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Abstract

We previously showed that KLF4, a gene highly expressed in murine prostate stem cells, blocks 

the progression of indolent intraepithelial prostatic lesions into aggressive and rapidly growing 

tumors. Here we show that the anti-tumorigenic effect of KLF4 extends to PC3 human prostate 

cancer cells growing in the bone. We compared KLF4 null cells to cells transduced with a DOX-

inducible KLF4 expression system, and find KLF4 function inhibits PC3 growth in monolayer and 

soft agar cultures. Furthermore, KLF4 null cells proliferate rapidly, forming large, invasive and 

osteolytic tumors when injected into mouse femurs whereas KLF4 re-expression immediately after 

their intra-femoral inoculation blocks tumor development and preserves a normal bone 
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architecture. KLF4 re-expression in established KLF4 null bone tumors inhibits their osteolytic 

effects, preventing bone fractures and inducing an osteogenic response with new bone formation. 

In addition to these profound biological changes, KLF4 also induces a transcriptional shift from an 

osteolytic program in KLF4 null cells to an osteogenic program. Importantly, bioinformatic 

analysis shows that genes regulated by KLF4 overlap significantly with those expressed in 

metastatic prostate cancer patients and in three individual cohorts with bone metastases, 

strengthening the clinical relevance of the findings in our xenograft model.
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Introduction

Prostate cancer is the second most frequently diagnosed tumor in American men (1). Bone 

metastases are present in 80% of patients with metastases, and these patients are faced with 

an incurable disease (2). A healthy bone is a continuously remodeling organ, characterized 

by cycles of bone resorption and formation (3). Disruption of this balance by cancer cells 

leads to pain, impaired mobility, fractures, spinal cord compression and hypercalcemia, all 

causes of morbidity. The metastatic cells divert the bone environment in their favor creating 

a “vicious cycle” fueled by tumor-secreted factors (4). Although some of these factors have 

been identified (5–8), and life-prolonging therapies have been devised (9), many men still 

succumb to metastatic disease.

We recently identified transcriptional networks that regulate prostate cancer progression 

(10). We proposed that overexpression of genes controlling the quiescence of adult prostate 

stem cells maintains prostate cancer in an indolent state, while their loss triggers tumor 

progression. We showed that decreased expression of one such gene, the cell fate defining 

transcription factor KLF4 (11), converts tiny prostatic intraepithelial neoplastic lesions into 

large and aggressive sarcomatoid cancers in a mouse model. Our findings are consistent with 

previous data showing decreased KLF4 expression in advanced primary prostate cancers 

(12) and inhibition of prostate tumor growth after its overexpression (13). KLF4 can have 

context-dependent oncogenic and tumor suppressive activities (14–16), and it may function 

differently in primary and metastatic tumors. We therefore aimed to define the function of 

KLF4 in prostate cancer bone metastases. Because most metastases are detected after 

hormone ablation therapy, a phase coinciding with the development of androgen resistance, 

we focused our in vivo work on a hormone-independent cell line, PC3, originally isolated 

from a bone metastasis (17). The choice of PC3 was further supported by a recent report 

(18) which documented a reciprocal upregulation of androgen receptor (AR) and KLF4. 

Such an interaction might suggest a mechanism for loss of KLF4 in advanced prostate 

cancer in which AR or its normal function is lost. Here we use PC3 and LNCaP cells to 

show KLF4 inhibits growth in 2D and 3D cultures. Importantly, we demonstrate KLF4 loss 

in PC3 cells triggers an invasive and osteolytic phenotype in bone, and KLF4 re-expression 

restrains tumor growth and stimulates new bone formation. We also uncovered KLF4-

regulated transcriptional programs evoking osteolytic and osteogenic responses in the bones 
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of our mouse model and in bone metastases of prostate cancer patients, providing a road 

map for future mechanistic exploration of the KLF4 effect.

Results

KLF4 inhibits in vitro growth of PC3 and LNCaP cells

To explore the mechanism by which KLF4 exerts its effects on tumor cells, we genomically 

ablated KLF4 in PC3 cells using CRISPR/Cas9. The homozygote deletion disrupted all 

KLF4 splice variants and isoforms rendering KLF4 protein undetectable (Fig. 1a, top panel). 

KLF4 loss increased the anchorage-independent colony-forming ability of PC3 cells in soft 

agar (Fig. 1a, central and bottom panels). Treatment of null cells transduced with a Tet-ON 

KLF4 expression construct (KLF4-Tet) with increasing DOX concentrations increased 

KLF4 protein levels (Fig. 1b, top panel) while reducing, in a dose-dependent manner, their 

anchorage-dependent proliferation (Fig. 1b, bottom panel). Moreover, induction of KLF4 

expression almost completely blocked PC3 growth in soft agar (Fig. 1c). Similar effects of 

KLF4 were observed in an androgen-sensitive cell line, LNCaP; an increase in KLF4 

expression inhibited anchorage-dependent and independent growth (Supplementary Fig. S1).

KLF4 levels in PC3 cells regulate bone remodeling

Prostate cancer metastasizes predominantly to bone and lymph nodes (2). To study the role 

of KLF4 in bone tumors, we inoculated PC3 cells, expressing a constitutive GFP-luciferase 

transgene and different levels of KLF4, intra-femorally. KLF4 was induced in vivo by 

feeding the mice DOX-containing chow (1 g/kg) (Mice cohorts are described in 

Supplementary Table S1) and tumor growth was monitored periodically by bioluminescence 

imaging (BLI). At the experimental endpoint, mice were sacrificed and femurs analyzed by 

micro-CT and histology. Four weeks after cell inoculation and DOX induction, the majority 

of femurs injected with KLF4 null cells had tumors (11/14), while no visible tumors were 

observed in femurs bearing KLF4-Tet cells (0/14) or in the PBS controls (0/4) (Fig. 2a, b). 

All mice cohorts were fed DOX-containing chow starting on the day of cell inoculation and 

continuing for the duration of the experiment (4 weeks).

X-ray radiography revealed fractures, the most extreme signs of bone damage, in two femurs 

injected with null cells (Supplementary Fig. S2b, c), necessitating the termination of the 

experiment. No fractures were found in other mice cohorts. Most of the femurs injected with 

null cells that were analyzed by micro-CT (7/10) showed signs of bone resorption with one 

or multiple lytic lesions in cortical bone and partial loss of trabecular bone (Fig. 3c, 

Supplementary Fig. S2h, k, l). These femurs had a decreased cortical area fraction and 

cortical thickness compared to femurs bearing KLF4-Tet cells fed DOX-containing chow 

from day 0 (Fig. 2c, d). Histological examination of tumors arising from null cells revealed 

areas of tumor growth with significant accumulation of osteoclasts (Fig. 3h); in femurs 

where tumor cells almost completely filled the bone marrow cavity, cortical and trabecular 

bone were damaged, and tumor cells invaded the bony collar (Fig. 3h, m). This was not 

observed in KLF4-expressing tumors (Fig. 3g, I).
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In contrast, all femurs bearing KLF4-Tet cells, fed DOX-containing chow and analyzed by 

micro-CT had normal morphology and no bone resorption (0/8) (Fig. 3d), indicating that 

early induction of KLF4 prevents tumor growth and protects the bone from destruction. 

Cortical area fraction and cortical thickness appeared similar to those of femurs injected 

with wild-type cells (Fig. 2c, d), and their morphology (Fig. 3i, n) was indistinguishable 

from the PBS controls (Fig. 3a, f, k). Femurs injected with wild-type cells showed osteolytic 

lesions in only 2/11 femurs (Fig. 3b) and histological analysis confirmed the presence of 

small, localized tumors (Fig. 3g, l). To ascertain that the observed phenotype is due to KLF4 

levels rather than tumor size, we compared a wild-type and a null-generated tumor of similar 

size; like the two cohorts, the null cell tumor invaded the cortical bone forming lytic lesions, 

while its equal size wild-type cell counterpart formed non-invasive tumors and only partially 

remodeled the bone (Supplementary Fig. S2e–g vs. h–j).

To mimic the clinical state of advanced bone metastasis, we allowed the bone tumors to 

grow before we induced KLF4. Twelve femurs were inoculated with KLF4-Tet cells and 

maintained on a regular diet for three weeks at which time (day 20) tumors were detectable 

in 7/12 femurs (Supplementary Fig. S2d); all mice cohorts were switched to DOX-

containing chow and sacrificed two weeks later. Micro-CT analysis indicated a significant 

osteogenic response in 4/7 femurs in which KLF4 was re-expressed (Fig. 3e, Supplementary 

Fig. S2m, n). Only small and sparse areas of tumor cells were identified and these areas 

were surrounded by new bone (Fig. 3j, o), suggesting that KLF4 re-expression reduced 

tumor size and reversed the damage of advanced bone metastasis.

KLF4-dependent transcriptional programs control osteolytic and osteogenic responses

As most bone metastases go through an initial lytic phase (4), we chose bone metastasis-

derived PC3 cells (17) which have an osteolytic phenotype (19) to gain insight into this 

phase of their growth. We analyzed their transcriptome by RNA-sequencing (RNA-seq) and 

identified 1542 differentially expressed genes between null and wild-type cells (adjusted P 

value < 0.05) (Fig. 4a). Because of the profound effects of KLF4 on established tumors, we 

also examined the transcriptome of null cells after KLF4 reexpression (10 ng/ml DOX) and 

identified 3959 differentially expressed genes between KLF4 re-expressing cells and null 

cells (adjusted P value < 0.05) (Fig. 4a). Most of these genes (2599) were upregulated in 

KLF4 re-expressing cells compared to null cells (Fig. 5b). KLF4 levels in KLF4 re-

expressing cells were 20-fold higher than in PC3 wild-type cells, falling within the higher 

and lower range of KLF4 expression in primary prostate tumors (Supplementary Fig. S2a) 

with good and bad prognosis respectively (10).

In line with the observed phenotypes, Gene Ontology (GO) analysis uncovered pathways 

related to extracellular matrix (ECM) organization and disassembly, angiogenesis, 

proliferation, adhesion and migration (Fig. 4b, c). The expression of several membrane-

bound proteins and proteins secreted in the ECM such as matrix metalloproteinases (MMPs) 

and Tenascin-C (TNC) were identified. MMP9, MMP14, MMP16, TNC and Formin Like 3 

(FMNL3) expression was higher in null compared to wild-type cells (Fig. 5a). Diminished 

expression of MMP16 and TNC as well as increased expression of MMP16 inhibitors, 

TIMP1 and TIMP2, were observed in KLF4 re-expressing cells (Fig. 5b).
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Genes associated with epithelial-mesenchymal transition (EMT) such as TWIST1, TCF4, 

CDH2, VIM and MMP9 were upregulated in null compared to wild-type cells (Fig. 5a), 

while the expression of the epithelial genes, ELF3 and RGS2, was decreased in null 

compared to wild-type cells (Fig. 5a). We conclude that although null cells retain some 

aspects of their epithelial identity, the increased expression of mesenchymal markers 

indicates they have undergone partial EMT. KLF4 re-expressing cells reverted to a more 

epithelial phenotype, as judged by their expression of cytokeratins (KRT6C, 16 and 17) not 

normally detected in PC3 cells. We also found increased expression of the epithelial genes 

RGS2, DSP, KRT6B and KRT8 and decreased expression of the mesenchymal markers 

TCF4 and CDH2 in KLF4 re-expressing cells compared to null cells (Fig. 5b). The 

decreased expression of VIM and MMP9 in KLF4 re-expressing cells, although not 

statistically significant, confirms the trend towards an epithelial phenotype. This data 

suggests that KLF4 re-expression in KLF4 deficient cells induces a mesenchymal-epithelial 

transition.

Remarkably, in support of our in vivo data, we identified numerous bone-related pathways, 

such as positive regulation of bone mineralization and osteoblast differentiation, skeletal 

system development, negative regulation of bone resorption, ossification and osteoblast 

development (Fig. 4b, c). The expression of several genes known to be important for 

osteolysis, (IL1B, IL6, MMP9, CXCL1, CXCL2, CXCL3, CXCL5 and CXCL6) (20), was 

significantly higher in null compared to wild-type cells (Fig. 5a). Increased expression of 

these KLF4-dependent gene sets may account for the aggressive and osteolytic phenotype of 

null cells in bone. Additionally, KLF4 re-expressing cells had detectable WNT1, WNT3A, 

WNT11, BMP2, BMP6, NPPC, PRELP, IGF2 and PHOSPHO1 (not expressed in wild-type 

and null cells), and high expression of EDN1, PDGFA, BMP1 and COL1A1 (higher than in 

null cells) (Fig. 5b).

Gene Set Enrichment Analysis (GSEA) revealed that KLF4 ablation causes a global 

upregulation of genes associated with TNFa signaling (Fig. 6a). Conversely, KLF4 re-

expression represses these genes (Fig. 6b). Thus, KLF4, or the transcriptional program it 

controls, represses TNFa signaling in prostate cancer cells. Because TNFa induces 

osteoclastogenesis (21), its repression by KLF4 may explain the osteogenic phenotype of 

KLF4 re-expressing cells in vivo. Moreover, GSEA confirmed the positive association 

between reduced KLF4 activity and EMT (Fig. 6c) and it highlighted its involvement in 

inflammatory responses (Fig. 6d). Taken together we identified KLF4-dependent 

transcriptional programs controlling either osteolytic or osteogenic responses in the bone.

KLF4 and its targets have clinical significance in human metastatic prostate cancer

To assess the significance of our xenograft data, we first interrogated the Taylor dataset (22) 

and found an inverse correlation between KLF4 levels and the metastatic potential of human 

prostate cancer (P < 0.0001, Fig. 6e), as previously noted (13). Next, we intersected the 

KLF4-regulated gene sets we identified in PC3 cells (Fig. 5) with gene sets which are 

deregulated in metastases of prostate cancer patients (23). We identified 84 transcripts 

common to 1360 genes significantly upregulated in null cells and to 943 genes upregulated 

in metastatic prostate cancer (P < 0.0001; Fig. 6f, Supplementary Table S2). We also 

Tassone et al. Page 5

Oncogene. Author manuscript; available in PMC 2019 December 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



uncovered 164 genes common to 2599 genes significantly downregulated in null cells and to 

1392 genes downregulated in metastatic prostate cancer patient specimens (P < 0.0001; Fig. 

6g, Supplementary Table S2).

To establish clinical relevance for the PC3 findings, we examined whether the KLF4-

regulated genes linked to osteolysis and osteogenesis are reflected in bone metastases of 

prostate cancer patients. Interrogation of three independent cohorts (24–26) showed a 

significant overlap between the 783 upregulated genes in bone metastases from the Kumar 

and Quigley datasets and the 691 upregulated genes in null cells (45 genes, P = 1.2E–03, 

Fig. 7a, Supplementary Table S2) as well as a significant overlap between the Kumar and 

Quigley datasets and the 2599 upregulated genes in null cells re-expressing KLF4 (135 

genes, P = 1E–05, Fig. 7b, Supplementary Table S2). GO analysis on the common gene sets 

uncovered bone-related pathways, such as osteoblast differentiation and endodermal cell 

differentiation (Fig. 7c, d). A panel of 10 such genes (MMP9, MMP14, VIM, TWIST1, 

TNC, FMNL3, BMP1, BMP2, PHOSPHO1 and COL1A1) that were found elevated in the 

Kumar, Quigley and Robinson (24–26) cohorts underscores the commonality between 

KLF4-regulated genes in PC3 cells and bone metastases in prostate cancer patients (Fig. 7e–

g), justifying the relevance of our PC3 xenograft model to improve the molecular and 

physiological understanding of bone metastasis in the future.

Discussion

Bone metastases present a significant clinical problem in prostate cancer patients as they 

cause severe bone damage, extensive pain, and poor survival (2). Still, how metastatic 

prostate cancer cells remodel the bone is poorly understood and therapies prolonging patient 

survival are urgently needed. Here we used PC3 cells, originally isolated from bone 

metastases of a prostate cancer patient (17), to investigate how KLF4 activity influences 

their transcriptome, behavior and pathology. We showed that KLF4 loss is responsible for 

their aggressive growth and osteolytic phenotype in vivo. Conversely, KLF4 re-expression in 

null cells, either immediately after bone inoculation or in already established tumors, was 

able to block tumor growth and protect the bone from resorption.

Our data suggest that KLF4 functions as a tumor suppressor in PC3 and LNCaP cells (Fig. 

1, Supplementary Fig. S1), consistent with reports in prostate (13,27) and other cancers (28–

31), and we uncover a critical function in bone metastasis that has not previously been 

reported. Most osteoblastic bone metastases in prostate cancer transit through an initial 

osteolytic period (4). However, with few exceptions (32–34), models of mixed bone lesions 

are still uncommon. That PC3 cells can induce osteolytic lesions in bone has been described 

(19), but the mechanisms by which this occurs remain elusive. We discovered that KLF4 

controls this process by preventing the growth of aggressive bone tumors and by modifying 

pathways in established tumors that favor osteogenic responses (Fig. 3, Supplementary Fig. 

S2). This finding has potential therapeutic implications. Indeed, KLF4 has been shown to 

upregulate the transcription of osteogenic genes in murine smooth muscle cells (35), but 

inhibition of osteogenesis by KLF4 has also been described (36), suggesting that like the 

KLF4 context-dependent function in cancer (14), its role in osteogenesis might also require 

analysis in each specific tissue.
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To better understand tumor-related osteolysis and osteogenesis and its dependence on KLF4 

levels, we analyzed the transcriptome of PC3 cells. GO analysis uncovered pathways related 

to bone biology, providing a molecular underpinning to the observed KLF4-dependent in 
vivo phenotype. Null cells express genes, such as MMPs, compatible with their aggressive, 

mesenchymal-like and osteolytic phenotype. Although EMT induction by KLF4 

downregulation has been described in other cells (10,12), ours is the first report suggesting a 

direct link between KLF4-regulated transcription and the KLF4-dependent osteolytic 

activity of PC3 cells in bone.

Osteoclastogenesis and bone resorption are regulated by RANK, its ligand RANKL, OPG, 

cytokines and growth factors (37,38). RANK mediates cell migration to the bone and 

promotes the expression of metastatic genes (20). Null cells express higher levels of RANK 

and OPG than wild-type (not shown). While RANK increase is in line with the strongest 

osteoclastic activity of null cell-generated tumors, the concomitant OPG increase was 

unexpected, but possibly counterbalanced by the increased expression of ILs and CXCLs.

In agreement with our results indicating that KLF4 expression induced an osteoblastic 

phenotype, our RNA-seq analysis identified several genes (WNTs, BMPs, EDN1, PDGFA, 

NPPC, PRELP, IGF2 and PHOSPHO1) (39–44) that can explain the osteoblastic response. 

Wnt signaling promotes osteoblast differentiation, contributing to the formation of 

osteoblastic lesions (39), and this pathway is activated in metastatic castration-resistant 

prostate cancer (26). The fact that KLF4 reduces tumor burden and increases the level of 

osteoblast-promoting genes and new bone formation suggests a new approach to alleviation 

of bone metastasis and morbidity. However, before this approach can be tested clinically, 

further study of the quality of the newly deposited bone has to be undertaken to assure it is 

physiologically normal.

Another important and novel role for KLF4 we identified is the repression of TNFα 
signaling (Fig. 6). Although the function of TNFa in bone homeostasis is still debated (45), 

it is currently believed that TNFα induces osteoclastogenesis (21) and inhibits 

osteoblastogenesis (46). Thus, the KLF4-dependent repression of TNFα is likely to account 

for the osteogenic behavior of KLF4 re-expressing cells in vivo. The significant overlap 

between KLF4-regulated genes and metastatic genes (Fig. 6), together with the finding that 

expression of a number of these genes (MMP9, MMP14, VIM, TWIST1, TNC, FMNL3, 

BMP1, BMP2, PHOSPHO1 and COL1A1) specifically increases in bone metastases of 

patients in three independent cohorts (23–26) (Fig. 7), provides clinical significance to our 

xenograft model and data.

Using PC3 cells as a model of hormone-independent prostate cancer, we identified novel and 

important pathways, such as Wnt and TNFα, through which KLF4 switches tumor cell 

programs in favor of osteogenesis. We also uncovered a clinically-relevant network of 

KLF4-regulated genes that might serve as a basis for the development of new therapeutic 

targets for advanced prostate cancer. These findings provide a significant platform for future 

testing of specific mechanisms that govern the profound KLF4-regulated changes.
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Material and Methods

Cell culture

PC3 and LNCaP cells (ATCC, Manassas, VA, USA) were cultured in RPMI with 10% fetal 

bovine serum, 100 μg/ml streptomycin, 100 U/ml penicillin, and 2 mmol/l glutamine 

(Corning Cellgro, VA, USA), and maintained in a humidified atmosphere of 5% CO2 at 

37°C. Cells were authenticated by STR profiling and tested for mycoplasma. Two guide 

RNAs specific to human KLF4 (5’-CCCCGAATAACGTGAGTATCGCT-3’ and 5’-

CCCACACTTGTGATTACGCGGGC-3’) were cloned into the pSpCas9(BB)-2A-GFP 

(PX458) vector (47) and transiently transfected into PC3 cells using Fugene6 (Promega, WI, 

USA). GFP positive cells were sorted and subcloned. KLF4 wild-type and null clones were 

sequenced and verified by Western blot. GFP loss indicated that neither Cas9 nor the 

sgRNAs were integrated in their genome.

Lentiviral constructs and infection

To re-express KLF4, we used a DOX-inducible Tet-ON lentiviral system. We modified the 

vector FUW-tetO-hKLF4 (48) by inserting the sequence of BFP-T2A-hKLF4 or BFP-T2A. 

To generate GFP-luciferase cells, we used the lentiviral construct BLIV513PA-1 (System 

Biosciences, CA, USA). Lentiviruses were produced in HEK293T cells as described (10). 

BFP-T2A-hKLF4 or BFP-T2A expression was induced by DOX (Sigma-Aldrich, MO, 

USA).

Western blot

Western blot was performed as described (10). Anti-KLF4 primary antibody (sc-20691; 

dilution 1:1000; Santa Cruz Biotechnology, Dallas, TX, USA) was used with GAPDH 

(5174; dilution 1:10000; Cell Signaling Technologies, Danvers, MA, USA) or ACTIN 

(A5441; dilution 1:10000; Sigma-Aldrich) as a loading control. Membranes were incubated 

with rabbit or mouse HRP-conjugated secondary antibodies (HAF008 and HAF007; 

dilutions range 1:5000–1:20000; R&D Systems, Minneapolis, MN, USA).

Cell proliferation

PC3 null and LNCaP cells (2 × 103 cells/well) were seeded in 96-well plates. Cells 

expressing the BFP-T2A-hKLF4 construct (KLF4-Tet) as well as the control vector BFP-

T2A were incubated with or without DOX up to 4 (LNCaP) or 5 (PC3) days. DOX (1, 10 or 

100 ng/ml) was added on day 0 and replaced at 48-hour intervals. Cell proliferation was 

evaluated using the MTS kit (PC3) or the CellTiter kit (LNCaP) (Promega). Experiments 

were repeated twice. Data are expressed as the mean of at least 3 technical replicates ± SD. 

No data were excluded.

Growth in soft agar

PC3 (2.5 × 103 cells/well) and LNCaP (4 × 103 cells/well) cells were mixed with 0.6% 

agarose in a 1:1 ratio and seeded into 24-well plates pre-coated with 0.5% agarose (49). 

KLF4-Tet and control cells were incubated with or without DOX up to 13 (PC3) or 23 

(LNCaP) days. DOX (10 or 100 ng/ml for LNCaP or PC3, respectively) was added on day 0 
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and replaced at 48-hour intervals. Colonies were imaged using the Thermo Cellomics 

ArrayScan VTI (Thermo Fisher Scientific) and images processed with JMP Pro v13. 

Colonies with a diameter greater than 50 μm were scored. Experiments were repeated twice. 

Data are expressed as the mean of at least 3 technical replicates ± SD. No data were 

excluded.

Animal studies

Wild-type, null and KLF4-Tet cells (105 cells) as well as PBS were injected into both femurs 

of 6-weeks old male athymic nude mice (strain code: 490; Charles River, MA, USA; n=6, 

12, 13, 3 mice, respectively). No statistical method was used to predetermine sample size, 

which was based on similar studies and was sufficient to determine significance. Mice were 

randomly assigned to experimental groups; no particular method of randomization was used; 

investigators were not blinded. Mice were fed normal or DOX chow (1 g/kg, Bio Serv, NJ, 

USA) ad libitum starting at day 0 or 20. Bone lesions and tumor growth were monitored by 

X-ray and BLI with IVIS Lumina-III-XR (PerkinElmer, MA, USA). Images were analyzed 

by Living Image Software and plotted as average radiance (p/sec/cm2/sr). At the 

experimental end point, 8 mice (4 with null cells, 2 with KLF4-Tet cells + hKLF4 d0 and 2 

with KLF4-Tet cells + hKLF4 d20) were used for other purposes. The remaining femurs 

were fixed in 4% PFA overnight at 4°C and scanned using a micro-CT scanner (SkyScan 

1172, Bruker, Billerica, MA, USA). Images were reconstructed and analyzed in Dataviewer 

and CTan. We quantified cortical area fraction (Bone Area/Total Area) and cortical thickness 

(50), excluding femurs with aberrant injections or bone fractures (Supplementary Table S1). 

All animal studies were performed in accordance with the guidelines and approval of the 

Institutional Animal Care and Use Committee at NYU School of Medicine.

Histological analysis

Fixed femurs were decalcified in 19% EDTA (pH 7.4) for 21 days, dehydrated in a graded 

ethanol series, embedded in paraffin and cut into 10-μm-thick sections. Pentachrome 

staining was used to detect bone (51). Tartrate-resistant acid phosphatase (TRAP) staining 

was performed with the Leukocyte Acid Phosphatase kit (Sigma-Aldrich). Pathological 

examination of histological sections was carried out by two independent investigators who 

were blind to experimental conditions.

RNA-sequencing and data processing

Differential gene expression between null and wild-type cells, and between cells re-

expressing KLF4 and null cells was measured by RNA-seq. Uninfected null and wild-type 

cells as well as KLF4-Tet cells (null cells expressing the BFP-T2A-hKLF4 construct) and 

their control cells (null cells expressing the BFP-T2A construct) incubated with DOX (10 

ng/ml) were harvested after 48 hours. Total RNA was extracted using the RNeasy kit 

(Qiagen, CA, USA). RNA samples were submitted in duplicate. RNA-seq libraries were 

prepared with the TruSeq sample preparation kit (Illumina, CA, USA). Sequencing reads 

were mapped to the human genome (GRCh37/hg19) using the STAR aligner (v2.5.0c) (52). 

Alignments were guided by a Gene Transfer Format file (Ensembl GTF version 

GRCh37.70). The mean read insert sizes and their standard deviations were calculated using 

Picard tools (v.1.126). The read count tables were generated using HTSeq (v0.6.0) (53), 
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normalized based on their library size factors using DESeq (v3.7) (54), and differential 

expression analysis was performed. The Read Per Million (RPM) normalized BigWig files 

were generated using BEDTools (v2.17.0) (55) and bedGraphToBigWig tool (v4). Statistical 

analyses were performed with R (v3.1.1), GO analysis with David Bioinformatics Resources 

6.8 (56,57) and GSEA with the hallmarks (h.all.v6.1.symbols.gmt) gene sets of the 

Molecular Signature Database (MSigDB) v6.1 (58,59). KLF4 RNA expression levels in 

wild-type and KLF4 re-expressing cells were ascertained by RNA-seq and compared with a 

primary prostate adenocarcinoma cohort (TCGA, Provisional) of 499 patients on cBioPortal 

(60,61). Initial raw data analysis was blinded.

Analysis of KLF4 and its target genes in human prostate cancer cohorts

To test whether the KLF4-dependent genes that we identified are differentially expressed 

between primary and metastatic prostate cancers (23), we re-analyzed the Chandran dataset 

with GEO2R. Genes significantly upregulated and downregulated in KLF4 re-expressing 

cells compared to null cells were intersected with genes upregulated and downregulated in 

the dataset (23). Statistical significance was calculated with Fisher’s exact test. To determine 

the clinical relevance of KLF4 and its regulated genes in metastatic patients, we analyzed 

differences in gene expression between primary (n=109) and metastatic (n=19) prostate 

tumors (22), and between bone and lymph node metastases from three datasets: Kumar 

(n=20 vs. n=69) (24), Quigley (n=43 vs. n=35) (25) and Robinson (n=29 vs. n=50) (26). 

Genes significantly upregulated in bone compared to lymph node metastases from the 

Kumar and Quigley cohorts were intersected with genes upregulated in KLF4 null cells and 

KLF4 re-expressing cells. Monte Carlo simulations with 100,000 iterations indicate that the 

overlap is statistically significant. David Bioinformatics Resources revealed significantly 

enriched GO categories. Gene expression levels are illustrated as Box plots (Tukey), and 

statistical significance was determined by Wilcoxon non-parametric t-test (Taylor), GEO2R 

(Kumar), DEseq2 (Quigley) and Mann-Whitney non-parametric t-tests (Robinson).

Data deposition

Sequencing data are available under the accession number GSE117965.

Statistical analysis

Statistical differences were measured using the 2-tailed unpaired Student’s t-test, unless 

otherwise specified. All tests were done in GraphPad Prism7 or R. A P value of < 0.05 is 

considered statistically significant.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
KLF4 decreases PC3 cell growth. a Western blot showing KLF4 absence in null cells (top 

panel); KLF4 ablation increases 3D growth in soft agar (center and bottom panels). b 
Increasing DOX concentrations in KLF4-Tet cells increases KLF4 protein levels (top panel) 

and inhibits 2D proliferation (bottom panel) and c 3D growth in soft agar. a, c 
Representative fields and quantification of colonies grown in soft agar are shown. 

Experiments were repeated twice. Data represent the mean of technical replicates ± SD. 

Scale bar = 200 μm.
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Fig. 2. 
KLF4 re-expression in PC3 null cells prevents tumor growth in bone. a BLI four weeks after 

intra-femoral injection of null cells (n=14), KLF4-Tet cells (n=14) or PBS (n=4). To induce 

KLF4, mice were fed DOX-containing chow starting on day 0 (d0). Two representative mice 

per group are shown. b Quantitative analysis of luciferase signal as a measure of tumor 

growth. Femurs were isolated and analyzed by micro-CT. Two cortical bone parameters 

were examined: c Cortical area fraction and d cortical thickness. Data represent the mean of 

biological replicates (femurs) ± SD. Femurs were inoculated with: PBS (n=5), KLF4+/+ cells 

(n=11), KLF4–/– cells (n=10), KLF4-Tet cells induced at day 0 (n=8) and day 20 (n=7).
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Fig. 3. 
KLF4 determines osteolytic and osteogenic phenotypes. Micro-CT images of femurs 

inoculated with a PBS, b KLF4+/+ cells, c KLF4–/– cells, d KLF4-Tet cells induced at day 0 

and e day 20. Small boxed images depict axial sections. L, lytic lesion; NB, new bone; 

yellow dashed lines, lytic lesions; black dashed line, new bone. f-j TRAP and k-o 
pentachrome staining of invasive tumor (IT) and tumor (T), with overt g, h bone destruction 

and o new bone (NB) formation. B, cortical bone; BM, bone marrow; black dashed lines, 

tumor areas; black arrows, osteoclasts. Scale bar = 200 μm.
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Fig. 4. 
RNA-seq reveals bone-related pathways. a Venn Diagram of differentially expressed genes 

between PC3 null and wild-type cells, and between cells re-expressing KLF4 (by 10 ng/ml 

DOX) and null cells. b, c GO analysis indicates KLF4-regulated pathways. Green bars, 

bone-related pathways. Adjusted P value < 0.05.
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Fig. 5. 
RNA-seq defines KLF4-dependent transcriptional programs. Volcano plot showing 

distribution of differentially expressed genes between a PC3 null and wild-type cells, and 

between b cells re-expressing KLF4 (by 10 ng/ml DOX) and null cells. Adjusted P value < 

0.05.
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Fig. 6. 
KLF4 regulates genes and pathways and inversely correlates with the metastatic potential of 

human prostate cancer. GSEA shows a a positive enrichment of the TNFa pathway after 

KLF4 ablation and b a negative enrichment with KLF4 re-expression. GSEA also reveals a 

positive enrichment of c EMT and d inflammatory response after KLF4 ablation. e Box plot 

illustrating KLF4 mRNA expression in primary and metastatic prostate cancer specimens 

(22). Venn diagrams showing significant overlap between f upregulated genes in PC3 null 

cells and Chandran’s (23) dataset (84 genes; P < 0.0001) and between g downregulated 

genes in null cells and Chandran’s dataset (164 genes; P < 0.0001).
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Fig. 7. 
KLF4-regulated genes are overexpressed in patients with bone metastasis. Venn diagrams 

showing significant overlap between upregulated genes in Kumar (24) and Quigley (25) 

bone metastases and upregulated genes in a PC3 null cells (45 genes; P = 1.2E-03) and b 
cells re-expressing KLF4 (10 ng/ml DOX; 135 genes; P = 1E-05). c, d GO analyses indicate 

KLF4-regulated pathways. Green bars, bone-related pathways. e-g Box plots illustrating 

gene expression data of candidate genes in bone and lymph node metastases of three 

independent datasets (24–26).
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