
performed, and the top 5 enriched results are presented in
Figure 3. The pink module, which exhibited the strongest
positive correlation with the mRNAsi, is highly enriched
in epidermal development, the secretory granule membrane,
receptor regulator activity and the cytokine–cytokine receptor
interaction, while the yellow module, which exhibited the
strongest negative correlation with the mRNAsi, is highly
enriched in organelle fission, the chromosomal region, ion-gated
channel activity and the cell cycle.

Protein-Protein Interaction (PPI) Network
and Hub Gene Validation
The PPI network, consisting of the top 10 hub genes, was
constructed using the STRING database. In total, 10 nodes and
33 edges were included in this PPI network (Figure 4A), with
an average node degree of 6.6 and strong correlations. The 10
hub genes were also significantly correlated with each other at
the transcriptional level (Figure 4B). The expression levels of the
top 10 hub genes were higher in tumor tissue than in normal
tissue (Figure 5). However, only 5 hub genes were differentially
expressed in different TNM stages (Figure 6): CDCA5, CENPA,
NCAPH, SPAG5, and TIMELESS.

Survival Analysis
Establishment of the Prognostic Signature
The prognostic signature consists of three hub genes (Figure 7A)
that were incorporated into the multivariate Cox proportional
hazards regression analysis to obtain the coefficients of the
three hub genes that were used in Equation 1 to calculate the
risk scores (Table 1). The risk score was calculated as follows:
(−0.630∗ expression level of BUB1B) + (−0.652∗ expression level
of CENPA) + (2.163∗ expression level of NCAPH) (Table 1). The
prognosis of high-risk patients was significantly worse than that
of low-risk patients (Figure 7B). The AUC values of 1-, 3-, and
5-year OS were 0.680, 0.704, and 0.674, respectively (Figure 7C).

Construction and Assessment of the Nomogram
The nomogram included the independent risk factors identified
by the univariate and multivariate Cox regression analyses
(Table 2): race (Caucasian vs. non-Caucasian), AJCC stage (stages
I-II vs. stages III-IV), pharmacotherapy (no vs. yes) and risk
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FIGURE 1 | (A) Differences in the mRNAsi between normal (50 samples) and LUSC (487 samples) tissues. (B) Differences in the mRNAsi based on the treatment
effect: CR (234 samples), PR (3 samples), SD (8 samples), and PD (8 samples). (C) Differences in the mRNAsi between LUAD patients without (159 samples) and
with (26 samples) recurrence after primary treatment without adjuvant therapy. (D) Comparison of the mRNAsi between four different T stages (T1, 86 samples; T2,
221 samples; T3, 52 samples; and T4, 9 samples). (E) Comparison of the mRNAsi between four different N stages (N0, 254 samples; N1, 99 samples; N2, 24
samples; and N3, 3 samples). (F) Comparison of the mRNAsi between four different AJCC stages (stage I; 201 samples, stage II; 132 samples, stage III; 58 samples,
and stage IV; 4 samples). (G) Kaplan–Meier survival curves show that the low mRNAsi group had a better OS rate than the high mRNAsi group. (H) Volcano map of
DEGs: green indicates downregulated genes, and red indicates upregulated genes. (I) Kaplan–Meier curves show that the low mRNAsi group had a better PFS rate
than the high mRNAsi group. LUSC, lung squamous cell carcinoma; mRNAsi, mRNA expression-based stemness index; AJCC, American Joint Committee on
Cancer; OS, overall survival; PFS, progression-free survival. CR, complete response, PR, partial response, SD, stable disease, PD, progressive disease.

score (low vs. high). The nomogram was constructed with these
risk factors (Figure 8A). The AUC values for 1-, 3-, and 5-
year OS were 0.754, 0.876 and 0.836 (Figure 8B), respectively.
The calibration curve also demonstrated good capacity for the
nomogram to predict 1- (Figure 8C), 3- (Figure 8D), and 5-
(Figure 8E) year OS. The code for R software in this study can
be obtained from Supplementary Data Sheet S1.

DISCUSSION

LUSC is associated with extremely high mortality and morbidity,
but its pathogenesis is still unclear. However, an increasing
number of studies have found that cancer stem cells (CSCs)

play an important role in the development and drug resistance
of NSCLC (Herreros-Pomares et al., 2019; Huang et al., 2019;
Tahmasebi et al., 2019). In this study, we identified the
significance of the mRNAsi in the clinical characteristics of
patients with LUSC with the help of data from the TCGA
database and the mRNAsi corresponding to each sample.
Moreover, hub genes related to the mRNAsi were obtained
by the WGCNA method, and the association between the
change in hub gene expression and clinical features was verified
by external data from the GEPIA database. The results also
indicated that all hub genes are highly expressed in tumor
tissues, and some hub genes are of great significance as
the disease progresses. Finally, after adjusting for the effects
of confounding factors, we obtained a prognostic signature
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FIGURE 2 | WGCNA of LUSC. (A) Clustering of samples and removal of outliers. (B) Cluster dendrogram of genes in LUSC patients. Each branch in the figure
represents one gene, and each color represents one coexpression module. (C) Correlation between the gene module and clinical characteristics, including the
mRNAsi and EREG-mRNAsi. The correlation coefficient in each cell represents the correlation between the gene module and clinical characteristics and decreases in
size, from red to blue. (D) Scatter diagram for MM vs. GS for the mRNAsi in the pink module. (E) Scatter diagram for MM vs. GS for the mRNAsi in the yellow
module. LUSC, lung squamous cell carcinoma; mRNAsi, mRNA expression-based stemness index; EREG, epigenetically regulated.

Frontiers in Genetics | www.frontiersin.org 6 May 2020 | Volume 11 | Article 427

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00427 May 11, 2020 Time: 19:23 # 7

Liao et al. Identification of LUSC Biomarkers

FIGURE 3 | Enrichment analyses of the significant module. (A) GO enrichment analysis of the pink module. (B) GO enrichment analysis of the yellow module.
(C) KEGG pathway enrichment analysis of the pink module. (D) KEGG pathway enrichment analysis of the yellow module. GO, Gene Ontology; KEGG, Kyoto
Encyclopedia of Genes and Genomes.

FIGURE 4 | (A) Protein–protein interactions between hub genes. The thickness of the solid line represents the strength of the relationship. (B) Correlation between
the hub genes.

containing three prognostic genes with great predictive capacity.
Two hub genes were not only highly expressed in LUSC
but also associated with TNM stage and prognosis: CENPA
and NCAPH.

CENPA (centromere protein A) is the key determinant of
centromere identity (Fujita et al., 2015). The centromere is the
basis of centromere formation and the key to chromosome
separation during mitosis. CENPA controls the epigenetic
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FIGURE 5 | Box plot of the top 10 hub genes whose expression levels were verified with data from the GEPIA database: (A) BUB1B, (B) CDC25A, (C) CDCA5,
(D) CENPA, (E) DKC1, (F) NCAPH, (G) RAD51, (H) SKA3, (I) SPAG5, and (J) TIMELESS. Red * indicates P < 0.05.

identity of the centromere, which is essential for recruiting
centromere elements to connect chromosomes to the mitotic
spindle during mitosis (Rošic and Erhardt, 2016). Behnan
et al. (2016) showed that the inhibition of CENPA expression
in glioblastoma cells can reduce sphere-forming capacity,
proliferation, and cell viability. In vitro experiments by Cheng
et al. (2019) in mice confirmed that elevated FOXM1 expression
enhanced CENPA and CENPB expression, which promoted
cell cycle progression and cell proliferation, thereby promoting
LUSC cell growth. Regarding prognosis, lung adenocarcinoma
(LUAD) patients with high CENPA expression experience poor
OS based on data integrated from six different GEO chips by
Liu et al. (2018).

NCAPH (non-SMC condensin I complex subunit H), whose
expression is significantly high in both LUAD and LUSC (Ma
et al., 2019), belongs to the protein superfamily defined as
kleisins (Neuwald and Hirano, 2000).NCAPH plays an important
role in the separation of the cell’s sister chromatids and the
maintenance of the mitotic chromosomal structure, and studies
have demonstrated that its biallelic mutation can lead to a
significant reduction in brain size in mice (Martin et al., 2016).
Gene knockout experiments in mice by Sun et al. (2019)
confirmed that NCAPH promotes the proliferation, migration
and invasion of liver cancer in vivo and in vitro. The same
experimental method also indicated that NCAPH is a potential
candidate for radiation tolerance (Wang X.C. et al., 2019). High
NCAPH expression also suggests a poor prognosis in prostate
(Cui et al., 2019) and rectal (Yin et al., 2017) cancer patients.

BUB1B (BUB1 mitotic checkpoint serine/threonine kinase B)
encodes a kinase involved in spindle checkpoint function and
mitosis and plays an important role in the development of many
types of cancer (Baker et al., 2013). Interestingly, BUB1B is also
highly expressed in SCLC. For patients with SCLC, the higher the
expression level of BUB1B is, the worse the prognosis (Liao et al.,
2019). BUB1B has also been found to regulate the development
of stem cells; for example, in experiments with embryonic stem
cells, Su et al. (2019) found that knocking down BUB1B can lead
to DNA damage and other forms of genomic instability, activate
p53 and eventually lead to embryonic stem cell differentiation
and possibly cancer.

CDC25A (cell division cycle 25A) and CDCA5 (cell division
cycle-associated 5) are important regulators of cell mitosis.
CDC25A is a “switch” protein that controls G1/S and G2/M
checkpoints and plays an important role in maintaining the
stability of DNA replication and the integrity of the cell
division cycle (Russell and Nurse, 1986). CDCA5 is located
on human chromosome 11q13.1, and its function is to ensure
accurate separation of the sister chromosome during anaphase
mitosis (Schmitz et al., 2007). CDC25A is overexpressed in
many tumor cells and is associated with the malignancy
and prognosis of several cancers, such as human glioma
(Yamashita et al., 2010), retinoblastoma (Singh et al., 2015),
breast cancer (Brunetto et al., 2013), and liver cancer (Lu
et al., 2016). CDCA5 is highly expressed in NSCLC (Chang
et al., 2015) and liver cancer (Shen et al., 2018) and is
associated with a poor prognosis. The genes in the CDC family
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FIGURE 6 | Violin plots of the expression levels of the selected hub genes in different stages via the GEPIA database: (A) BUB1B, (B) CDC25A, (C) CDCA5,
(D) CENPA, (E) DKC1, (F) NCAPH, (G) RAD51, (H) SKA3, (I) SPAG5, and (J) TIMELESS.

are key in driving the cell cycle, as well as promoting the
formation of centrosomes and mitotic spindles. CDCA5 is also
a biomarker of malignant glioma of neural stem cell origin
(Hembram et al., 2019).

DKC1 (dyskerin pseudouridine synthase 1) is highly
conserved and widely expressed and may play additional roles
in nucleocytoplasmic shuttling, the DNA damage response, and
cell adhesion. The DKC1 gene encodes a protein responsible
for the stability of the telomerase whole enzyme complex. The
mutation of DKC1 has a strong influence on telomere repair
and hematopoietic development. Induced pluripotent stem cells
extracted from the fibroblasts of patients with X-linked keratosis
disorder demonstrated that defective DKC1 count not extend
telomeres (Donaires et al., 2019). A study by Nersisyan et al.
(2019) found that DKC1 may also be involved in the activation
of telomere maintenance mechanisms that lead to cancer. DKC1
downregulation can also inhibit the growth of glioma cells by
altering the expression of cell cycle-related molecules, causing
cells to arrest in G1 phase. In vitro experiments also confirmed
that glioma cells with DKC1 knockout showed low activity
(Miao et al., 2019). DKC1 is highly expressed in clear cell renal
cell carcinoma. DKC1 knockout inhibits tumor proliferation,
migration, and invasion by regulating the NF-κB/MMP-2
signaling pathway in vitro (Zhang M. et al., 2018).

RAD51 (RAD51 recombinase) is a key player in homologous
recombination because it is closely related to and binds to
DNA and exhibits ATPase activity following stimulation (Zhang

et al., 2009). Chiu et al. (2019) found that the overexpression
of RAD51 promotes the viability of esophageal cancer cells,
while its inhibition weakens the viability of esophageal cancer
cells through cell cycle entry, migration/invasion and epithelial-
mesenchymal transformation. Another study also found a
mutation in the stem cell marker RAD51 upon exon sequencing
in patients with esophageal squamous cell carcinoma (ESCC) and
revealed that RAD51 is related to the drug sensitivity of ESCC
(Golyan et al., 2020). High RAD51 expression enhances cancer
progression through the p38/Akt/Snail signaling pathway (Chiu
et al., 2019). RAD51 may lead to increased drug resistance in
triple-negative breast cancer patients (Zhao et al., 2019) and is
also associated with the radiosensitivity of some tumors, such as
nasopharyngeal cancer (Zhang Z. et al., 2018) and prostate cancer
(Maranto et al., 2018).

Three other genes also merit further study. SKA3 (spindle and
kinetochore-associated complex subunit 3) is an important
subunit of the spindle and centromere-related protein
complex and plays a regulatory role in cell proliferation
and apoptosis (Zhang et al., 2017). A previous study
showed that the incidence of age-related neurodegenerative
diseases is consistent with a dramatic decline in the number
and function of adult neural stem cells, while SKA3 is
closely associated with age-related central nervous system
diseases. SKA3 overexpression promotes the growth and
migration of cervical cancer cells by activating the PI3K-AKT
signaling pathway and promoting cell cycle progression (Hu
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FIGURE 7 | The three-hub mRNA signature used to predict OS in LUSC patients. (A) Distribution, patient survival status and heatmap of the three-hub mRNA
expression profiles. (B) Kaplan–Meier survival estimates of OS in LUSC patients according to the three-hub mRNA signature. (C) ROC analysis for the prediction of
1-, 3-, and 5-year OS as the defining point of the three-hub mRNA signature. LUSC, lung squamous cell carcinoma; ROC, receiver operating characteristic; OS,
overall survival.

TABLE 1 | Multivariable Cox regression analysis of the three-hub gene signature.

Gene Univariate analysis Multivariate analysis Coefficient

HR 95%CI P-value HR 95%CI P-value

BUB1B 0.642 0.425–0.970 0.035 0.543 0.233–0.764 0.008 −0.630

CDC25A 0.757 0.521–0.972 0.046 1.028 0.484–2.184 0.940 –

CDCA5 0.797 0.495–1.238 0.350

CENPA 0.665 0.449–0.985 0.042 0.498 0.244–0.952 0.046 −0.652

DKC1 0.607 0.352–1.048 0.073 –

NCAPH 1.313 1.172–2.213 0.006 2.286 1.172–4.213 0.023 2.163

RAD51 0.719 0.454–1.138 0.159 –

SKA3 0.781 0.512–1.191 0.025 1.346 0.693–2.617 0.380 –

SPAG5 0.685 0.474–0.990 0.044 0.604 0.313–1.169 0.134 –

TIMELESS 1.049 1.020–2.418 0.029 1.049 0.455–2.418 0.904 –

et al., 2018). SPAG5 (sperm-associated antigen 5) binds to
microtubules and centromeres of the spindle during mitosis
or meiosis as a spindle-binding protein (Cheng et al., 2007).
A previous study showed that SPAG5 inhibits apoptosis by
activating mammalian target of rapamycin 1 (mTORC1)
(Thedieck et al., 2013). SPAG5 has also been linked to the
development and metastasis of LUAD (Wang T. et al.,

2019), stomach cancer (Liu et al., 2019), and breast cancer
(Jiang et al., 2019).

TIMELESS (timeless circadian regulator) is one of the core
genes involved in the biological rhythm and is abnormally
expressed in liver cancer, breast cancer and lung cancer (Truong
et al., 2016; Shostak, 2017). In recent years, it has been found
that the expression of TIMELESS in tumors is not completely
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TABLE 2 | Univariable and multivariable Cox regression analyses of clinical characteristics.

Variable Univariate analysis Multivariate analysis

HR 95%CI P-value HR 95%CI P-value

Age 1.060 1.011–1.111 0.015 1.036 0.990–1.083 0.128

Sex (Female/Male) 0.878 0.442–1.745 0.711 –

Race (Non-Caucasian/Caucasian) 0.274 0.107–0.703 0.007 0.231 0.086–0.609 0.003

T stage (T1-T2/T3-T4) 1.449 0.603–3.485 0.407 –

N stage (N0-N1/N2-N3) 1.577 0.612–4.068 0.346 –

M stage (M0/M1) 1.674 0.843–3.271 0.670 –

AJCC stage (I-II/III-IV) 1.588 1.079–3.423 0.027 3.628 1.539–8.549 0.006

Pharmacotherapy (No/Yes) 0.095 0.013–0.696 0.020 0.072 0.009–0.552 0.011

Radiotherapy (No/Yes) 0.737 0.226–2.400 0.612 –

Risk score (Low/High) 6.616 2.877–15.212 <0.001 4.517 1.956–10.434 <0.001

FIGURE 8 | (A) Nomogram used to predict 1-, 3-, and 5-year OS. (B) ROC curve based on the nomogram for 1-, 3-, and 5-year OS probability. (B) ROC analysis of
1-, 3-, and 5-year OS as the defining points of the nomogram. (C) Calibration curves for predicting 1–year OS. The nomogram–predicted probability of survival is
plotted on the x–axis; actual survival is plotted on the y–axis. (D) Calibration curves for predicting 3–year OS. (E) Calibration curves for predicting 5–year OS.
According to the scores of the corresponding variables in the nomogram, namely, the points at the top of the chart, the 1-, 3-, and 5-year survival rates of patients
can be predicted according to the total scores of all corresponding individual scores. Theoretically, the standard curve is a straight line with a slope of 1 through the
origin of the coordinate axis. If the predicted calibration curve is closer to the standard curve, the better the prediction capacity of the nomogram is. LUSC, lung
squamous cell carcinoma; ROC, receiver operating characteristic; OS, overall survival.

uniform: it is weakly expressed in renal cell carcinoma, ductal
cell carcinoma of the pancreas and other malignant tumors
and is closely related to poor patient survival. However, it is
highly expressed in colon cancer and significantly correlated
with lymphatic metastasis, satellite metastasis and TNM stage
(Top et al., 2016; Ozturk et al., 2017). TIMELESS plays a crucial
role in the self-renewal process of breast CSCs and interacts

with Sp1/c-jun to induce miR-5188 expression by promoting
c-jun-mediated transcription, thus promoting breast cancer
progression (Zou et al., 2020).

Our research also has the following limitations. First, we used
data from a public database to confirm our findings and did not
perform further experiments to confirm the expression of related
genes or the molecular mechanisms and pathways involved.
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Second, since our study examined data from a public database
and online tools, the quality of these data may not be
guaranteed. Finally, the data we studied were obtained almost
entirely from the United States and are not representative of
patients worldwide. Therefore, further well-designed biological
studies with large sample sizes are needed to confirm
our findings.

CONCLUSION

CDC25A, DKC1, CDCA5, BUB1B, SKA3, TIMELESS, NCAPH,
SPAG5, CENPA, and RAD51 may have a strong influence on
LUSC stem cell maintenance. These hub genes may serve as
control targets for LUSC CSCs, and further study of these genes
may lead to new anticancer therapies.
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