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Abstract: Early detection of Alzheimer’s disease (AD) is crucial to preserve cognitive functions
and provide the opportunity for patients to enter clinical trials. In recent years, some studies have
reported that features related to the signal and texture of MRI images can be an effective biomarker
of AD. To test these claims, a study was conducted using T2 maps, a sequence not previously studied,
of 40 patients with mild cognitive impairment (MCI) from the Alzheimer’s Disease Neuroimaging
Initiative database, who either progressed to AD (18) or remained stable (22). From these maps, the
mean value and absolute difference of 37 signal and texture imaging features for 40 contralateral pairs
of regions were measured. We used seven machine learning methods to analyze whether, by adding
these imaging features to the neuropsychological studies currently used for diagnosis, we could
more accurately identify patients who will progress to AD. The predictive models improved with the
addition of signal and texture features. Additionally, features related to the signal and texture of the
images were much more relevant than volumetric ones. Our results suggest that contralateral signal
and texture features should be further investigated as potential biomarkers for the prediction of AD.

Keywords: ADNI; Alzheimer’s disease; mild cognitive impairment; MRI biomarkers; signal; T2
maps; texture

1. Introduction

Neurodegenerative diseases are a common and growing cause of mortality and mor-
bidity, in which structural and chemical changes in the nervous system lead to the loss
of neurons and progressive decline in multiple areas of functioning, including cognition,
communication skills, and the ability to carry out daily activities [1]. Alzheimer’s disease
(AD) is the most common of these conditions, having an accumulation of amyloid-beta
protein fragments outside neurons and hyperphosphorylated tau tangles within neurons as
its hallmark pathology [2]. Over 110 years ago, Alois Alzheimer first described the disease
that bears his name, characterizing it by deficits in memory, impairment in verbal commu-
nication, visuospatial disorders, and changes in personality such as depression [3,4]. By
2010, 35.6 million people worldwide had dementia; 60–80% of these cases were attributed
to AD. However, the most alarming aspect is that a 225% increase in the number of patients
with this disease is expected worldwide by mid-century, forcing countries to allocate more
resources to this population and expanding the need for more caregivers [5].

Given this scenario, emphasis has been placed on predicting who will experience
AD, since an early diagnosis allows patients to enroll in clinical trials, which could help
to slow the progression of the disease, better preserve cognitive functions, and provide
economic and emotional benefits for both caregivers and patients [6–8]. For this reason,
since 1988, with Barry Reisberg’s mild cognitive impairment definition (MCI), researchers
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have focused on distinguishing subjects with MCI who progress to AD from those who
do not. MCI represents a transitional state between normal cognition and dementia, as
it indicates cognitive deficits, including impairments that could be related to memory
(amnestic MCI) or other cognitive abilities (non-amnestic MCI); even though not all MCI
subjects progress to AD and some eventually revert to cognitive normalcy, subjects with
MCI have an increased risk of developing AD [9,10].

The first criteria for diagnosing AD was created in 1984 by the National Institute of
Neurological and Communicative Disorders and Stroke (NINCDS) and the Alzheimer’s
Disease and Related Disorders Association (ADRDA); since then, the criteria have not
changed substantially [11]. Briefly, they consist of neuropsychological tests that measure
cognitive decline and symptoms of the disease, such as the Mini-Mental State Exami-
nation (MMSE) to detect cognitive decline [12], Boston Naming Test (BNT) to measure
language disorders [13], Geriatric Depression Scale (GDS) to identify depression [14], and
the Alzheimer’s Disease Assessment Scale-Cognitive Subscale (ADAS) to assess cognitive
and non-cognitive function characteristics in people with AD [15]. In 2011, these criteria
were revised due to the advances in the understanding of the disease. It was concluded
that an AD diagnosis needed the same evidence as with the previous criteria, with the
addition of one in five proposed biomarkers as potential support, one of them being an
atrophy in the temporal lobes visualized by magnetic resonance imaging (MRI) [16].

Recently, signal- and texture-related features extracted from MRI scans and selected
machine learning techniques have emerged as possible novel markers of AD [17]. In
addition, studies of the progression of AD showed that highly asymmetrical contralateral
hippocampi and amygdala may indicate an early and accelerated deterioration [18].

This work focuses on the study of the MCI to AD progression in the interest of
achieving early detection of AD. Previously, we have proposed new biomarkers for AD
from neuropsychological data, laboratory assays, and signal and texture features from
T1-sequences, such as the magnetization-prepared rapid acquisition with gradient echo
(MP-RAGE) [19]. Subsequently, we analyzed in a preliminary conference paper signal-
and texture-related features from hippocampal T2 maps, finding 11 features significantly
different between stable and non-stable MCI subjects. Volumetric information was non-
significant, and all but one of the machine learning methods improved their accuracy for
AD prediction by adding the signal- and texture-related features to the neuropsychological
studies [20]. It is worth commenting that, to our knowledge, T2 maps have not been
studied by other researchers for this purpose. Nevertheless, they have been used to detect
other diseases such as hepatic fibrosis and acute or chronic heart failure [21,22].

The main objective in this study was to determine the predictive power of signal- and
texture-related features extracted from T2 maps using all the 40 contralateral pairs available
in ADNI images using both a univariate and a multivariate analysis between patients with
MCI who progress to AD and those who remain stable.

2. Materials and Methods
2.1. Data

Data used in the preparation of this article were obtained from the ADNI database
(adni.loni.usc.edu). The ADNI was launched in 2003 as a public–private partnership, led by
Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test
whether serial MRI, Positron Emission Tomography (PET), other biological markers, and
clinical and neuropsychological assessment can be combined to measure the progression
of MCI and early AD. For up-to-date information, see www.adni-info.org.

Dual fast spin-echo images, one weighted to proton density (PD) and one to T2,
and MP-RAGE images available up to April 2020 were retrieved from ADNI [23]. Ad-
ditionally, segmentation maps for the MP-RAGE images generated through automatic
whole-brain segmentations using multi-atlas propagation with enhanced registration were
also downloaded [24].

www.adni-info.org
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2.2. Subject Inclusion

The experiment included only the baseline information from subjects with a baseline
MCI diagnosis, between 70 and 80 years old, with available sex and years of education
information and who also had the aforementioned images and segmentation map available.
One subject was eliminated from the study due to poor image quality. From these, the 18
subjects who had their first AD diagnosis 2 years after their baseline visit were regarded as
progressers (MCIp), while the 22 subjects who never had an AD diagnosis and participated
in the study for at least 5 years were labeled as stable (MCIs). Patients who did not meet
either the MCIp or the MCIs criteria were excluded from the study.

Table 1 details the demographic characteristics of the population. There was no
significant difference in age and years of education between groups when tested using the
Wilcoxon rank-sum test nor a significant difference in male/female proportion under a chi-
squared test. MCI and AD diagnoses were determined as defined by ADNI guidelines [25].

Table 1. Demography of the population.

Group of Study Total MCIs MCIp p-Value

Subjects (males) 40 (32) 22 (18) 18 (14) 1.000
Years of age 75.3 ± 3.0 75.3 ± 3.2 75.2 ± 2.9 0.924

Years of education 15.7 ± 3.0 15.8 ± 3.1 15.6 ± 2.9 0.879
Mean value± standard deviation; p-value of the chi-squared test (male/female proportion) or Wilcoxon rank-sum
test (age and education).

2.3. MRI Processing

After the three types of images and the segmentation map were downloaded from the
ADNI database for every subject, T2 maps were generated, and their 83 anatomical regions
were segmented. In order to generate the T2 maps, we used the dual fast spin-echo images,
namely, the PD- and T2-weighted images, each with a different echo time. As shown in (1),
the T2 value for the ith voxel can be calculated by fitting the measured signal intensity S at
each echo time TE to a mono-exponential decay function [26]:

Sa(i) = S0e−TEa/T2(i) (1)

where S0 is the signal intensity at zero TE. From there, and working with the signal from
the PD- and T2-weighted images (Sa and Sb, respectively), we obtain (2)

T2(i) =
TEb − TEa

ln(Sa(i))− ln(Sb(i))
(2)

where T2(i) is the T2 value for the ith voxel, TEb and TEa represent the echo time of the T2-
and PD-weighted images, respectively, and Sa(i) and Sb(i) represent the signal value of the
ith voxel for the PD- and T2-weighted images, respectively.

To extract relevant features, it was necessary to perform a segmentation of the T2
maps. The segmentations maps downloaded from ADNI were specifically constructed
for the MP-RAGE images; therefore, a registration process was required to apply these
segmentation maps to the T2 maps. Spin-echo and MP-RAGE images were obtained in the
same imaging session; hence, images were almost identical except for differences caused
by any head movement. Using ITK [27], we performed a rigid registration between the
T2 maps and their MP-RAGE counterparts using the itkVersorRigid3DTransform function
with the Mattes mutual information metric, a regular step gradient descent optimizer, and
a linear interpolator. Quality of the registration was confirmed visually.

2.4. Feature Extraction

Each anatomical region was measured for a set of 38 features: volume, 28 features
related to signal distribution (e.g., energy, kurtosis, and skewness), and 9 texture-related
features (e.g., mass scatter and compactness of the intensity projection map). Then, we
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proceeded to calculate the absolute difference and mean of each signal and texture mea-
surement between contralateral regions. The final database consisted of the difference and
mean features of 40 contralateral pairs, and 3 regions had no counterpart: brainstem (spans
the midline), corpus callosum, and third ventricle. In total, there were 2960 features related
to either the signal or texture of the T2 maps, plus the volume of the 83 regions.

2.5. Statistical Analysis

We performed a univariate and a multivariate analysis. For the former, we compared
the features with the Wilcoxon rank-sum test. Then, to control the false-positive detection
rate and adjust the p-values for multiple comparisons, a Benjamini–Hochberg procedure
was used, and q-values were obtained [28]. A feature was determined significantly different
between groups if a q-value lower than 0.05 was found.

We used FRESA.CAD Binary Classification Benchmarking, an R package that performs
systematic comparisons between machine learning methods, to perform the multivariate
analysis [29–31]. The methods included were: bootstrapped stage-wise model selection
(BSWiMS), k-nearest neighbors (KNN) with BSWiMS features, least absolute shrinkage
and selection operator (LASSO), random forest (RF), recursive partitioning and regression
trees (RPART), support vector machines (SVM) with minimum-Redundancy-Maximum-
Relavance (mRMR) method, and the ensemble of these methods (ENS). We performed a
100-fold cross-validation strategy, where the training sample was constructed by randomly
selecting 80% of the subjects while the rest were kept for validation. For this study, we
focused mainly on accuracy, sensitivity, specificity, balanced error, and the area under the
receiver operating characteristic curve (ROC AUC) with a 95% confidence interval (CI).

Furthermore, in order to find the features with the highest predictive potential, we
evaluated the ability of several feature-selection algorithms—integrated discrimination
improvement (IDI), Kendall correlation, LASSO, mRMR, net reclassification improvement
(NRI), RF, RPART, t-student test, and Wilcoxon test—in their ability to select the best set of
features for several classifiers: KNN, naïve Bayes, nearest centroid with normalized root
sum square distance and Spearman correlation distance, RF, and SVM. These classifiers
were analyzed using the same cross-validations strategy.

2.6. Experiment Design

In order to find the predictive power of the features related to signal and texture,
we performed two different experiments. The first one included the total scores from
eight neuropsychology studies that are used for the diagnosis of AD, namely, MMSE, BNT,
GDS, ADAS with 11 items (ADAS-11), and ADNI summary scores related with executive
function, visuospatial functioning, language, and memory [32–34]. The second experiment
included these 8 scores in addition to the most significant features in the univariate analysis
extracted from the T2 maps.

3. Results
3.1. Univariate Analysis for Neuropsychological Studies and Volumes

The univariate analysis for the eight neuropsychological tests yielded three of them
as significant: ADNI memory test (p-value = 7.765 × 10−4), ADAS-11 (p-value = 0.004)
and MMSE (p-value = 0.025). Only the first two remained significant after the Benjamini–
Hochberg procedure was run with the rest of the neuropsychological tests. Regarding the
volumetric information, only one feature was found to be significant under the Wilcoxon
rank-sum test: the right amygdala (p-value = 0.034).

3.2. Univariate Analysis for Signal and Texture Features

Of the 2960 signal and texture features, 140 were significantly different between
classes, 89 mean values and 51 absolute differences. However, after adjusting for multiple
comparisons using the Benjamini–Hochberg method, none of these remained significant.
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Table 2 shows the 25 features with the lowest p-values. It is worth noting that 11 of them
belong to the hippocampus.

Table 2. Significant features by their q-value of β′1j.

Rank Feature Modality Brain Region p-Value

1 Value at 25% a Difference Superior frontal gyrus 1.52 × 10−4

2 Mass Scatter YY b Difference Hippocampus 5.51 × 10−4

3 σ at 90% central value a Mean Hippocampus 0.001
4 ICV at 90% central value a Mean Hippocampus 0.002

5 Probability of value being lower
than 2σ a Difference Lateral ventricle, temporal horn 0.002

6 Entropy a Mean Hippocampus 0.002
7 Energy a Mean Hippocampus 0.002
8 Value at 75% a Mean Hippocampus 0.003
9 Skewness a Mean Subcallosal area 0.004

10 Energy a Mean Subcallosal area 0.004
11 Mass Scatter YY b Difference Cerebellum 0.004
12 Value at 5% a Difference Superior frontal gyrus 0.004
13 µ signal a Mean Hippocampus 0.004
14 µ at 90% central value a Mean Hippocampus 0.005
15 Entropy a Mean Subcallosal area 0.005
16 Value at 95% a Mean Hippocampus 0.006
17 Kurtosis a Mean Hippocampus 0.006
18 Precision range a Mean Hippocampus 0.006
19 Precision range a Mean Insula 0.006
20 Value at 99.99% a Difference Anterior orbital gyrus 0.007

21 ICV at 90% central value a Mean Lateral occipitotemporal gyrus, gyrus
fusiformis 0.008

22 Probability of value being
greater than 3σ a Mean Cingulate gyrus, posterior part 0.008

23 Energy a Mean Cingulate gyrus, posterior part 0.008
24 Value at 25% a Difference Putamen 0.008

25 Probability of value being
greater than 3σ a Difference Lateral ventricles, temporal horn 0.008

a Features related to the signal distribution of the image; b Features related to the texture of the image.

3.3. Multivariate Analysis for Neuropsychological Studies

The prediction results for the different machine learning techniques considering only
neuropsychological tests are shown in Table 3. The features most frequently found in the
predictive models were the total scores from the ADNI memory test and the ADAS-11. The
machine learning technique with the best results was LASSO, with an accuracy of 0.675
and an ROC AUC of 0.727. However, it is worth noting that confidence intervals overlap,
implying no real difference between methods.

Table 3. Results for the multivariate analysis with neuropsychological tests.

Accuracy ROC AUC Specificity Sensitivity Balanced Error
Technique Mean CI Mean CI Mean CI Mean CI Mean CI

BSWIMS 0.500 0.338–0.662 0.558 0.380–0.736 0.273 0.107–0.502 0.778 0.524–0.936 0.475 0.341–0.613
ENS 0.650 0.483–0.794 0.649 0.472–0.826 0.636 0.407–0.828 0.667 0.410–0.867 0.347 0.198–0.513
KNN 0.625 0.458–0.773 0.674 0.504–0.845 0.500 0.282–0.718 0.778 0.524–0.936 0.361 0.225–0.509

LASSO 0.675 0.509–0.814 0.727 0.567–0.888 0.636 0.407–0.828 0.722 0.465–0.903 0.321 0.177–0.469
RF 0.650 0.483–0.794 0.657 0.507–0.806 0.591 0.364–0.793 0.722 0.465–0.903 0.343 0.200–0.494

RPART 0.650 0.483–0.794 0.638 0.483–0.793 0.682 0.451–0.861 0.611 0.357–0.827 0.353 0.208–0.506
SVM 0.650 0.483–0.794 0.652 0.499–0.804 0.636 0.407–0.828 0.667 0.410–0.867 0.350 0.201–0.504

3.4. Multivariate Analysis for Neuropsychological Studies and Imaging Features

In order to include only relevant features in the selection pool to be used for each
classifier, we proceeded to take the most relevant characteristics, that is, those with the
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lowest p-value of the univariate analyses. Twelve volumes (~15%; 12/83) and 148 features
related to signal and texture (~5%; 148/2960) were considered. All eight neuropsychological
tests were also included.

Table 4 shows the results obtained with each of the seven machine learning techniques
for the experiment with neuropsychological information, volumetric information, and
signal- and texture-related information. Comparing those results with the ones found in
Table 3, it can be seen that all methods had a higher average score in accuracy and ROC
AUC, except for RPART. Furthermore, we can notice that the specificity, sensitivity, and
balanced error were improved. Sensitivity measures the proportion of positives that are
correctly identified, and specificity measures the proportion of negatives that are correctly
identified. Figure 1 shows the ROC of the most relevant machine learning methods for
this experiment.
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Table 4. Results for neuropsychological and imaging features experiment.

Accuracy ROC AUC Specificity Sensitivity Balanced Error
Technique Mean CI Mean CI Mean CI Mean CI Mean CI

BSWIMS 0.775 0.615–0.892 0.732 0.553–0.911 0.773 0.546–0.922 0.778 0.524–0.936 0.223 0.100–0.359
ENS 0.750 0.588–0.873 0.824 0.681–0.968 0.773 0.546–0.922 0.722 0.465–0.903 0.250 0.124–0.398
KNN 0.675 0.509–0.814 0.721 0.550–0.892 0.727 0.498–0.893 0.611 0.357–0.827 0.330 0.191–0.482

LASSO 0.675 0.509–0.814 0.773 0.610–0.936 0.636 0.407–0.828 0.722 0.465–0.903 0.321 0.177–0.477
RF 0.775 0.615–0.892 0.770 0.636–0.905 0.818 0.597–0.948 0.722 0.465–0.903 0.225 0.101–0.360

RPART 0.500 0.338–0.662 0.513 0.348–0.677 0.454 0.244–0.678 0.555 0.308–0.785 0.499 0.343–0.653
SVM 0.750 0.588–0.873 0.742 0.603–0.882 0.818 0.597–0.948 0.667 0.410–0.867 0.255 0.127–0.401

As previously mentioned, we were also interested in finding out which specific
features were more relevant in predicting the progression from MCI to AD. From the nine
feature selection methods that were compared, the absolute difference in the Mass Scatter
YY in the hippocampus, a feature related to the texture of the T2 map, was found among
the six most frequent features in all of them. That is, after all feature selection methods
were paired with each classifier, the frequency in which each feature was selected in the
final model was computed, and this particular feature was at least the sixth most frequently
selected feature every time. Similarly, the absolute difference of the value at 25% in the
superior frontal gyrus, a feature related to the signal of the T2 map, was in the top-six
in eight of the nine feature selection methods. Additionally, ADNI’s memory test and
ADAS-11 were in the top-6 in seven and six methods, respectively. Regarding volumetric
information, only in the RPART method were volumes found within the 50 most frequent
features. The RPART methods used on average 9.67 features per model.

4. Discussion

The present study showed that the signal and texture features extracted from T2 maps
could be used in conjunction with information from neuropsychological studies for the
prediction of AD. To reach this conclusion, we compared the accuracy, sensitivity, specificity,
balanced error, and ROC AUC for each of the different machine learning techniques
between the experiment without imaging information and the one that included it. In
general, and for all metrics, there was an improvement in the different techniques by
adding this information. Another important aspect to highlight is that the presence of
volumes in the prediction models was inconsequential.

In a review of MRI texture analyses with machine learning techniques [17], many
studies performed classification and prediction of AD. Even though these studies in-
cluded a greater number of subjects, the vast majority of them focused specifically on the
hippocampal region and used only one machine learning technique. Additionally, they
used T1-sequences, while this study focused on T2 maps of the whole brain segmented
into 40 contralateral regions. Furthermore, we were able to pinpoint specific features by
performing an exhaustive feature selection analysis.

The reduction in the volume of the hippocampus was one of the first biomarkers for
AD classification [35]. Later, studies have reported that the texture of the hippocampus com-
pared to its volume predicts earlier and more effectively the progression to AD [20,36,37].
In this study, the contralateral difference in a texture-related feature measured in the
hippocampi was the most frequently selected feature, and several other signal- and texture-
related features from the hippocampus were found to be most relevant under the univari-
ate analysis.

However, we were able to identify other regions of the brain as potential sources for
novel biomarkers of the MCI to AD progression process. For example, the contralateral
difference in a signal-related feature measured in the superior frontal gyrus was the second
most frequently selected feature, and that same feature yielded the lowest p-value when the
univariate analysis was run. Similarly, signal- and texture-related features measured in the
lateral ventricle, the subcallosal area, and cerebellum had some of the lowest p-values from
the univariate analysis and were found to be frequently selected by the different feature
selection methods.
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This study has several limitations; for example, we only focused on 28 features related
to the signal distribution and nine to the texture of the image. However, the results we
obtained motivate us to follow the recommendations of The Image Biomarker Standard-
ization Initiative [38] in search for features that can improve our models. Additionally,
the inclusion criteria forced us to work with a small population, a potential cause for the
lack of significant features after the p-value correction in the univariate analysis; we intend
to run further experiments with a larger dataset derived from more relaxed inclusion
criteria. Lastly, we believe this work drives further analyses and experimentation, the most
important being the inclusion of information from two different MRI sequences to enhance
the models.

5. Conclusions

T2 maps segmented into 83 anatomical brain regions from 40 subjects with MCI who
either progressed to AD or remained stable were analyzed and contralateral features related
to the signal and texture of the maps were extracted. We identified that the contralateral
difference in a texture-related feature (the absolute differences in Mass Scatter YY) extracted
from the hippocampi and the contralateral difference of a signal-related feature (the signal
value at 25%) extracted from the superior frontal gyrus were the most relevant features
for the task of classifying between MCIp and MCIs subjects under both a univariate and a
multivariate analysis. In general, signal- and texture-related features enhanced the MCI
to AD predictive power of models that used information from neuropsychological tests,
such as ADAS-11 and ADNI’s memory test. Furthermore, we found that signal and texture
information is more relevant for this task than mere volumetric information. These results
suggest that contralateral signal- and texture-related information extracted from T2 maps
should continue to be explored in the search for better MCI-to-AD predictive models.
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