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Abstract: The present work investigated the treatment of ballast water via electrochemical disinfection
using a RuO2-TiO2/Ti electrode. Batch tests were conducted with simulated ballast water containing
Escherichia coli as an indicator organism. The effect of varying NaCl concentrations (1%, 2%, and 3%;
w/v) and current densities (0.3, 1.0, 2.0, and 3.0 mA/cm2) on the inactivation of E. coli was examined.
Results showed higher disinfection efficiency of E. coli was obtained at higher NaCl concentration and
current density. Complete inactivation of E. coli was attained within 2 and 1 min at 0.3 and 1 mA/cm2,
respectively, under 3% NaCl concentration. Meanwhile, complete disinfection at 1 and 2% NaCl
concentrations was observed in 6 and 2 min, respectively, using a current density of 0.3 mA/cm2.
The 100% inactivation of E. coli was achieved with an energy consumption in the range of 2.8 to
2.9 Wh/m3 under the NaCl concentrations at 1 mA/cm2 and 1 min of electrolysis time. The complete
disinfection attained within 1 min meets the D-2 standard (<250 CFU E. coli/100 mL) of ballast water
under the International Maritime Organization. The values of energy consumption of the present
work are lower than previous reports on the inactivation of E. coli from simulated ballast water.

Keywords: ballast water; E. coli; electroactive chlorine species; electrochemical disinfection;
RuO2-TiO2/Ti electrode

1. Introduction

Ballast water is fresh, or seawater held in the ballast tanks of ships [1]. It provides
stability and maneuverability to the ships during a voyage. Approximately 10 billion tons of
ballast water is discharged annually into the marine environment since ships transport 80%
of the globally traded goods and merchandise [1,2]. Ballast tanks were reported to contain a
minimum of 7000 various species that were transported worldwide daily according to the
International Maritime Organization (IMO) [1,2]. The organisms (e.g., zooplankton, bacteria,
dinoflagellates, larvae, etc.) in ballast water were shown to survive during transportation [3–5].
The ballast water discharge affects the marine environment, ecology, economy, and human
health since ballast water carries invasive species along with pathogens to aquatic organisms
and humans [1,2].

IMO adopted the International Convention for the Control and Management of Ships’
Ballast Water and Sediments (BWM Convention) in 2004 to introduce global regulations to
control the transfer of potentially invasive species [6]. All ships in international traffic need
to manage their ballast water since the BWM Convention entered into force globally. Under
the Convention, new ships built on or after 8 September 2017 must meet the D-2 standard
while all ships must meet the standard by 8 September 2024. The D-2 standard specifies the
maximum concentration of viable organisms allowed to be discharged, including specified
indicator microorganisms (e.g., <250 CFU E. coli/100 mL; <1 CFU Vibrio cholera/100 mL) [2,6].

Various technologies were employed to inactivate and disinfect aquatic organisms and
microbes in ballast water [1,2,7–10]: ultraviolet radiation, biocide application, sonication,
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filtration, ozone treatment, and chemical method. Currently, these methods have limitations
such as toxic by-product formation, large space requirement, high energy consumption, low
treatment efficiency, and chemical storage requirement. In recent years, previous reports on
electrochemical studies have shown that electrochemical treatment can effectively remove
contaminants or pathogens from the environment [11–13]. Electrochemical disinfection
has gained increasing attention due to its ability to inactivate and remove various living
organisms and pathogens from water [13,14]. However, it is an emerging method for ballast
water treatment.

Electrochemical disinfection uses suitable electrode materials to create a direct current
(DC) electric field that flows the water and inactivates microorganisms. It has numerous
advantages such as easy operation and installation, simple instruments, and high treatment
efficiency [2,13–15]. In addition, electrochemical disinfection has a small energy require-
ment, which makes it cost-effective and environmentally compatible that could be sustained
using fuel cells or solar cells [2,13–16]. More importantly, electrochemical disinfection can
produce oxidizing species in situ that would not require the storage and transport of chem-
icals [2,14]. Since seawater, which is commonly used as ballast water, naturally contains
chloride ions, the production of chlorine species such as hypochlorous acid (HOCl) and
hypochlorite (ClO−) during electrochemical disinfection is an advantage [2,14]. The inacti-
vation efficiency of the process is attributed to electrochemical chlorination and the presence
of reactive oxygen species (e.g., hydrogen peroxide, hydroxyl radicals). The generation
of both chlorine species and reactive oxygen species would cause the deterioration of the
microbial cell wall and membrane, which leads to cell lysis [13,14,17].

Selecting a proper anodic material is essential in the electrochemical process since it
affects the process efficiency and the formation of electroactive chlorine species (e.g., HClO,
ClO−, Cl2) that would be generated when chloride salts are present [13,14,18,19]. Re-
searchers investigated various anode materials for ballast water treatment: boron-doped
diamond (BDD), PbO2, graphite, platinum (Pt), and metal oxide coated titanium elec-
trodes [13,20–22]. When PbO2/graphite felt anode was employed to treat the artificial sea-
water (3% NaCl), the complete inactivation of E. coli, Enterococcus faecalis, and Artemia salina
was achieved at 8, 60, and 40 min, respectively, using a current density of 25.3 mA/cm2 [21].
Lacasa et al. [22] reported that 100% disinfection of E. coli was attained within 5 min using
BDD to treat simulated ballast water (3% NaCl). The energy consumption was determined
to be 42 Wh/m3 at the current density of 12.7 mA/cm2.

Dimensionally stable anodes (DSAs) are comprised of a titanium substrate coated
with inorganic metal oxides (e.g., SnO2, IrO2-Sb2O5-SnO2, TiO2-RuO2, and IrO2-RuO2) and
are known for their resistance to corrosion and superior electrical conductivity [17,23,24].
DSAs have been widely applied for the disinfection of water [15,17,23,24]. When compared
to other stable anodes like Pt and BDD, DSAs have higher efficiency in generating chlorine
species and better disinfection dosage that allow the process to be operated at a lower
voltage range and decreased energy consumption [25,26]. DSAs commonly use conductive
metal oxides such as TiO2, IrO2, and RuO2 as coating film. The combination of metal oxides
would develop a synergistic, bifunctional anode that is both electrocatalytic and photocat-
alytic. The application of RuO2 in industries is associated with its excellent conductivity,
high electrocatalytic activity, and exceptional stability [27–29]. Previous studies mainly used
electrodes with the mole ratio of 30:70 for RuO2 and TiO2 to degrade organic contaminants
for wastewater treatment [30]. There are no studies performed on the varying molar ratio
of RuO2 that could further improve the electrocatalytic activity of the anode material and
enhance the disinfection efficiency for ballast water treatment.

Studies on better methods for ballast water treatment are very much necessary before
the implementation of D-2 compliance in all the ships. In this regard, this study prepared
mixed metal oxide (RuO2-TiO2/Ti; 45 mol % RuO2 + 55 mol % TiO2) as the anode material
and investigated its performance to disinfect simulated ballast water containing E. coli in
the electrochemical process. The prepared RuO2-TiO2/Ti anode was characterized using a
scanning electron microscope (SEM) and energy-dispersive x-ray spectroscopy (EDS). The
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inactivation efficiency of E. coli was investigated under varying process parameters such
as current density and NaCl concentration. The energy consumption and decay of E. coli
under different salinity were also determined.

2. Materials and Methods
2.1. Preparation and Characterization of Electrode

The mixed metal oxide of RuO2-TiO2/Ti expanded mesh anode was prepared by
pyrolysis of titanium tetrachloride (TiCl4) and ruthenium trichloride (RuCl3) on titanium
(Ti) substrate. To attain a rough surface, the expanded Ti mesh was sandblasted and etched
with 10% HCl for 3 min at 80 ◦C. Then, the chemically-etched Ti expanded mesh was
washed with distilled water and air-dried. After which, the dissolution of RuCl3 and TiCl4
(concentration of 45:55 mol %) in isopropanol was carried out. The solution mixture was
brushed on the surface of the pretreated Ti expanded mesh. Then, the electrode was burnt
at 400 ◦C for 10 min at O2 atmosphere and was air-dried for 10 min. This step was repeated
until a thickness of 6 µm coating layer was obtained [31]. Finally, the final firing was
done at 420 ◦C for 1 h. The electrode surface of the RuO2-TiO2/Ti expanded mesh anode
was analyzed by SEM (Hitachi SU-70, Hitachi High-Technologies, Tokyo, Japan) and EDS
(INCA, Oxford Instruments, Oxfordshire, UK).

2.2. Bacterial Strains and Growth Conditions

E. coli CN13 was employed as an indicator organism in this study. A single colony
of the strain grown on a Luria Bertani (LB) agar plate was inoculated into 500 mL of
sterile LB broth and cultured at 37 ◦C in a shaking incubator at 150 rpm for 48 h. The cells
were harvested by centrifugation (Model Mega 17R; Hanil, Daejeon, Korea) for 10 min at
10,000 rpm and 20 ◦C. The harvested cells were washed and resuspended in varying NaCl
solutions (1, 2, and 3%; w/v) that were used as the background electrolyte. NaCl solutions
were prepared with deionized water [17,21]. The bacterial suspensions (~1 × 107 CFU/mL)
in the NaCl solutions were used for the disinfection tests.

2.3. Set-Up of the Electrochemical Reactor

The present work employed an electrochemical reactor similar to the set-up described
previously [17,21]. Batch electrolysis experiments were carried out in a 300 mL beaker
(undivided cell) with a working volume of 250 mL. The simulated ballast water was
prepared as described for NaCl solutions [17,21]. The prepared RuO2-TiO2/Ti expanded
mesh served as the anode, while Ti expanded mesh was used as the cathode. An inter-
electrode distance of 1 cm was maintained between the anode and cathode, which were
placed parallel to each other.

2.4. Disinfection Experiments

Before the start of each experiment, sonication of the electrode was performed for
10 min in deionized water to eliminate residual contamination on the electrode surface.
The electrochemical disinfection experiments were carried out under constant bacterial
concentration (~1× 107 CFU/mL) and varying current densities (0, 0.3, 1, 2, and 3 mA/cm2)
in a galvanostatic mode with a regulated DC power source (Model OPE-303QI; ODA
Technologies, Incheon, Korea). The electrolyte solution was constantly stirred at 150 rpm
using a magnetic stirrer. The samples were collected periodically and the potential was
measured. The standard analytical procedure (Iodometric method) was employed to
analyze the electroactive chlorine species [21]. All experiments were conducted in triplicate.

2.5. Bacterial Sample Analysis

The plate counting method was used to measure E. coli concentration in the ballast
water before and after each experiment. Samples were collected at specific time intervals:
0.5, 1, 2, 3, 4, 5, 10, 20, and 30 min. During sample collection and handling, an equal volume
of 1 N Na2S2O3 was added immediately in the samples to remove residual free chlorine and
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prevent the death of microbes [32]. Then, the samples were serially diluted for microbial
analysis. Each dilution of 100 µL was spread onto an LB agar plate and incubated at 35 ◦C
for 14 h. The colonies grown on the plates were counted.

3. Results and Discussion
3.1. Characterization and Surface Morphology Analysis

The surface morphology of the prepared mixed metal oxide electrode (RuO2-TiO2/Ti)
clearly showed a rough surface morphology with several muddy cracks on the coated
electrode (Figure 1). The presence of the cracks increases the surface area of the anode and
increases the number of active sites exposed [30]. The EDS analysis verified the presence of
Ti and Ru (Figure 1). The phase composition was calculated using element-to-stoichiometric
oxide conversion factors. Results show that the electrode surface was comprised of ~75%
of Ti and 25% of Ru. During the electrolysis process, the anodic potential was determined
to be within the ranges of 1.11–1.34 V, 1.19–1.38 V, and 1.2–1.4 V for 1%, 2%, and 3% NaCl,
respectively. The result of potential measurements suggested that RuO2–TiO2/Ti anode
could form electroactive chlorine species [33].
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Figure 1. SEM (left) and EDS (right) surface mapping analysis of RuO2-TiO2/Ti electrode employed
in this study.

3.2. Effect of Current Density

Figure 2 shows the effect of current density as a function of time on E. coli disinfection.
Increasing the current density from 0.3 to 3.0 mA/cm2 showed better inactivation efficiency
of E. coli. In addition, longer contact time also results in better inactivation of E. coli.
Complete inactivation of E. coli was achieved within 1 min when the current density was
increased from 0.3 to 1 mA/cm2 in all systems. E. coli concentration in 1% NaCl solution
decreased gradually within 4 min with a current density of 0.3 mA/cm2 and showed
complete disinfection at 6 min of electrolysis (Figure 2a). Meanwhile, a shorter time (2 min)
was needed to attain complete disinfection for 2% and 3% NaCl solutions with the same
current density (Figure 2b,c).

Faster reduction of E. coli concentration was observed with higher current density due
to increased production of electroactive chlorine species and presence of a high number
of oxidizing species as well as higher residual chlorine concentration, which can easily
disinfect available microbes. In addition, a higher amount of electrical charge will run
through the electrolyte with the application of higher current density that could lead to
quicker disinfection rates [21]. Similar results were observed by Ghasemian et al. [17] where
the disinfection of E. coli D21 using Sb-doped Sn80%-W20%-oxide anode at different current
densities was investigated. The complete disinfection of E. coli D21 in 0.1M NaCl was
obtained at 60, 5, and 2 min with the current density of 1, 2, and 4 mA/cm2, respectively.
In this study, lower values of current density such as 0.3 mA/cm2 were sufficient for the
effective inactivation of E. coli in simulated ballast water. The utilization of lower current
density may avoid higher energy consumption for the disinfection process. The complete
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inactivation of E. coli was attained with 2 min contact time, 0.3 mA/cm2, and 2% NaCl
concentration, which meets the IMO D-2 standard (<250 CFU/100 mL).
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Bacterial decay occurred with respect to time even without applying current in the reactor
due to a low nutrient and/or a highly saline environment. The bacterial concentration in the
control (0 mA/cm2 applied) slowly decreased from 1.50 × 107 to 1.41 × 107, 1.54 × 107 to
1.35 × 107 and ~1.67 × 107 to 1.14 × 107 CFU/mL for 1%, 2%, and 3% NaCl, respectively.

3.3. Kinetics of E. coli Inactivation

The inactivation kinetics of E. coli under varying current density and NaCl concen-
tration was investigated. Chick’s law is used to determine the kinetic constants for the
inactivation of microorganisms as provided in Equation (1) [34].

log10

(
Nt

N0

)
= −Kt (1)

where Nt is the concentration of E. coli at time t, N0 is the initial concentration of E. coli; K is
death rate (min−1), and t is time (min). Figure 3 shows that experimental data points are
in good agreement with the regression lines, which indicates that the first-order kinetic
equation is a good fit in describing the inactivation of E. coli. The kinetic equations and
regression coefficients are presented in Table 1. Results show that the high values of the
coefficient of determination (R2 ≥ 0.92) were obtained when no current density was applied,
while values of R2 ≥ 0.79 were attained for a current density of 0.3 mA/cm2. The high
R2 values imply that first-order kinetics would best describe the inactivation of E. coli for
both systems. This indicates that the disinfection of E. coli is controlled by mass transfer or
generated reagents (e.g., electroactive chlorine species, oxidizing species) [22]. The values
of the kinetic constant (K) were determined to be in the ranges of 0.0063–0.0087 min−1

for 0 mA/cm2 and 0.7076–4.8286 min−1 for 0.3 mA/cm2. Higher K values obtained at
higher salinity and higher current density indicated better inactivation efficiency of E. coli.
Lacasa et al. [22] reported similar findings where the mortality rate of E. coli increased with
increasing current density and salinity.

3.4. Effect of NaCl Concentration

Figure 4 shows the effect of NaCl concentration on E. coli disinfection and the production
of electroactive chlorine substances at a current density of 0.3 mA/cm2. It was observed that
increasing the NaCl concentration would lead to better inactivation efficiency of E. coli. Results
show that the E. coli concentration decreased from ~1.50 × 107 to 0.0037 × 107, ~1.54 × 107

to 0.00018 × 107, and ~1.67 × 107 to 0.0001 × 107 CFU/mL for 1%, 2%, and 3% NaCl,
respectively, at 1 min of electrolysis. A shorter contact time of 2 min was needed to obtain
complete disinfection for both 2% and 3% NaCl while a longer contact time of 6 min was
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required for 1% NaCl. Increasing the NaCl concentration from 1% to 3% indicates that a
higher amount of electroactive chlorine species would be generated; thus, a shorter contact
time is required for the complete inactivation of E. coli.

Int. J. Environ. Res. Public Health 2022, 19, x  6 of 11 
 

 

salinity and higher current density indicated better inactivation efficiency of E. coli. Lacasa 
et al. [22] reported similar findings where the mortality rate of E. coli increased with in-
creasing current density and salinity. 

   
Figure 3. First-order kinetics for the inactivation of E. coli at (a) 1%, (b) 2%, and (c) 3% NaCl without 
applying current. Data are given as mean ± standard deviation (n = 3). 

Table 1. First-order kinetics of E. coli decay at various NaCl concentrations. 

Current Density, 
mA/cm2 Kinetics 

NaCl conc., % (w/v) 

1 2 3 

0 
First-order 10

0

log

0.0063

tN
N
t

 
 
 

= ×  

10
0

log

0.0070

tN
N
t

 
 
 

= ×  

10
0

log

0.0087

tN
N
t

 
 
 

= ×  
R2 * 0.92 0.95 0.96 

0.3 
First-order 10

0

log

0.7076

tN
N
t

 
 
 

= ×  

10
0

log

4.4699

tN
N
t

 
 
 

= ×  

10
0

log

4.8286

tN
N
t

 
 
 

= ×  
R2 0.79 0.82 0.84 

* Regression coefficient. 

3.4. Effect of NaCl Concentration 
Figure 4 shows the effect of NaCl concentration on E. coli disinfection and the pro-

duction of electroactive chlorine substances at a current density of 0.3 mA/cm2. It was ob-
served that increasing the NaCl concentration would lead to better inactivation efficiency 
of E. coli. Results show that the E. coli concentration decreased from ~1.50 × 107 to 0.0037 × 
107, ~1.54 × 107 to 0.00018 × 107, and ~1.67 × 107 to 0.0001 × 107 CFU/mL for 1%, 2%, and 3% 
NaCl, respectively, at 1 min of electrolysis. A shorter contact time of 2 min was needed to 
obtain complete disinfection for both 2% and 3% NaCl while a longer contact time of 6 
min was required for 1% NaCl. Increasing the NaCl concentration from 1% to 3% indicates 
that a higher amount of electroactive chlorine species would be generated; thus, a shorter 
contact time is required for the complete inactivation of E. coli. 

Figure 3. First-order kinetics for the inactivation of E. coli at (a) 1%, (b) 2%, and (c) 3% NaCl without
applying current. Data are given as mean ± standard deviation (n = 3).
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Current Density,
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As the NaCl concentration was increased from 1 to 3% at a fixed current density of
0.3 mA/cm2, a corresponding increase in the electroactive chlorine species concentration
was also observed (Figure 4). For the first 4 min, no electroactive chlorine species were
observed in 1% NaCl (Figure 4a). After 5 min of electrolysis, 3 mg/L of electroactive
chlorine species were measured. Similarly, electroactive chlorine species were not detected
at 0.5 min of electrolysis in 2 and 3% NaCl system (Figure 4b,c). This indicates that the
electroactive chlorine species were almost completely utilized for the disinfection of E. coli
during the start of the process. After complete disinfection was attained at 2 min for 2% and
3% NaCl and 6 min for 1% NaCl, the concentration of electroactive chlorine was observed
to increase gradually.

Table 2 shows the concentration of electroactive chlorine species under varying current
densities and NaCl concentrations after 30 min contact time. The available electroactive



Int. J. Environ. Res. Public Health 2022, 19, 1835 7 of 11

chlorine species generated with 0.3 mA/cm2 was determined to be 17.5, 22.3, and 31.9 mg/L
at 1%, 2%, and 3% NaCl, respectively. A high NaCl concentration and high current density
generated an increased amount of electroactive chlorine species. The highest value of elec-
troactive chlorine species (262.35 ± 41.36 mg/L) was attained at 3% NaCl and 3.0 mA/cm2.
The previous study also showed similar results where complete disinfection of E. coli in sim-
ulated ballast water at 3% NaCl was attained at 8 min of electrolysis using PbO2/graphite
electrode at 25.3 mA/cm2 [21]. Meanwhile, the present study obtained 100% inactivation
of E. coli after 2 min of electrolysis using RuO2-TiO2/Ti anode at 0.3 mA/cm2.

Table 2. Formation of electroactive chlorine species at 30 min of electrolysis.

NaCl, % (w/v) Current Density, mA/cm2 Electroactive Chlorine
Species, mg/L

1

0.3 17.50 ± 2.25 *
1 55.83 ± 1.12
2 156.34 ± 10.15
3 207.39 ± 13.15

2

0.3 22.30 ± 2.25
1 60.62 ± 7.89
2 169.11 ± 14.66
3 252.06 ± 1.12

3

0.3 31.90 ± 5.01
1 79.76 ± 9.02
2 162.72 ± 15.79
3 262.35 ± 41.36

* Data are given as mean ± standard deviation (n = 3).

3.5. Mechanism of E. coli Inactivation

The present study used RuO2-TiO2/Ti and Ti mesh as anode and cathode, respectively.
As the current is applied, electro-migration occurs where the movement of the chloride
ions towards the anode occurs. The production of a chlorine molecule (Cl2) takes place
due to the interaction of Cl- with the electrode surface via direct oxidation (Equation (2)).
Simultaneously, OH− ions are formed due to the reduction of water molecules at the
cathode (Equation (3)). At the anode, the dissolution of the Cl2 gas in water would lead to
the formation of electroactive chlorine species such as HOCl and ClO− (Equations (4) and
(5)) that are well-known for their bactericidal effects on microorganisms.

Cl− + Cl− → Cl2 + 2e− (Anodic reaction) (2)

2H2O + 2e− → H2 + 2OH− (Cathodic reaction) (3)

Cl2 + H2O → H+ + Cl− + HOCl (pH < 7) (4)

Cl2 + O H− → ClO− + H+ + Cl− (5)

HOCl → H+ + ClO− (pH > 7) (6)

Another mechanism of inactivation is via electronic adsorption of microorganisms that
are negatively charged onto the anodic surface of the electrode. Cell lysis is caused by the di-
rect transfer of electrons after E. coli cells have attached to the anodic surface [35]. Previous
reports have shown that the essential mechanism for the inactivation of microorganisms
involves electrolyzed chlorine and hydroxyl radicals [36,37]. Particularly, studies on elec-
trochemical disinfection using DSAs have shown that the vital inactivation mechanism is
via chlorination in wastewater and surface waters [22,38].

The pH of the electrochemical system was monitored after 30 min of the electrochemi-
cal disinfection process at varying current densities and NaCl concentrations. The control
system (0 mA/cm2) used in this study showed a constant pH of 5.8 ± 0.05 (Figure 5). The
pH of the system seems unaffected under different NaCl concentrations. The pH of the
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system was determined to be approximately 6.4, 7.2, 8.4, and 9.0, with current density at
0.3, 1, 2, and 3 mA/cm2, respectively. When low current density (0.3 and 1 mA/cm2) is
applied, the pH of the system is neutral (~pH 7.0). Meanwhile, a more basic pH of the
solution was observed at a higher current density (2 and 3 mA/cm2) due to the formation
of hydroxide ions (OH-) at the cathode caused by a reduction reaction. Basic conditions
such as pH > 8.0 would result in the preferential adsorption of OH- ions onto the anode
surface, which in turn, would cause low chlorine generation and decreased disinfection effi-
ciency [2,39]. Most importantly, the stability of the electroactive chlorine species (e.g., HOCl,
ClO−) is highly dependent on the pH of the electrolyte. Chlorine species such as HOCl
and ClO− are more stable in acidic and basic conditions, respectively. Acidic conditions
tend to produce a higher concentration of HOCl while basic conditions would lead to the
formation of ClO−. Meanwhile, both ClO− and HOCl have been determined to be present
in the solution with neutral pH. Therefore, acidic and neutral conditions are considered to
favor improved inactivation efficiency. In the present work, the application of low current
densities (0.3 and 1 mA/cm2) with acidic to neutral pH implies the system is conducive to
the formation of both ClO- and HOCl. Overall, the measured pH for all systems was less
than 9, indicating higher production of electroactive chloride species to be utilized in the
disinfection of E. coli.
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3.6. Energy Consumption and Cost Analysis

In general, improved bacterial disinfection is associated with the application of high
current density that would result in increased energy consumption. The cost-effectiveness
of the electrochemical disinfection process using RuO2-TiO2/Ti in the disinfection of E. coli
was examined by determining the energy consumption. The energy consumption (E,
Wh/m3) is computed using Equation (7) [18,30]:

Energy consumption (E) =
1
Vs

∫
V I dt (7)

where Vs is the volume of sample processed, V is the voltage difference between the
electrodes and I is the electric current.

The energy input to obtain complete bacterial disinfection was determined to be in the
range of 2.9–10.4 Wh/m3 (1% NaCl), 2.8–8.7 Wh/m3 (2% NaCl) and 2.8–8.0 Wh/m3 (3%
NaCl) under various current densities (0.3–3 mA/cm2). The lowest power consumption
of 2.8 Wh/m3 using RuO2-TiO2/Ti anode was able to attain 100% bacterial disinfection of
1 × 107 CFU/mL E. coli under the following conditions: 1 mA/cm2 of current density, 2% to
3% NaCl concentrations, and 1 min of electrolysis time. The values of energy consumption
obtained in the present work are lower when compared to previous reports. Heim et al. [40]
reported that complete disinfection of E. coli (107–108 CFU/mL) in municipal wastewater
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was achieved with an energy consumption of 250 Wh/m3 under different NaCl concentra-
tions (2% and 3%) using BDD. About 88 Wh/m3 of energy input was required in the study
of Lacasa et al. [22] to obtain complete inactivation of E. coli (106–107 CFU/mL) using BBD
at 3% (w/v) NaCl. The present work demonstrated that 1 mA/cm2 of current is sufficient
to attain 100% disinfection of E. coli in the simulated ballast water.

4. Conclusions

In the present study, RuO2-TiO2/Ti anode (45 mol % RuO2 + 55 mol %TiO2) was
developed and used in the electrochemical disinfection of E. coli from simulated ballast
water. Results show that increasing the NaCl concentration (0–3%; w/v) and current
density (0.3–3.0 mA/cm2) would cause better inactivation efficiency of E. coli under shorter
electrolysis time due to the production of higher concentration of electroactive chlorine
species and oxidizing species in the system. The concentration of the total electroactive
chlorine species present during electrochemical disinfection was determined to be within
the range of 17.50–262.35 mg/L under varying current densities and NaCl concentrations.
Complete disinfection of E. coli was achieved at a shorter contact time of 2 min for both 2%
and 3% NaCl while a longer contact time of 6 min was needed for 1% NaCl at a current
density of 0.3 mA/cm2. The energy input required to attain complete disinfection of E. coli
was determined to be 2.9 ± 0.07, 2.8 ± 0.,07 and 2.8 ± 0.10 Wh/m3 for 1%, 2%, and 3%
NaCl, respectively, using a current density of 1 mA/cm2 and 1 min of electrolysis time.
The energy consumption values in the present work are lower when compared to those in
previous reports in the inactivation of E. coli from simulated ballast water. In the present
study, 100% disinfection of E. coli was attained in 1 min at 1 mA/cm2 that meets the IMO
D-2 standard (<250 CFU E. coli/100 mL) of ballast water.
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