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Abstract

Background: Mitochondrial activity inhibits proliferation and is required for differentiation of myoblasts. Myoblast
proliferation is also inhibited by the ,20% oxygen level used in standard tissue culture. We hypothesize that mitochondrial
activity would be greater at hyperoxia (20% O2) relative to more physiological oxygen (5% O2).

Methodology/Principal Findings: Murine primary myoblasts from isolated myofibres and conditionally immortalized H-2K
myoblasts were cultured at 5% and 20% oxygen. Proliferation, assayed by cell counts, EdU labeling, and CFSE dilution, was
slower at 20% oxygen. Expression of MyoD in primary myoblasts was delayed at 20% oxygen, but myogenicity, as measured
by fusion index, was slightly higher. FACS-based measurement of mitochondrial activity indicators and luminometric
measurement of ATP levels revealed that mitochondria exhibited greater membrane potential and higher levels of Reactive
Oxygen Species (ROS) at 20% oxygen with concomitant elevation of intracellular ATP. Mitochondrial mass was unaffected.
Low concentrations of CCCP, a respiratory chain uncoupler, and Oligomycin A, an ATP synthase inhibitor, each increased the
rate of myoblast proliferation. ROS were investigated as a potential mechanism of mitochondrial retrograde signaling, but
scavenging of ROS levels by N-acetyl-cysteine (NAC) or a-Phenyl-N-tert-butylnitrone (PBN) did not rescue the suppressed
rate of cell division in hyperoxic conditions, suggesting other pathways. Primary myoblasts from older mice showed a
slower proliferation than those from younger adult mice at 20% oxygen but no difference at 5% oxygen.

Conclusions/Significance: These results implicate mitochondrial regulation as a mechanistic explanation for myoblast
response to oxygen tension. The rescue of proliferation rate in myoblasts of aged mice by 5% oxygen suggests a major
artefactual component to age-related decline of satellite cell proliferation in standard tissue culture at 20% oxygen. It lends
weight to the idea that these age-related changes result at least in part from environmental factors rather than
characteristics intrinsic to the satellite cell.
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Introduction

Proliferation of myoblasts, both murine and human, is inhibited

by ,20% oxygen tensions [1,2,3,4]. Despite this, the gaseous

environment of myoblast tissue culture is standardly uncontrolled

except for carbon dioxide buffering. Normal physiological oxygen

levels in muscle tissue are estimated to be 10.0 to 28.8 mmHg [5],

whereas, at sea level, standard tissue culture gas consisting of 95%

ambient air plus 5% CO2 contains ,142 mmHg of oxygen [3].

Inhibition of myoblast proliferation at ,20% oxygen tensions (to

which we refer as ‘hyperoxia’) compared with more physiological

oxygen (6%) was first noted in cultures of murine primary

myoblasts grown from single myofibres [1]. Inhibition of

proliferation was associated with a reduced expression of myogenic

transcription factors Myf5, MyoD, and myogenin and a small

proportion of cells showed greater lipid accumulation, leading the

authors to propose a switch from myogenic to adipogenic cell fate.

Manipulation of levels of oxygen and of reactive oxygen species

(ROS) during culture of the spontaneously immortal C2C12

murine myoblast line show reduced expression of myogenic

transcription factors and slower differentiation under oxidative

conditions, with the converse under reducing conditions [2].

However, a study using human skeletal muscle precursor cells,

despite showing an inhibition of proliferation under hyperoxia,

observed little effect on MyoD and myogenin expression and

detected no evidence of adipogenesis [4]. Consistent with this

latter report, a recent analysis of myoblast cultures from isolated

myofibres of the MyoDiCre knockin mouse, in which satellite cells

are permanently labeled following developmental expression of
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MyoD, demonstrated retention of myogenicity with no spontane-

ous adipogenic differentiation under hyperoxic conditions [6]. In

the absence of a switch to adipogenesis, mechanisms underlying

the myoblast response to hyperoxia remain to be elucidated.

Study of cell physiology during proliferation and differentiation

has seen the emergence of mitochondria as important regulators.

More recent work has built upon the early observation by

Warburg [7] that the proliferation of cancer cells is associated with

a switch from mitochondrial ATP production via oxidative

phosphorylation to glycolytic ATP production. Several mecha-

nisms have been described that mediate retrograde signaling from

mitochondria to the cell nucleus [8,9,10] and, in myoblasts,

mitochondrial activity has been associated with regulation of

proliferation [11,12,13] and differentiation [13,14,15,16,17,18].

Cell cycle analyses of the myoblast response to increased

mitochondrial activity [19] and to hyperoxia [3] suggest a

common mechanistic link as the response in both cases involves

upregulation of the cyclin-dependent kinase inhibitor, p21

[3,4,19].

We hypothesized that greater mitochondrial activity is associ-

ated with myoblast responses to hyperoxia. We used two myoblast

cell culture models: primary myoblasts cultured from matrigel-

adhered freshly isolated myofibres [20], and conditionally

immortalized H-2K myoblasts [21]. Initially we showed that the

inhibition of proliferation by hyperoxia occurs during culture of

cells from both adult (16–20 weeks old) and aged (32–40 weeks old)

mice. We then tested the hypothesis that myogenicity is lost under

hyperoxic conditions, as proposed previously [1], by assaying the

fusion of myoblasts to newly formed myotubes. Rather than a loss

of myogenic fusion, we observed an increase, consistent with the

involvement of mitochondrial activity in cell cycle exit [13,14,15]

and leading us to explore mitochondrial activity, ROS levels, ATP

levels, and finally to test whether modifiers of ROS levels, H2O2,

N-acetyl-cysteine (NAC), and a-Phenyl-N-tert-butylnitrone (PBN),

can exacerbate or rescue the inhibitory effects of hyperoxia.

Materials and Methods

Animal use and ethics
Two mouse strains were used in this study: wild-type C57BL/

10SnJ, obtained from JAX mice, and the transgenic strain H-2Kb-

tsA58 (CBA/ca X C57Bl10), obtained from Charles River, were

used at the ages indicated in the Results section. All animal

procedures were performed according to Children’s National

Medical Center Institutional Animal Care and Use Committee

(IACUC) and National Institutes of Health guidelines, and were

specifically approved under protocol number 242-09-06 of

Children’s National Medical Center IACUC. All efforts were

made to minimize suffering.

Myofibre isolation
Reagents were from Invitrogen unless otherwise stated. Single

myofibres were isolated as described previously [20]. Briefly:

extensor digitorum longus (EDL) muscles were carefully dissected

immediately after euthanizing the mouse; connective tissue was

digested by incubating each muscle in 0.2% Collagenase Type 1

(Sigma) in DMEM for 1 to 2 hours depending on muscle size;

single myofibres were liberated by trituration with fire-smoothed

wide-mouthed Pasteur pipettes in dishes containing DMEM and

pre-coated with horse serum (to prevent adherence); liberated

myofibres were washed by serial transfer through four such dishes.

Primary myoblast culture, oxygen regulation, and EdU
labeling

Pure cultures of primary myoblasts were obtained by tissue

culture of isolated single myofibres as described previously [20].

Briefly: a single drop of 1 mg/ml Matrigel (BD Biosciences) was

used to coat each well of a 24-well plate (BD Biosciences); after 30

minutes at 37uC, excess matrigel was removed and one myofibre

was placed in each well followed by 0.5 ml of plating medium

comprised of DMEM (with 4,500 mg/L D-glucose, L-glutamine,

and 110 mg/L sodium pyruvate) with 10% v/v horse serum, 2%

v/v (4 mM) L-glutamine (Sigma), and 1% v/v Penicillin/

Streptomycin (Sigma). Cells were then maintained in an atmo-

sphere controlled at 20% or 5% oxygen, and 5% CO2. For the

analysis of primary myoblast proliferation, 10 mM 5-ethynyl-29-

deoxyuridine (EdU) was added to culture medium. For oxygen

scavenging experiments, n-acetyl-cysteine (NAC; Sigma) was

added at concentrations specified. At time-points indicated, cells

were fixed by addition of 100 ml of 100% formaldehyde to the

culture medium, so as not to disturb the myofibre which is often

only loosely attached prior to fixation, then stored at 4uC for one

to several days prior to staining. EdU-labeled cells were stained

using Click-iTH EdU Alexa Fluor 594 Imaging Kit according to

the manufacturer’s instructions. Briefly: after fixation, cells were

permeabilized with 0.5% Triton in PBS for 20 minutes at room

temperature, then incubated with the EdU Click-iT reaction

cocktail for 30 minutes at room temperature. Following 3 rinses

with TBS-tween, DAPI was applied for 15 minutes at 0.5 mg/ml.

Visualization and imaging were carried out using a Nikon Eclipse

E500 epifluorescence microscope.

Fusion Index
At day 3 of primary myoblast proliferation, the myofibre was

physically detached using a pipette tip and the plating medium was

removed and replaced with 0.5 ml proliferation medium (DMEM

with 20% v/v foetal bovine serum, 2% v/v chick embryo extract

(Accurate), 2% v/v (4 mM) L-glutamine (Sigma), and 1% v/v

Penicillin/Streptomycin (Sigma)). After a further 3 days of culture,

proliferation medium was replaced with differentiation medium

(DMEM with 5% v/v foetal bovine serum, 2% v/v (4 mM) L-

glutamine (Sigma), and 1% v/v Penicillin/Streptomycin (Sigma)).

Following 5 days of differentiation, cells were fixed and stained

with DAPI. Fusion index was then calculated as the percentage of

nuclei contained within myotubes (defined as a cell containing 3 or

more nuclei). Means and confidence intervals are given for five

wells at each oxygen concentration.

Immunohistochemical staining of primary myoblasts on
their resident myofibre

For assay of Pax7 and MyoD activation, myoblasts were stained

on their resident myofibre. Myofibres were either fixed in 3.65%

Formaldehyde at 37uC for 15 minutes immediately following

isolation or maintained in suspension in plating medium then

fixed. Myofibres were then stored in PBS at 4uC for one or several

days prior to staining. Permeabilization and blocking buffer (TBS-

tween with Goat serum 20%, BSA 2%, Triton 0.5%, and Tween

0.1%) was applied for 30 minutes at room temperature then cells

were left in primary antibody solution (mouse IgG1 anti-MyoD

(Vector labs; 1:50 dilution in PBS with BSA 2%) or mouse IgG1

anti-Pax7 (Developmental Studies Hybridoma Bank; undiluted))

overnight at 4uC. Cells were rinsed 3 times in TBS-tween (0.1%),

then submerged in secondary antibody solution (Alexa Fluor-488

anti-mouse IgG1 (1:400 dilution)) for 1 hour at room temperature.

Following a further 3 rinses, DAPI was applied for 15 minutes at

Mitochondrial Role in Myoblast Response to Oxygen

PLOS ONE | www.plosone.org 2 August 2012 | Volume 7 | Issue 8 | e43853



0.5 mg/ml. Visualization and imaging were carried out using a

Nikon Eclipse E500 epifluorescence microscope.

Derivation of H-2K myoblasts
We have used a conditionally immortalized H-2K myoblast cell

line to facilitate experiments that require large numbers of cells.

Immortalized H-2K myoblasts were obtained as described

previously [21] with minor modifications. Briefly, extensor

digitorum longus (EDL) muscles were removed from male H-

2Kb-tsA58 (CBA/ca X C57Bl6) mice at 1 month of age. Single

myofibres were obtained and adhered to Matrigel in 24-well

plates, as described above. Myofibres were cultured at 33uC 10%

CO2, in proliferation medium with c-interferon (2 units/ml).

Under these conditions, immortality is maintained as c-interferon

drives expression of a thermolabile simian virus 40 (SV40) large

tumor (T) antigen, which blocks exit from the cell cycle [22].

When a single myoblast had migrated from the myofibre, the

myofibre was removed. The clone was then expanded and

myogenicity was confirmed by culture at 37uC 5% CO2 in

differentiation medium, checking for myotube formation and, at 8

days, Dystrophin expression. Due to this clonal derivation method,

there is no selection of cellular sub-populations in the proliferating

pool, a possible disadvantage that cannot be discounted when

growing up large numbers of non-immortalized primary myoblasts

from isolated myofibres or whole muscle dissociations. Myoblasts

generated by use of this protocol form normal muscle when

grafted into recipient mdx mice, even after extensive in vitro

expansion [21]. To further diminish the chances of accumulating

anomalies such as aberrant caryotypes as occurs with longer

established spontaneously immortalized lines such as the C2C12,

we used low passage numbers (,14) throughout.

Culture of H-2K myoblasts and CFSE analysis using FACS
H-2K myoblasts were cultured under immortalizing conditions

(33uC in the presence of c-interferon) then trypsinized and stained

with 10 mM carboxyfluorescein diacetate, succinimidyl ester

(CFSE) according to the manufacturer’s instructions. They were

then cultured at 37uC without c-interferon for 3 days at 5%

oxygen, or 20% oxygen, with or without a treatment compound

(30 nM NAC, 1.5–5 nM carbonyl cyanide m-chlorophenyl

hydrazone (CCCP; from Sigma), 0.0005–0.05 mg/ml Oligomycin

A (Sigma), 0.5–100 mM H2O2 (Sigma), or 10 nM to 1 mM a-

Phenyl-N-tert-butylnitrone (PBN; Sigma)). Cells were then tryp-

sinized and fixed in 3.65% formaldehyde prior to analysis by

Fluorescence-activated cell sorting (FACS). CFSE data were

deconvoluted and proliferation index was calculated using FlowJo

software version 9.4.10. Almost all cells divided at least once

(99.4% and 94.6% at 5% and 20% oxygen, respectively). For three

different experiments comparing (1) 5% with 20% oxygen, (2)

untreated at 20% oxygen with 1.5 nmol CCCP treated at 20%

oxygen, and (3) untreated at 20% oxygen with 0.005 mg/ml

Oligomycin A treated at 20% oxygen, values for each parameter

used for deconvolution of CFSE data are now given, respectively:

mean signal intensity of the undivided population was (1) 3,338, (2)

2,890, and (3) 4,840; the ratio of signal between successive peaks

was fixed at (1) 0.504, (2) 0.501, and (3) 0.495; the cv of each peak

was fixed at (1) 6.72, (2) 5.99, and (3) 6.00. With those parameters,

Root Mean Squares were (1) 1.68, (2) 2.90, and (3) 3.54.

Analysis of H-2K cell mitochondrial membrane potential,
mitochondrial mass and H2O2 levels using FACS

For the analysis of mitochondrial membrane potential and

mitochondrial mass, H-2K myoblasts were cultured for 3 days at

37uC, under 5% or 20% oxygen levels, without c-interferon. Cells

were trypsinized, washed and resuspended in DMEM, and

incubated for 30 minutes at 37uC with either: 3,39-dihexylox-

acarbocyanine iodide (DioC6; from Sigma) at 100 nM, nonyl-

acridine orange (NAO) at 10 mM, and were then subjected to

FACS.

To measure intracellular levels of H2O2, H-2K myoblasts were

cultured as described above with or without the addition of CCCP,

Oligomycin A, PBN, or H2O2. Cells were harvested after

incubation for 30 minutes at 37uC with dichlorodihydrofluorescein

diacetate (H2DCFDA; from Sigma) at 50 mM. To determine

whether H2O2 produced by cells cultured at 20% oxygen came

from the mitochondria, cells were incubated for 30 min at 37uC
with H2DCFDA at 50 mM and CCCP at 4 mM, and were

subjected to FACS.

For all FACS analyses, labeling with 7-AAD was used to detect

dead cells which were then excluded from the analysis. Side- and

forward-scatter were used to select cell-sized objects.

For optimization of oxygen scavenging assay, NAC was added

at the commencement of experimental culture conditions, at

concentrations indicated, and H2O2 level was measured with

H2DCFDA at day 3.

Assay of intracellular ATP level
H-2K myoblasts were cultured to sufficient numbers under

immortalizing conditions then transferred to experimental condi-

tions for 3 days. Cells were trypsinized and centrifuged at 1000 g

for 3 min at 4uC. Cell pellets were washed three times by

resuspension in cold PBS followed by centrifugation for 3 min at

4uC. Pellets were resuspended in 16.3 ml of cold 70% perchloric

acid and 80 ml of cold PBS was added. The suspensions were

vortexed, incubated for 10 min at 4uC, and centrifuged at

10,000 g for 20 min at 4uC to pellet non-soluble material. The

supernatant containing ATP was transferred to a fresh vial and

110.4 ml of cold 2 M KOH was added. Samples were then

centrifuged at 10,000 g for 20 min at 4uC and stored at 280uC.

The ATP bioluminescence was quantified using a Mithras LB 940

bioluminometer (Berthold Technologies) and the ATP determi-

nation kit (Molecular Probe, Invitrogen) according to the

manufacturer’s instructions. Briefly, after measuring the biolumi-

nescence background from 180 ml of assay buffer, 20 ml of sample

was added and the bioluminescence produced by the luciferase

was read for 50 seconds.

Statistical Analyses
Student’s T-test was used throughout unless otherwise stated.

Figure captions indicate p-values.

Results

Effect of hyperoxia on cell counts of primary myoblasts
from isolated myofibres

It was previously reported that counts of primary myoblasts are

reduced under hyperoxic conditions (20% oxygen) compared with

more physiological (6%) oxygen following 3 days of culture from

single myofibres isolated from the EDL muscles of 14–28 week old

mice [1]. To confirm this and to investigate the effect of aging,

myofibres were isolated from adult (16–20 weeks old) and aged

(32–40 weeks old) mice. Myofibres were adhered to a Matrigel

substrate which facilitates myoblast migration and proliferation.

Each myofibre was placed into a single well of a 24-well plate, and

the number of myoblasts was counted following 3 days of tissue

culture at either 5% or 20% oxygen. Data are presented in which

each pair of data points represents average values from a single
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experiment involving all of the myofibres obtained from one

animal (Fig. 1). At both ages considerable mouse to mouse

variation was observed, leading us to carry out a total of 11

experiments with cell counts from more than 400 myofibres. In

each of these experiments, average cell counts were lower at 20%

than 5% oxygen, with varying degrees of statistical significance.

The more pronounced effect was observed with myoblasts from

aged mice. Averaging across experiments, the cell counts were

29% (SD 15.5) lower at 20% than at 5% among satellite cells from

adult mice, and 52% (SD 17.7) lower among those from aged

mice. Interestingly, the range of average values observed at 5%

oxygen was similar at the two ages, the major difference between

ages being that the aged group showed consistently and

significantly lower counts at 20% oxygen.

Myogenicity is not lost under hyperoxia
It was previously suggested that the reduced cell counts of

myoblasts cultured under hyperoxia result from loss of myogenic-

ity associated with increased adiposity [1]. To test myogenicity, we

measured the fusion index of primary myoblasts proliferated and

differentiated at 5% or 20% oxygen. Myoblasts from single

myofibres of an adult mouse were grown for six days under

proliferation conditions, then switched to differentiation conditions

for five days, and the number of nuclei contributing to myotubes

were counted. The original myofibre was physically detached at

day 3 of proliferation to prevent its fusion with newly formed

myotubes. A small but significant increase in fusion was observed

at 20% compared with 5% oxygen (Fig. 2). We did not detect any

Oil Red O staining or morphological suggestion of lipid vesicles at

5% or 20% oxygen in myoblasts or myotubes (data not shown).

H-2K myoblast proliferation is inhibited by hyperoxia
We clonally isolated conditionally immortal myoblasts from the

H-2Kb-tsA58 mouse, to obtain large numbers of a pure myoblast

population, as described under materials and methods. To

measure H-2K cell proliferation rate we used CFSE to fluores-

cently label cytoplasmic proteins. Cells were uniformly labeled

with CFSE, which then equally distributes between daughter cells

with each round of cell division, facilitating estimation of

proliferation rate by mathematical deconvolution of FACS data.

H-2K cells showed a more rapid dilution of CFSE signal when

cultured at 5% oxygen (Fig. 3), with a proliferation index

estimated at 6.50 after 3 days, compared with 5.45 at 20% oxygen.

Figure 1. Hyperoxia reduces cell counts following 3 days of primary myoblast culture. Pure myoblast populations were cultured from
single myofibres isolated from (A) adult 16–20 week old and (B) aged 32–40 week old mice. Each pair of data points represents average cell counts
from myofibres of one EDL muscle of a single animal. Cells from an average of 20 myofibres were counted per data point (i.e. average n<20).
Student’s t-test: NS = not significant; * = P,0.05; ** = P,0.01; *** = P,0.001.
doi:10.1371/journal.pone.0043853.g001

Figure 2. Myogenicity is slightly increased under hyperoxia.
Fusion Index is calculated as the percentage of nuclei contributing to
multi-nucleated cells after 5 days of differentiation. Confidence intervals
(95%) are shown. Student’s t-test: ** = P,0.01 (n = 5).
doi:10.1371/journal.pone.0043853.g002
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Hyperoxia induces increased mitochondrial respiratory
activity of H-2K myoblasts: assay of mitochondrial proton
gradient, mitochondrial mass, ROS, and ATP levels

We speculated that oxygen levels might directly influence

mitochondrial metabolism and that this could provide a mecha-

nistic explanation for the observed differences in myogenic

commitment and rate of proliferation. To investigate this we used

FACS analysis to measure cellular uptake of the small fluorescent

molecule, Dioc6, accumulation of which is dependent upon proton

gradient (DY)across the mitochondrial membrane [23]. To obtain

sufficient cells for FACS analysis we used H-2K myoblasts.

Average Dioc6 signal following 3 days of proliferation was 1.6-fold

greater under hyperoxia than under physiological oxygen (Fig. 4A).

This proton gradient was entirely ablated by the respiratory chain

uncoupler, CCCP, indicating that the increased DY is of

mitochondrial origin. Mitochondrial mass, as detected by NAO

fluorescence (data not shown), was unchanged.

One way in which an increased proton gradient may act to alter

cell behaviour such as activation and proliferation is via increased

synthesis of Reactive Oxygen Species (ROS). To test whether

levels of ROS are greater under hyperoxia we used FACS analysis

to measure fluorescently activated H2DCFDA, an indicator of

H2O2 levels, finding 2.6-fold higher signal under hyperoxia than

under physiological oxygen, raising the possibility of ROS

synthesis as a mechanism by which myoblast activation may be

inhibited (Fig. 4B). Since ROS may be synthesized outside the

mitochondria we used CCCP to uncouple the respiratory chain

under hyperoxia, resulting in complete ablation of H2DCFDA

fluorescence, indicating that the observed H2O2 level is dependent

upon DY [24].

Another potential consequence of altered mitochondrial activity

and a possible mechanistic link with cell proliferation rate is the

intracellular level of ATP. Our luminometric assay of ATP levels

with luciferase as a reporter, showed, after 3 days culture that

intracellular ATP level at 20% oxygen was more than double that

at 5% (Fig. 4C).

Uncoupling of the electron transport chain or inhibition
of ATP synthase increases the rate of H-2K myoblast
proliferation

To test for a mechanistic link between mitochondrial activity

and myoblast proliferation rate, H-2K myoblasts were treated with

a range of concentrations of CCCP, an uncoupler of the

respiratory chain, or of Oligomycin A, an inhibitor of ATP

Figure 3. Inhibition of H-2K myoblast proliferation by hyperoxia. Cells were stained with CFSE and cultured for 3 days at 5% or 20% oxygen.
The number of cells of each generation was estimated by deconvolution of FACS data. Total cell counts (plotted in black) and modeled generational
subsets (coloured curves) are shown immediately following CFSE staining (A), and following 3 days of culture at 5% oxygen (B) and 20% oxygen (C).
Cell counts are also shown in tabulated form. Approximately ten thousand cells were analyzed per condition. After 3 days cells cultured at 20%
oxygen had undergone an average of approximately one less division compared with 5% oxygen.
doi:10.1371/journal.pone.0043853.g003
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synthase. Following 3 days of culture at 20% oxygen, the rate of

proliferation was increased at low concentrations of CCCP (1.5–

5 nmol) and of Oligomycin A (0.0005–0.05 mg/ml). Deconvoluted

CFSE data are shown for CCCP at 1.5 nmol (Fig. 5A–C) and

Oligomycin A at 0.005 mg/ml (Fig. 5D–F). Levels of intracellular

H2O2 and ATP were measured across these concentration ranges

(table 1). H2DCFDA fluorescence, indicating H2O2 level, was

reduced by treatment with either CCCP or Oligomycin A, with

decreases ranging from 28–68% and 66–94%, respectively.

Statistical significance was high at all concentrations, except for

5 nmol CCCP, at which the difference was not significant. Levels

of intracellular ATP were lower at all concentrations of CCCP and

Oligomycin A that were tested, though differences were in some

cases small and not always statistically significant (table 1).

Oligomycin A treatment at 5% oxygen had no effect on

proliferation rate (Fig. S1).

Inhibition of H-2K proliferation by hyperoxia is not
ameliorated by ROS scavenging

If increased ROS were involved in the inhibition of proliferation

under hyperoxia then scavenging of ROS using n-acetyl-cysteine

(NAC) or PBN may be expected to relax this inhibition. H-2K cells

cultured under hyperoxia were administered NAC at a range of

concentrations (20, 30, 40, 100, and 1000 nM) and ROS levels

were measured by FACS analysis of H2DCFDA fluorescence.

Maximal scavenging of ROS was observed at 30 nM NAC (data

not shown), administration at this concentration reduced ROS

levels close to those at 5% oxygen (Fig. 6A), but administration of

this same concentration throughout a CFSE-based assay of

proliferation, produced no effect (Fig. 6B). Similarly, no effect

was observed on proliferation index in a CFSE proliferation assay

using PBN at nine different concentrations ranging from 10 nM to

1 mM, despite a decrease in levels of H2DCFDA fluorescence

(Fig. 7A; deconvolutions of CFSE data are shown in Fig. S2).

We tested for suppression of proliferation rate at 5% oxygen by

H2O2 at concentrations of 5, 25, and 100 mM, Levels of

H2DCFDA fluorescence were increased but proliferation index

was unchanged (Fig. 7B; deconvoluted CFSE data are shown Fig.

S3). At 20% oxygen, H2DCFDA fluorescence correlated with

increasing H2O2 levels and minimal effects were observed on

proliferation index (Fig. S4 and Fig. S5), except at the two higher

concentrations, 25 and 100 mM, which induced a marked slowing

of proliferation, but this was associated with abundant cell death

(which was not observed in the other H2O2 conditions) so this may

reflect the effects of sub-lethal toxicity on surviving cells under the

stress of hyperoxia rather than the effects of ROS-mediated

signaling.

Effects of oxygen and ROS scavenging on primary
myoblast activation and proliferation

To determine whether hyperoxia inhibits myoblast activation

we counted the number per myofibre of nuclei expressing MyoD,

an early marker of myogenic commitment, at 4 hours after

myofibre isolation. The average number of myoblasts present per

myofibre was determined by immunostaining against the quiescent

myoblast marker, Pax7, immediately after myofibre isolation. At

4 hours, more than 83% of myoblasts expressed MyoD under

physiological oxygen, but only 56% under hyperoxia (Fig. 8A–C).

To investigate proliferation we cultured myoblasts in the

presence of the thymidine analogue, EdU. EdU was present for

the entire duration of tissue culture, thereby cumulatively marking

any nuclei undergoing or having undergone cell division, thus

serving as an assay of the total number of daughter cells being

generated throughout the time in culture. It is a product of both

the proportion of cells that divide and of the rate of cell division.

Comparing 20% oxygen with 5% oxygen, fewer EdU positive

nuclei were observed in hyperoxic conditions at days 1, 2, and 3

following myofibre isolation, but differences were minimal at days

1 and 2, becoming pronounced and statistically significant only at

day 3 (Fig. 8D–F). Numbers of marked nuclei increased

dramatically from day 1 to day 2 and were similar at both oxygen

levels, suggesting that most activated myoblasts begin proliferation

within this time. The increase in number of marked nuclei from

day 2 to day 3 is 2.5-fold at 20% oxygen, but 4.1-fold at 5%

oxygen with an average of 11 and 29 new EdU positive nuclei per

fibre being produced at 20% and 5% oxygen, respectively. This

massive increase in mitotically generated nuclei over a 24-hour

period cannot be explained by contribution of newly activated cells

alone, so must reflect an increased rate of proliferation at

physiological oxygen.

The assays of MyoD expression and of EdU incorporation

suggest that hyperoxia inhibits both myoblast activation and rate

of proliferation. Neither activation nor proliferation were affected

by the addition of 30 nM NAC under hyperoxia (Figures 8C and

8F).

Figure 4. Mitochondrial activity, H2O2 level, and intracellular ATP are increased under hyperoxia. Representative plots show, (A) Dioc6
fluorescence indicative of proton gradient and, (B) H2DCFDA fluorescence indicative of ROS levels, of cells cultured at 5% and 20% oxygen. Signals
from Dioc6 and H2DCFDA were both confirmed as mitochondrial due to their abrogation by the respiratory chain decoupling agent, CCCP. (C)
Intracellular ATP is increased under hyperoxia. Cells were cultured for 3 days then ATP level was measured using a luciferase luminance assay.
Confidence intervals (95%) are shown. Student’s t-test: ** = P,0.01 (n = 3).
doi:10.1371/journal.pone.0043853.g004
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Figure 5. Uncoupling of the respiratory chain or inhibition of ATP synthase increases the rate of H-2K myoblast proliferation. Cells
were stained with CFSE and cultured for 3 days with low concentrations of CCCP or Oligomycin A, or respective vehicle controls. The number of cells
of each generation was estimated by deconvolution of FACS data. Total cell counts (plotted in black) and modeled generational subsets (coloured
curves) are shown at day 0 immediately following CFSE staining (A and D represent day 0 for CCCP and Oligomycin A experiments, respectively), and
following 3 days of culture with vehicle only (B and E for CCCP and Oligomycon A experiments, respectively) or with treatment (C and F for CCCP
1.5 nmol and Oligomycin A 0.005 mg/ml, respectively). Cell counts are also shown in tabulated form. Approximately ten thousand cells were analyzed
per condition.
doi:10.1371/journal.pone.0043853.g005
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Discussion

The relevance of in vitro myoblast behaviour to muscle function

and disease may better be interpreted where every effort is made

to keep culture conditions as close as possible to the in vivo

environment. An understanding of the artifactual mechanistic

differences in cell behaviour under physiological and super-

physiological oxygen levels may improve interpretation of existing

and future in vitro studies that neglect to mimic physiological

oxygen. In the present study we investigated the hypothesis that

increased mitochondrial activity is involved in the mechanism by

which myoblast proliferation is inhibited under hyperoxia.

We began by confirming previous reports that primary

myoblast counts in 3 day cultures of isolated myofibres are lower

at 20% oxygen than at the more physiological 5% oxygen. We

show that this is true both of 16–20 week mice and of older 32–40

week mice, but the aged group produced a more consistently lower

cell count at 20% oxygen. Using a conditionally immortal H-2K

myoblast line we demonstrated that inhibition of proliferation

under hyperoxic conditions is associated with greater mitochon-

drial activity and, conversely, that inhibition of the mitochondrial

respiratory chain or of ATP synthase activity in hyperoxic cultures

each increase the rate of proliferation, this being associated with

reduced levels of intracellular H2O2 and ATP. In addition, we

showed that 20% oxygen represses the activation (early MyoD

expression) of primary myoblasts on isolated myofibres, that it also

represses proliferation rate between 2 and 3 days after isolation of

the myofibre, and that none of these effects are ameliorated by

administration of the oxygen scavenger n-acetyl-cysteine. Manip-

ulation of ROS levels did not affect the rate of H-2K myoblast

proliferation using NAC, the ROS spin trapping agent PBN, or

H2O2 (except in association with cell death under hyperoxic

conditions with high concentrations of H2O2).

The original observation that early MyoD expression is

decreased in 20% oxygen was accompanied by the suggestion,

made on the basis of oil red O staining, that this reflects a switch

from myogenicity to adipogenesis [1], although the counts of lipid-

containing cells in the original report were not numerous (0.77 and

0.27 per myofibre after one week culture at 20% and 5% oxygen

respectively). Our evidence does not support this suggestion that

atmospheric oxygen levels favor adipogenesis over myogenesis

since we found a slightly higher fusion at 20% oxygen, and no

evidence of adipogenesis. We took care to thoroughly wash

myofibres in accordance with our long-established protocol and

did not detect any positive oil red O staining or morphological

indication of adipogenesis either in myoblast cultures after six days

of proliferation or of myotubes after five days of differentiation.

This accords with a recent study of cells types cultured from

isolated myofibres prepared with different myofibre wash proto-

cols, that identified adipogenic cells only when wash steps were

omitted, and led the authors to suggest that previous reports of

non-myogenic phenotypes observed in isolated myofibre cultures

are likely the result of contamination by non-myogenic progenitors

from the muscle interstitium [6]. Likewise, a study of human

primary myoblasts found no evidence of oil red O staining, while

expression of PPARc, the key transcription factor regulating

adipogenic differentiation, was similar at 5% and 20% oxygen [4].

We suggest that the reduced number of MyoD positive nuclei (in

the present study, observed just 4 hours after myofibre isolation)

reflects a decreased frequency with which quiescent satellite cells

Table 1. Intracellular H2O2 (H2DCFDA fluorescence signal) and ATP levels of H-2K myoblasts in response to treatment with low
concentrations of CCCP and Oligomycin A.

Condition Mean H2DCFDA fluorescence±sd Mean intracellular ATP (fmol/cell)±sd

Untreated 541.67636.07 23.9760.17

CCCP 1.5 nmol 233.33635.53*** 19.1562.56ns

CCCP 2 nmol 178.33635.00*** 13.9761.36*

CCCP 5 nmol 385.00699.23ns 20.3560.51*

Oligomycin A 0.0005 ı̀g/ml 181.33653.82** 21.0860.51ns

Oligomycin A 0.005 ı̀g/ml 38.9361.70** 12.1661.19*

Oligomycin A 0.05 ı̀g/ml 36.0362.54** 14.2161.36*

Student’s t-test v untreated: * = P,0.05; ** = P,0.01; *** = P,0.001; ns = not significant
doi:10.1371/journal.pone.0043853.t001

Figure 6. ROS scavenging by n-acetyl-cysteine does not ameliorate proliferation rate of H-2K myoblasts under hyperoxia.
Representative plots show that (A) ROS levels of live H-2K cells cultured at 20% oxygen were rescued to levels similar to 5% oxygen by administration
of NAC at 30 nM and (B) assay of proliferation rate using CFSE showed no effect of NAC after 4 days of culture.
doi:10.1371/journal.pone.0043853.g006
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are activated. This would be consistent with the lack of effect of

oxygen level on MyoD expression of proliferating human

myoblasts [4] and murine C2C12 myoblasts [2], since those cells

were already activated.

Our assay of cell proliferation using the thymidine analogue,

EdU, shows that hyperoxia has a second, repressive effect on the

rate of myoblast proliferation independent of its effect on

activation. This does not manifest as reduced counts of prolifer-

ated cells until 2 to 3 days after isolation; consistent with the lag of

24 to 48 hours between exit from quiescence and the commence-

ment of rapid proliferation [25].

Dramatically decreased fusion of C2C12 myoblasts at 20%

oxygen is associated with downregulation of several myogenic

transcription factors, but with no significant change in MyoD

expression [2]. Our measurement of fusion index of primary

myoblasts showed no evidence of such a loss but, instead, a small

gain of myogenicity at 20% oxygen. A gain of myogenicity is

consistent with the idea that increased mitochondrial respiratory

activity pushes myoblasts [19], and stem cells in general (reviewed

[26]), towards differentiation. Human primary myoblasts cultured

at 20% oxygen show no detectable decrease of expression of

several myogenic genes (MyHC IIa, creatine kinase, MyoD, and

myogenin) [4]. This is more in keeping with the small but

significant increase in fusion that we observed than with the

dramatic decrease found with C2C12 cells, and raises issue of

departure of the immortalized C2C12 cell line from the phenotype

of the freshly isolated primary myoblast in the context of oxygen-

response.

In response to hyperoxia we observed raised levels of Dioc6

signal. Since mitochondrial mass was unchanged, this reflects an

increased proton gradient across the mitochondrial membrane. An

inverse regulatory relationship between mitochondrial DY and

proliferation rate has been described in rat L6E9 myoblasts [12],

where the increase of mitochondrial DY enacted by in vitro

manipulation of extracellular pyruvate concentration was found to

induce arrest of proliferation [19]. This was associated with

downregulation of proliferating cell nuclear antigen expression,

increased p21 expression, and cellular hypertrophy, but not with

differentiation. Thus, although high mitochondrial activity is

required for myogenesis [13,14,15,16,17] and, in the present study

appears to encourage myogenesis, it does not necessarily induce

myogenesis in all circumstances [19].

Any of the metabolic consequences of altered mitochondrial

activity may have downstream effects on the rate of cell

proliferation. Those metabolites shown to influence gene expres-

sion include cytosolic Ca2+ [9,10,27,28], NAD+/NADH [29],

ATP [30,31,32,33,34], and ROS (reviewed [35]). In the present

study, we measured two such metabolites, ATP and H2O2, a

variety of ROS, finding that both are increased under hyperoxia.

When oligomycin A, an inhibitor of the F0 subunit of the ATP

synthase, or CCCP, a mitochondrial uncoupler, were added to the

culture medium under hyperoxic conditions, we observed a

decrease in levels of H2O2 and ATP, concomitant with an

increased rate of cell proliferation. Recent work manipulating the

redox environment of C2C12 myoblasts suggests that ROS

encourage myogenesis [2]. Using NAC, we succeeded in

scavenging H2O2 to the levels observed at 5% oxygen but neither

H-2K nor primary myoblasts were rescued from oxygen-inhibited

proliferation. Likewise, we observed no effects on proliferation rate

by administration of other modifiers of ROS levels: PBN and

H2O2 (except where H2O2 treatment was associated with cell

toxicity). We may not have scavenged all varieties of ROS, and we

did not manipulate other metabolites, and the specific downstream

mechanism(s) connecting mitochondrial activity with rate of

myoblast proliferation is a topic for further investigation. It is

noteworthy in this respect that growth arrest induced by pyruvate-

treatment of rat L6E9 myoblasts was not reversed by antioxidants,

nor did oxidants induce growth arrest in control rat L6E9

myoblasts [19].

Consistent with previous findings [36], under standard tissue

culture conditions (20% oxygen) we observed that numbers of

myoblasts cultured from isolated murine myofibres declined with

age. However, cell counts at 5% oxygen were similar at the two

ages we compared. This suggests that the proliferation of

myoblasts from aged mice is more readily rescued, indicating that

their proliferative regulation is more sensitive to the effects of

Figure 7. Manipulation of ROS levels using PBN at 20% oxygen or H2O2 at 5% oxygen does not change the proliferation rate of H-
2K myoblasts. ROS levels, as indicated by the geometric mean of H2DCFDA fluorescence determined by FACS analysis (primary y-axes), and
proliferation indices, as measured using CFSE (secondary y-axes) are plotted against concentrations of (A) PBN or (B) H2O2, for H-2K myoblasts
cultured for 3 days at 20% or 5% oxygen, respectively. Lines of best fit are shown.
doi:10.1371/journal.pone.0043853.g007
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Figure 8. Hyperoxia inhibits MyoD expression during early activation and inhibits early rounds of proliferation. (A, B, C) Effect on
early activation. (A, B) Transmitted light micrograph of isolated myofibre overlaid with nuclear (DAPI; blue) and MyoD (green) staining, respectively.
Scale bar = 20 mm. (C) Average number of activated myoblasts (MyoD positive nuclei) per myofibre 4 hours after isolation and culture was fewer at
20% than 5% oxygen. Also indicated is the average number of quiescent myoblasts (Pax7 positive nuclei) immediately following isolation of a
separate batch of myofibres from the same muscle. (D, E, F) Effect on early rounds of proliferation. (D, E) Transmitted light micrograph of an isolated
matrigel-adhered myofibre and associated myoblasts overlaid with nuclear stain (DAPI; blue) and proliferated cell stain (EdU positive nuclei; red),
respectively. Scale bar = 200 mm. (F) The thymidine analogue EdUwas present in medium throughout cell culture, thereby marking all daughter cells.
Delay of proliferation by hyperoxia emerges between days 2 and 3 of cell culture. Oxygen scavenging by NAC had no significant effect on activation
or early proliferation compared with hyperoxia alone. Confidence intervals (95%) are shown. Student’s t-test: * = P,0.05 (compared with value for 5%
oxygen).
doi:10.1371/journal.pone.0043853.g008
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hyperoxia. This view would encourage caution in the interpreta-

tion of aging studies conducted in tissue culture. Since mitochon-

dria accumulate DNA damage, degradation of the electron

transport chain, and other defects throughout the lifespan of the

animal, it suggests that the involvement of mitochondria should be

explored as a clear candidate for the age-related loss of cellular

vigour observed in standard tissue culture (reviewed [37]) but not

in vivo [38]. It provides a possible explanation for the observation

that primary myoblasts from old mice proliferate poorly in

standard tissue culture but, when engrafted on single myofibres,

contribute to muscle regeneration with the same efficiency as

myoblasts from young mice [39]. It places the poor proliferation of

myoblasts from old mice in standard tissue culture as an artifactual

consequence of oxygen levels never experienced by these cells in

their natural environment. It also raises the question of the role of

changes in local oxygen tension across the phases of degeneration

and regeneration in an acutely damaged region of muscle as part

of a signaling system for the regulation of the stages of myogenesis.

In this context, cytokine mediated control of these processes may

come to play a more dominant role with increasing age,

accounting for the overriding systemic influences on the efficiency

of muscle repair [40].

Supporting Information

Figure S1 Deconvolution of CFSE data for treatment of
H-2K myoblasts with Oligomycin A at 5% oxygen. Total

cell counts (plotted in black) and modeled generational subsets

(coloured curves) are shown at day 0 immediately following CFSE

staining and following 3 days of culture, with the concentration of

Oligomycin A indicated on each relevant plot. Cell counts are also

shown in tabulated form. Approximately ten thousand cells were

analyzed per condition.

(TIF)

Figure S2 Deconvolution of CFSE data for treatment of
H-2K myoblasts with PBN at 20% oxygen. Total cell counts

(plotted in black) and modeled generational subsets (coloured

curves) are shown at day 0 immediately following CFSE staining

and following 3 days of culture, with the concentration of PBN

indicated on each relevant plot. Cell counts are also shown in

tabulated form. Approximately ten thousand cells were analyzed

per condition.

(TIF)

Figure S3 Deconvolution of CFSE data for treatment of
H-2K myoblasts with H2O2 at 5% oxygen. Total cell counts

(plotted in black) and modeled generational subsets (coloured

curves) are shown at day 0 immediately following CFSE staining

and following 3 days of culture, with the concentration of H2O2

indicated on each relevant plot. Cell counts are also shown in

tabulated form. Approximately ten thousand cells were analyzed

per condition.

(TIF)

Figure S4 Manipulation of ROS levels using H2O2 at
20% oxygen. ROS levels, as indicated by the geometric mean of

H2DCFDA fluorescence determined by FACS analysis (primary y-

axis), and proliferation indices, as measured using CFSE

(secondary y-axis) are plotted against concentrations H2O2 for

H-2K myoblasts cultured for 3 days at 20% oxygen. Line of best fit

is shown for ROS levels.

(TIF)

Figure S5 Deconvolution of CFSE data for treatment of
H-2K myoblasts with H2O2 at 20% oxygen. Total cell

counts (plotted in black) and modeled generational subsets

(coloured curves) are shown at day 0 immediately following CFSE

staining and following 3 days of culture, with the concentration of

H2O2 indicated on each relevant plot. Cell counts are also shown

in tabulated form. Approximately ten thousand cells were

analyzed per condition.

(TIF)
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