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Abstract

The mayfly algorithm (MA), as a newly proposed intelligent optimization algorithm, is found

that easy to fall into the local optimum and slow convergence speed. To address this, an

improved mayfly algorithm based on dynamic elite strategy (DESMA) is proposed in this

paper. Specifically, it first determines the specific space near the best mayfly in the current

population, and dynamically sets the search radius. Then generating a certain number of

elite mayflies within this range. Finally, the best one among the newly generated elite may-

flies is selected to replace the best mayfly in the current population when the fitness value of

elite mayfly is better than that of the best mayfly. Experimental results on 28 standard

benchmark test functions from CEC2013 show that our proposed algorithm outperforms its

peers in terms of accuracy speed and stability.

1. Introduction

With the development of technology, there are a large number of optimization problems in

real life, and such problems usually have the characteristics of nonlinearity and high

dimensionality [1]. In the early, traditional methods, such as the Newton method [2] and gra-

dient descent method [3], are considered an effective ways to solve these problems, they can

obtain the results within a reasonable time. However, the traditional methods have the follow-

ing limits: a) they are suitable for dealing with small-scale problems, and b) they require that

the problems must be differentiable. Thus, they are not the best choice when problems become

more and more complex. It is found that swarm intelligence optimization algorithms, which

are inspired by the behavior of natural biological groups, are suitable for solving large-scale

problems, and thus they have attracted the attention of more researchers. Up to now, more

and more swarm intelligence optimization algorithms have been proposed to solve various

optimization problems, such as Particle Swarm Optimization (PSO) [4], Grey Wolf Optimiza-

tion (GWO) [5], Artificial Bee Colony Algorithm (ABC) [6], Harris Hawks Optimization

(HHO) [7], Symbiotic Organisms Search Algorithm (SOS) [8], Firework Algorithm (FWA)

[9], Monarch Butterfly Optimization (MBO) [10], Slime Mould Algorithm (SMA) [11], Moth

Search Algorithm (MSA) [12], Hunger Games Search (HGS) [13], Runge Kutta Method

(RUN) [14], Colony Predation Algorithm (CPA) [15], and Weighted Mean of Vectors (INFO)

[16], etc. They have been widely used in various fields [17–21].

In addition, Li, etc. [22] proposes a novel PSO algorithm that converges on the global opti-

mal solution quickly and accurately for dynamic adjustment controller parameters. Zhao, etc.
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[23] proposes an MSCEWT (enhanced empirical wavelet transform) based on the maximum-

minimum length curve method to realize fault diagnosis of motor bearings. Ran, etc. [24] pro-

poses an improved K-means clustering algorithm based on a noise algorithm to capture urban

hotspots. Wu, etc. [25] proposes a hybrid optimization algorithm combining computational

intelligence techniques to solve the multifactor highway passenger volume prediction problem.

Liu, etc. [26] designed an MVDE (Mixed-Variable Differentiate Evolution) as the scheduling

algorithm to adapt to the new problem model. Zhou, etc. [27] proposes a self-adaptive differ-

ential evolution algorithm to assign jobs into batches without breaking the machine capacity

constraint and then sort the batches to minimize the makespan. Zhao, etc. [28] proposes an

SD-Jaya (self-learning discrete Jaya algorithm) to address the energy-efficient distributed no-

idle flow-shop scheduling problem (FSP) in a heterogeneous factory system. Zhao, etc. [29]

proposes a two-stage cooperative evolutionary algorithm with problem-specific knowledge

called TS-CEA to address energy-efficient scheduling of the no-wait flow-shop problem

(EENWFSP) with the criteria of minimizing both makespan and total energy consumption.

And, Zhao, etc. [30] proposes an ensemble discrete differential evolution (EDE) algorithm to

solve the blocking flow-shop scheduling problem. Based on the free lunch theorem [31], even

though these algorithms have achieved certain results on some problems, there are still some

shortcomings such as low solution accuracy, slow convergence speed, and easy falling into

local optimum for some other problems.

Mayfly Algorithm (MA) [32] was proposed as a new swarm intelligence optimization algo-

rithm in 2020. It combines the advantages of multiple classical optimization algorithms such

as PSO [4], genetic algorithm (GA) [33] and firefly algorithm (FA) [34]. MA and its variants

have been used in various industries, such as feature selection [35], Industrial optimization

[36], ensemble forecasting system [37], photovoltaic systems [38].

MA is inspired by the actual behavior of mayflies, i.e., the attraction of males to females. It

follows the principles of crossover, mutation and selection [39]. MA has better convergence

speed and convergence accuracy than other swarm intelligence optimization algorithms when

solving the optimization problems. Like other algorithms, it is also easy to fall into a local opti-

mum. Moreover, the search space will also increase exponentially due to the increase of the

dimension of problems, leading to failure to achieve the expected result when paying a lot of

time cost.

Therefore, in order to effectively help the MA to jump out of a local optimum, an improved

mayfly algorithm based on dynamic elite strategy (DESMA) is proposed. Specifically, in each

iteration, the best mayfly is first selected in current population, and then the dynamic elite

strategy is applied to it. In the proposed dynamic elite strategy, the search radius of the selected

one is dynamically adjusted based on whether to find a better solution. Also, a number of elite

mayflies are generated around the search radius. Finally, if the newly generated elite mayflies

are better than the best one among the current population, the best one is replaced with the

newly generated elite mayfly.

In summary, the novelty and main contributions of this article are summarized as follows:

1. In order to improve the performance of the basic MA, an improved mayfly algorithm based

on dynamic elite strategy (DESMA) is proposed in this work. In it, the search radius is

dynamically set, and a certain number of elite mayflies are generated within this range.

2. According to the elite selection strategy, the dynamic search range can effectively help jump

out of the local optimum, and the elite mayfly with the best fitness value is selected to

replace the current global mayfly when its fitness value is better than that of the global one.

It improves the global search ability of the algorithm, thereby helping the algorithm to

achieve a better result.
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3. In order to evaluate the performance of the proposed algorithm, 28 standard benchmark

test functions are selected for simulation [40–45]. The experimental results show that the

DESMA algorithm has better improvement in terms of solution accuracy and speed, It is

also significantly better than other comparison algorithms in terms of solution stability.

The remainder of this article is organized as follows. The basic MA is introduced in Section

II. The proposed algorithm is presented and discussed in Section III. Experimental results are

given in Section IV. Section V concludes this article.

2. Mayfly algorithm

MA is inspired by the social behavior of mayflies. Most adult male mayflies usually gather on

the water surface and attract female mayflies to complete reproduction through the unique

wedding dance between mayflies. At this time, male mayflies are affected by the population

and the position of themselves, and they can constantly approach the position of the optimal

solution. Among the progeny mayflies produced by mating, there will be very few mutation

mayflies, and they will continue to participate in the optimization with the parent mayflies.

After that, all individuals in the population will use the elite retention strategy to achieve a new

population for the next iteration.

The mayfly algorithm initially randomly generates two populations of mayflies, namely

male and female mayflies, and each mayfly in the two populations is randomly generated in

the search space. The position of the mayfly is represented by a D-dimensional vector xi = {x1,

x2, x3,. . .,xD}, and the speed is represented as Vi = {V1, V2, V3,. . .,VD}, In each iteration, the

mayfly will move towards the local best position (pbest) and the global best position (gbest).

2.1. Movement of male mayflies

Male mayflies gather together, and the male mayflies make corresponding position adjust-

ments according to their location and the location information of the population. Suppose xti
is the position of the i-th male mayfly xi at the generation t in the search space, and add the

velocity vtþ1
i to the current position to change its position, the formula is as follows:

xtþ1

i ¼ x
t
i þ v

tþ1

i ð1Þ

The Cartesian distance formula is:

kxi � Xik ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

j¼1
ðxij � XijÞ

2
q

ð2Þ

where xij represents the position of the mayfly i in the j dimension, and Xij represents the value

of pbest or gbest in the j dimension. In addition, male mayflies always attract female mayflies

through wedding dances on the water. Assuming that male mayflies cannot move quickly, the

formula for calculating the speed of male mayflies is:

vtþ1

ij ¼
g � vtij þ a1e

� br2p ðpbestij � xtijÞ þ a2e
� br2g ðgbestj � xtijÞ; if f ðgbestÞ > f ðxiÞ

g � vtij þ d � r; if f ðgbestÞ � f ðxiÞ
ð3Þ

(

where vtþ1
ij represents the speed of the i-th mayfly i at the generation t+1 in the j dimension, xti

represents the position of the mayfly xi at the generation t in the search space, a1 is the popula-

tion learning coefficient, a2 is the individual learning coefficient, β is the visibility coefficient, g
is the dynamic inertia weight, d is the dance coefficient; rp represents the Cartesian distance

between the current position and pbestij, rg represents the Cartesian distance between the cur-

rent position and gbestj; r is a random number following [−1,1].
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2.2. Movement of female mayflies

Unlike male mayflies, female mayflies do not gather together in groups, and female mayflies

will actively approach male mayflies with better fitness and reproduce. Suppose yti is the posi-

tion of the i-th female mayfly yi at the generation t in the search space, and add the velocity

vtþ1
i to the current position to change the position, the formula is as follows:

ytþ1

i ¼ y
t
i þ v

tþ1

i ð4Þ

In addition, the mutual attraction of male and female mayflies is a deterministic process. In

it, the optimal female mayflies will be attracted by the optimal male mayflies, the second-best

female mayflies will be attracted by the second-best male mayflies, and so on. If the fitness of

the male mayfly is poor, the corresponding female mayfly will randomly fly around. Then the

formula for calculating the speed of the female mayfly is:

vtþ1

ij ¼
g � vtij þ a2e

� br2mf ðxij � ytijÞ; if f ðyiÞ > f ðxiÞ

g � vtij þ fl � r; if f ðyiÞ � f ðxiÞ
ð5Þ

(

where rmf is the Cartesian distance between female and male mayflies, and fl is the random

flight coefficient between [−1,1].

2.3. Mayfly mating

In MA, male and female mayflies are selected for mating to produce offspring. The mating

result includes two offspring, and the formula is as follows:

offs1 ¼ L �maleþ ð1 � LÞ � female ð6Þ

offs2 ¼ L � femaleþ ð1 � LÞ �male ð7Þ

Where offs1 and offs2 are two offspring,male is a male mayfly, female is a female mayfly,

and L is a random number between [−1,1].

2.4. Gaussian variation

To deal with the precocious phenomenon, MA introduces Gaussian mutation aiming to jump

out of the local optimum. The progeny mayfly with the mutation will appear randomly in any

dimension. The formula is as follows:

offsn ¼ offsn þ sNnð0; 1Þ ð8Þ

where n is the dimension of the offspring mayfly, σ is the standard deviation of Gaussian varia-

tion, Nn(0,1) is the standard normal distribution with mean 0 and variance 1.

2.5. Dynamic inertia

To balance local and global search ability and find the global optimal solution as quickly as

possible, the MA algorithm introduces dynamic inertia weights. The formula is as follows:

g ¼ gmax �
gmax � gmin
itermax

� iter ð9Þ

where g is the inertia weight, gmax is the maximum inertia weight, gmin is the minimum inertia

weight, iter is the number of iterations, and itermax is the maximum number of iterations.
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2.6. Wedding dance factor and random flight factor

In order to find the global optimal solution faster and more accurately, the wedding dance

coefficient and random flight coefficient will increase the local search ability with the number

of iterations, thereby improving the convergence accuracy. The formula is as follows:

dt ¼ d1 � d1

t
; 0 < d1 < 1 ð10Þ

fl
t
¼ fl

1
� d2

t
; 0 < d2 < 1 ð11Þ

where dt and flt are the wedding dance coefficient and random flight coefficient at time t, and δ
is the attenuation parameter.

2.7. The frame of mayfly algorithm

To summarize the whole process of MA the pseudocode is added, the details are shown in

Algorithm 1 [32].
Algorithm 1 Mayfly algorithm
Input: xij, Xij
Output: Best location
1: While stopping criteria are not met
2: Update velocities and solutions of males and females
3: Evaluate solutions
4: Rand the mayflies
5: Mate the mayflies
6: Evaluate offspring
7: Separate offspring to male and female randomly
8: Replace the worst solutions with the best new ones
9: Update pbest and gbest
10: End

3. Mayfly algorithm for dynamic elite strategy

MA is a new type of swarm intelligence optimization algorithm, which is still in the initial

stage of research. From the content point of view, the algorithm process is simple and easy to

understand; from the operation effect point of view, the algorithm has faster convergence

speed and better convergence accuracy than other algorithms. Based on the social nature of

the mayfly population, MA classifies the mayfly population into male and female mayfly popu-

lations. When the individual population moves, the male mayfly acts as the movement condi-

tion of the female mayfly, while the male mayfly takes the global optimal position as the basis

for movement. In the search space, the positions of mayflies in the initial stage are randomly

distributed. In each iteration, the optimal male mayfly individual in the population will be

compared with the global optimal individual, and then a new global optimal solution will be

obtained. However, in the later stage of the algorithm, most of the optimal male mayfly indi-

viduals will be concentrated near the global optimal solution, thereby falling into the local opti-

mal solution.

In order to solve the above problems, this paper proposes an improved Mayfly Algorithm

Based on Dynamic Elite Strategy (DESMA), which starts from the global optimal solution and

performs a more accurate elite selection strategy near the global optimal solution. On the one

hand, the algorithm can jump out of the local optimum, improve the diversity of the popula-

tion, expand the search range, and possibly find a new global optimal solution that is better

than the optimal global one of the previous generation; on the other hand, in the case of ensur-

ing the integrity of the population, it not only improves the convergence speed, but also
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improves the convergence accuracy, and can find the optimal global solution more stably.

Next, it is introduced in detail.

3.1. Dynamic elite strategy

After each iteration, the DESMA will compare the current global optimal solution with the

global optimal one of the previous generations, and then determine a specific space and its

search range near the position of the new global optimal solution. If the fitness value of the cur-

rent optimal solution is better than that of the global optimal one in the previous generation,

the search range is expanded, and the global optimal solution is the current global optimal

solution; otherwise, the search range is narrowed, and the current global optimal solution is

still the global optimal solution of the previous generation. Based on the above analysis, for a

minimization problem, the fitness value of the current global optimal solution will always

remain less than or equal to the fitness value of the previous generation’s global optimal solu-

tion. When the mayfly finds the current global optimal solution position, it will determine the

search range of a specific space around the mayfly. The formula is as follows:

R ¼
R � c1; if f ðcgbestÞ < f ðlgbestÞ

R � c2; if f ðcgbestÞ � f ðlgbestÞ
ð12Þ

(

where R is the search range in a specific space, c1 is the enlargement factor, it is set to a constant

1.05, c2 is the reduction factor, it is set to a constant 0.95, cgbest is the current global optimal

position, and lgbest is the previous generation global optimal position.

It can be seen from Formula (12) that if this generation finds a better solution than the pre-

vious generation, it means that the current region has great potential, and thus the search

range is enlarged aiming to ensure that the region can be fully searched. On the contrary, if

this generation does not find a better solution, it means that the current area is poor, so the

search range is narrowed down so that a finer search can be done in a smaller range.

After determining the search range of a specific space and the position of the new global

optimal solution, a number in n-dimension is randomly generated to prepare for generating

the elite mayflies. The formula is as follows:

r1 ¼ 2 � randð1; nÞ � 1 ð13Þ

where r1 is a random number between [−1,1], and n is the dimension.

After that, a dynamic search is performed in a specific space to generate the positions of k
elite mayflies. The formula is as follows:

egbest ¼ cgbest þ r1 � R ð14Þ

Where egbest is the elite mayfly generated within the search range, cgbest is the current global

optimal solution; r1 is a random number between [−1,1]; R is the initially determined search

range.

In order to avoid exceeding the search range when searching for the elite mayfly, thereby

causing the wrong mayfly to affect the global optimal solution of the population, the upper and

lower bounds of the n-dimensional search space are set, and the formula is as follows:

egbest ¼ max ðegbest; LowerBoundÞ

egbest ¼ min ðegbest;UpperBoundÞ
ð15Þ

(

where LowerBound is the lower bound of the search space, and UpperBound is the upper

bound of the search space.
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Determining the position of the elite mayfly within the range of the new global optimal

solution, and replacing the position of the globally optimal solution obtained directly with the

position of the elite mayfly generated by the dynamic elite strategy. The modified speed for-

mula is as follows:

vtþ1

ij ¼
g � vtij þ a1e

� br2p ðpbestij � xtijÞ þ a2e
� br2g ðegbestj � xtijÞ; if f ðegbestÞ > f ðxiÞ

g � vtij þ d � r; if f ðegbestÞ � f ðxiÞ
ð16Þ

(

3.2. The process of DESMA

(1) The complete framework of DESMA is shown in Algorithm 2.
Algorithm 2 DESMA
Input: xij, Xij // Initialize parameters, the position and velocity of
male and female mayflies, calculate and find the current global opti-
mal solution position.
Output: Best location
1: Update the speed and position of male and female mayflies according
to Formulas (1) (2) (3) (4) (5).
2: Sort according to the current mayfly fitness value
3: Generate progeny mayflies according to Formulas (6), (7), and ran-
domly generate mutant offspring according to Gaussian mutation Formula
(8).
4: According to the fitness value of the population, sort the male and
female mayflies, and replace the inferior solution with the current
better solution.
5: Improve the local search ability and convergence accuracy according
to Formulas (10) and (11), and balance the global exploration ability
and local search ability according to Formula (9).
6: Determine the search range in a specific space according to Formula
(12), and then generate a random number between [–1, 1] by Formula
(13), find k elite mayflies, and determine the best elite mayflies.
7: In order to prevent the elite mayfly from exceeding the search
range when searching, the upper and lower bounds of the search are
determined according to Formulas (14) and (15).
8: Determine whether the maximum iteration is reached. If yes, go to
Step 11. If not, go to Step 3.
9: Bring the position of the elite mayfly into Formula (16), and out-
put the global optimal solution obtained by the elite mayfly.
10:End

(2) In order to more clearly express DESMA, which the flow chart is given in Fig 1.

3.3. Time complexity analysis

Usually, the time complexity of an algorithm is related to the specific operations such as addi-

tion, subtraction, multiplication, and division of the algorithm [46]. Assuming that the num-

ber of mayflies in the DESMA algorithm is N, the number of progeny mayflies isM, and the

number of elite mayflies is k, the time complexity is analyzed according to the execution steps

of the algorithm.

1. The number of executions for initializing various parameters is 1 time, so the time complex-

ity of step (1) is O(1).

2. The mayfly population needs to perform N operations for randomly initializing the initial

positions and velocities of male and female mayflies. Therefore, the time complexity of step

(2) is O(N+N).
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Fig 1. Flow chart of the DESMA.

https://doi.org/10.1371/journal.pone.0273155.g001
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3. Update the speed and position of the male and female mayflies, and the number of execu-

tions also requires N times each. Therefore, the time complexity of step (3) is O(N+N).

4. The number of executions sorted according to the current mayfly fitness value is 2Nlg2N,

therefore, the time complexity of step (4) is O(2Nlg2N).

5. According to the Gaussian mutation formula, the mutant offspring are randomly generated

and executedM/2 times. Therefore, the time complexity of step (5) is O(M/2).

6. Sort the male and female mayflies again, and replace the inferior solution with the current

better solution. The number of executions is 2Nlg2N Therefore, the time complexity of step

(6) is O(2Nlg2N).

7. Balancing the global exploration ability and the local search ability is performed for N
times, so the time complexity of step (7) is O(N).

8. According to the determined search range in a specific space, k elite mayflies are found, and

the number of executions is k times. Therefore, the time complexity of step (8) is O(k).

9. In order to prevent the elite mayfly from searching beyond the search range, the number of

executions is also k times. Therefore, the time complexity of step (9) is O(k).

10. The number of executions to determine whether the upper limit of iteration is reached is

N times, so the time complexity of step (10) is O(N).

11. The position of the elite mayfly is brought into the relevant formula, and the number of

executions is 1. Therefore, the time complexity of step (11) is O(1).

After the above steps, the time complexity of the DESMA algorithm after NC iterations is O
(NC×(6N+M/2+4Nlg2N+2k+2)).

4. Simulation experiment and analysis

4.1. Test function and parameter settings

To test the performance of the proposed DESMA, the 28 international standard Benchmark

test functions are selected in this work, which is listed in Table 1 [40], where Function type is

the function type, the Function number is the function sequence, Function name is the func-

tion name, Range is the value range, and Optimal value is the optimal value. According to its

properties, it can be divided into unimodal functions (f1~f5), multimodal functions (f6~f20),

and mixed functions (f21~f28). The experimental environment is Intel i7, RAM 8.0GB, Win-

dows10 operating system, MATLAB R2018a. In the experiment, each function is repeated 51

times, the dimension is set to 30, and the maximum number of evaluation times is 300,000. At

the same time, the average error and average ranking [47] are used as evaluation measures,

and the average error in this paper is represented by �e, and the formula as follows:

�e ¼
Pm

i¼1
jfiðxÞ � foðxÞj
m

ð17Þ

where fi(x) is the actual value calculated; fo(x) is the optimal value, andm is the number of

times each function runs. The average rank is represented by Rα with the following formula:

Ra ¼
Pr

j¼1
Raj

r
ð18Þ

where α is a hyperparameter or method; Raj is the role played in the experiment by the number
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k of elite mayflies generated when the j-th function is optimized, r is the total number of func-

tions participating in the experiment.

4.2. Sensitivity analysis of elite selection strategies

To evaluate the effect of setting parameters of DESMA on the convergence progress and speed.

This paper discusses and analyzes the generation number k of elite mayflies within the search

range in the elite mayfly selection strategy, and then determines the optimal number k of elite

mayflies. For a given value of k, if the average ranking obtained is the smallest, the value of k is

better than other values. In this section, the number k is set to 5, 10, 15, 20, and 25, respectively.

The q stands for rank in the same set of experiments. The results are presented in Table 2

when k takes different values.

From the simulation results in Table 2, it can be seen that when the number of elite mayflies

k = 5, the DESMA has a more accurate optimization ability in the unimodal function com-

pared with other k’s, while it has poor performance on the other functions, and thus the final

average ranking is the worst. When k = 15, the DESMA can find more optimal solutions on

some multimodal functions and mixed functions, but it has no outstanding performance on

unimodal functions. When k = 20 and k = 25, even though the DESMA can also find the

Table 1. Standard benchmark 28 test functions.

Function type Function number Function name Ranges Optimal value

Unimodal Function f1 Sphere function [–100,100] -1400

f2 Rotated high conditioned elliptic [–100,100] -1300

f3 Rotated bent cigar function [–100,100] -1200

f4 Rotated discus function [–100,100] -1100

f5 Different powers function [–100,100] -1000

Basic Multimodal Function f6 Rotated rosenbrock’s function [–100,100] -900

f7 Rotated schaffers F7 function [–100,100] -800

f8 Rotated Ackley’s function [–100,100] -700

f9 Rotated weierstrass function [–100,100] -600

f10 Rotated griewank’s function [–100,100] -500

f11 Rastrigin’s function [–100,100] -400

f12 Rotated rastrigin’s function [–100,100] -300

f13 Non-continuous rotated rastrigin’s function [–100,100] -200

f14 Schewefel’s function [–100,100] -100

f15 Rotated schewefel’s function [–100,100] 100

f16 Rotated kstsuura function [–100,100] 200

f17 Lunacek Bi_Rastrigin function [–100,100] 300

f18 Rotated lunacek Bi_Rastrigin function [–100,100] 400

f19 Expanded griewank’s plus Rosenbrock’s function [–100,100] 500

f20 Expanded scaffer’s F6 function [–100,100] 600

Composition Funtion f21 Composition function 1 (N = 5) [–100,100] 700

f22 Composition function 2 (N = 3) [–100,100] 800

f23 Composition function 3 (N = 3) [–100,100] 900

f24 Composition function 4 (N = 3) [–100,100] 1000

f25 Composition function 5 (N = 3) [–100,100] 1100

f26 Composition function 6 (N = 5) [–100,100] 1200

f27 Composition function 7 (N = 5) [–100,100] 1300

f28 Composition function 8 (N = 5) [–100,100] 1400

https://doi.org/10.1371/journal.pone.0273155.t001
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optimal solution on a few functions, the results on other functions are always poor. Compared

with the number of elite mayflies in other settings, the average ranking of k = 10 takes first

place, followed by k = 15 and 20. Therefore, when the number of elite mayflies is set to 10, the

DESMA has the best results and the strongest stability.

4.3. Algorithm-related parameter settings and algorithm comparison

analysis

In this section, the proposed algorithm is compared with the basic Mayfly Algorithm (MA),

the Harris Hawks Optimization Algorithm (HHO) [48], the Improved Symbiotic Search Algo-

rithm (ISOS) [49], and the Enhanced Fireworks Algorithm (EFWA) [50], Gradient-Based

Optimizer (GBO) [51], Grey Wolf Optimizer (GWO) [5] and Slime Mould Algorithm (SMA)

[11]. Each base test function was run 51 times independently, and the mean error and mean

execution time were recorded. Other parameters are set as follows: population size size = 50;

maximum inertia weight gmax = 0.9, minimum inertia weight gmin = 0.4; population learning

Table 2. Comparison of the results of different elite mayfly numbers.

Functions k = 5 k = 10 k = 15 k = 20 k = 25

�e=q �e=q �e=q �e=q �e=q
f1 0.00E+00/1 0.00E+00/1 0.00E+00/1 0.00E+00/1 0.00E+00/1

f2 5.29E+05/1 7.41E+05/2 9.22E+05/3 1.47E+06/4 1.51E+06/5

f3 6.23E+08/1 6.73E+08/2 6.99E+08/3 8.43E+08/4 1.20E+09/5

f4 6.02E+04/1 6.06E+04/2 7.25E+04/5 6.41E+04/3 7.21E+04/4

f5 0.00E+00/1 0.00E+00/1 0.00E+00/1 0.00E+00/1 0.00E+00/1

f6 2.51E+01/1 2.58E+01/2 3.67E+01/5 3.05E+01/3 3.33E+01/4

f7 1.33E+02/5 1.27E+02/2 1.21E+02/1 1.29E+02/3 1.32E+02/4

f8 2.10E+01/1 2.10E+01/1 2.10E+01/1 2.10E+01/1 2.10E+01/1

f9 2.99E+01/5 2.94E+01/2 2.90E+01/1 2.96E+01/3 2.97E+01/4

f10 1.71E-01/5 1.40E-01/3 1.31E-01/1 1.50E-01/4 1.36E-01/2

f11 2.43E-01/1 5.66E-01/5 4.29E-01/3 4.22E-01/2 5.07E-01/4

f12 1.68E+02/3 1.12E+02/1 1.83E+02/5 1.73E+02/4 1.60E+02/2

f13 2.30E+02/5 2.17E+02/2 2.19E+02/3 2.24E+02/4 2.10E+02/1

f14 9.16E+02/4 9.37E+02/5 9.12E+02/3 8.65E+02/1 9.06E+02/2

f15 4.46E+03/4 4.01E+03/2 4.47E+03/5 4.35E+03/3 3.99E+03/1

f16 1.67E+00/5 1.36E+00/4 9.29E-01/1 9.76E-01/3 9.65E-01/2

f17 3.36E+01/1 3.39E+01/2 3.45E+01/3 3.47E+01/4 3.54E+01/5

f18 1.66E+02/5 1.44E+02/4 1.32E+02/1 1.37E+02/3 1.36E+02/2

f19 3.26E+00/4 3.16E+00/3 3.70E+00/5 3.09E+00/2 3.03E+00/1

f20 1.32E+01/4 1.29E+01/1 1.32E+01/4 1.30E+01/2 1.31E+01/3

f21 2.98E+02/5 2.75E+02/1 2.97E+02/4 2.95E+02/3 2.89E+02/2

f22 6.99E+02/3 6.86E+02/2 6.78E+02/1 7.14E+02/4 7.84E+02/5

f23 4.95E+03/5 4.11E+03/1 4.64E+03/3 4.56E+03/2 4.68E+03/4

f24 2.86E+02/4 2.84E+02/3 2.86E+02/4 2.80E+02/1 2.81E+02/2

f25 2.97E+02/5 2.66E+02/1 2.91E+02/2 2.95E+02/4 2.92E+02/3

f26 3.14E+02/5 3.10E+02/4 3.01E+02/1 3.03E+02/2 3.04E+02/3

f27 1.09E+03/3 1.09E+03/3 1.07E+03/2 1.03E+03/1 1.07E+03/2

f28 5.23E+02/5 4.01E+02/1 4.75E+02/3 4.32E+02/2 5.01E+02/4

Rα 3.32 2.25 2.68 2.64 2.82

https://doi.org/10.1371/journal.pone.0273155.t002
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coefficient a1 = 1.0, mayfly individual learning coefficient a2 = 1.5, wedding dance coefficient

dt = 5, The attenuation coefficient of the wedding dance coefficient δ1 = 0.8, the random flight

coefficient flt = 1, and the attenuation coefficient of the random flight coefficient δ2 = 0.99. The

specific parameter settings of other algorithms are the same as the original literature [48–50],

and the experimental results are shown in Table 3.

The experimental results in Table 3 show that the proposed DESMA has achieved nine opti-

mal results, 16-second optimal results, and is better than its peers on most functions, and thus

it ranks 1st in terms of Ra. The original MA algorithm performs better on six functions. The

DESMA algorithm has more advantages than other algorithms in the mixed functions f21~f28,

and the convergence accuracy is higher, but the optimization ability of the unimodal function

f1~f5 is slightly inferior to the EFWA algorithm. In MA and ISOS algorithms, most of them

only achieve suboptimal results. According to the average ranking, the DESMA algorithm is in

the leading position, and the Rα value is far lower than other algorithms, which shows that the

Table 3. Algorithm test results.

Functions MA ISOS EFWA HHO GBO GWO SMA DESMA

�e=q �e=q �e=q �e=q �e=q �e=q �e=q �e=q
f1 0.00E+00/1 0.00E+00/1 7.82E-02/3 5.73E+00/4 0.00E+00/1 1.92E+03/5 8.31E-04/2 0.00E+00/1

f2 7.39E+05/3 3.45E+06/6 5.09E+05/2 9.59E+06/7 1.74E+05/1 2.13E+07/8 3.10E+06/5 7.41E+05/4

f3 1.41E+09/5 1.55E+09/6 2.52E+08/2 1.67E+09/7 2.46E+08/1 7.04E+09/8 5.84E+08/3 6.73E+08/4

f4 6.11E+04/7 3.61E+01/3 1.09E+00/1 7.09E+03/5 1.50E+01/2 314E+04/8 5.70E+01/4 6.06E+04/6

f5 0.00E+00/1 0.00E+00/1 7.85E-02/3 2.23E+00/4 0.00E+00/1 1.04E+03/5 7.54E-03/2 0.00E+00/1

f6 2.76E+01/4 4.73E+01/6 3.39E+01/5 6.36E+01/7 2.29E+01/1 1.54E+02/8 2.73E+01/3 2.58E+01/2

f7 1.32E+02/7 9.69E+01/2 1.28E+02/6 2.41E+03/8 1.22E+02/4 5.67E+01/1 1.02E+02/3 1.27E+02/5

f8 2.10E+01/2 2.10E+01/2 2.10E+01/2 2.09E+01/1 2.09E+01/1 2.09E+01/1 2.09E+01/1 2.10E+01/2

f9 2.97E+01/5 2.63E+01/3 3.19E+01/7 3.63E+01/8 3.06E+01/6 1.87E+01/1 2.16E+01/2 2.94E+01/4

f10 1.06E-01/2 6.84E-01/5 8.31E-01/6 5.87E+00/7 1.01E-01/1 3.93E+02/8 4.35E-01/4 1.40E-01/3

f11 1.56E-01/1 9.84E+01/4 4.26E+02/8 1.76E+02/7 1.29E+02/6 1.08E+02/5 1.02E+01/3 5.66E-01/2

f12 1.71E+02/5 1.69E+02/4 6.13E+02/8 5.72E+02/7 2.13E+02/6 1.38E+02/3 1.19E+02/2 1.12E+02/1

f13 2.41E+02/5 2.37E+02/4 4.48E+02/7 5.95E+02/8 2.65E+02/6 1.91E+02/1 2.04E+02/2 2.17E+02/3

f14 8.58E+02/1 1.34E+03/4 4.15E+03/8 2.87E+03/6 3.21E+03/7 2.74E+03/5 1.30E+03/3 9.37E+02/2

f15 4.81E+03/8 4.24E+03/5 4.40E+03/6 4.73E+03/7 4.23E+03/4 3.11E+03/1 4.02E+03/3 4.01E+03/2

f16 2.61E+00/8 1.49E+00/5 6.07E-01/1 1.71E+00/6 8.56E-01/3 2.47E+00/7 7.76E-01/2 1.36E+00/4

f17 3.37E+01/1 1.48E+02/4 3.15E+02/7 6.96E+02/8 1.65E+02/5 1.85E+02/6 5.07E+01/3 3.39E+01/2

f18 2.02E+02/5 1.98E+02/4 1.75E+02/3 7.28E+02/7 1.69E+02/2 2.68E+02/6 1.44E+02/1 1.44E+02/1

f19 2.95E+00/2 2.86E+01/6 1.09E+01/4 3.59E+01/7 1.26 E+01/5 2.30E+02/8 2.85E+00/1 3.16E+00/3

f20 1.30E+01/3 1.26E+01/1 1.46E+01/5 1.49E+01/6 1.31E+01/4 1.26E+01/1 1.50E+01/7 1.29E+01/2

f21 3.03E+02/2 3.38E+02/6 3.11E+02/3 3.68E+02/7 3.37E+02/5 1.08E+03/8 3.19E+02/4 2.75E+02/1

f22 6.99E+02/2 1.59E+03/4 5.46E+03/8 3.44E+03/7 3.04E+03/5 3.17E+03/6 1.27E+03/3 6.86E+02/1

f23 4.95E+03/5 5.25E+03/6 5.61E+03/7 6.61E+03/8 4.84E+03/4 4.25E+03/3 4.12E+03/2 4.11E+03/1

f24 2.85E+02/5 2.74E+02/3 3.29E+02/8 3.27E+02/7 2.95E+02/6 2.49E+02/1 2.68E+02/2 2.84E+02/4

f25 2.96E+02/4 2.91E+02/3 3.55E+02/7 3.39E+02/6 3.08E+02/5 2.75E+02/2 2.75E+02/2 2.66E+02/1

f26 3.35E+02/6 2.68E+02/2 3.54E+02/7 3.64E+02/8 2.00E+02/1 3.13E+02/5 2.82E+02/3 3.10E+02/4

f27 1.09E+03/3 9.51E+02/2 1.28E+03/5 1.37E+03/6 1.15E+03/4 9.51E+02/2 9.04E+02/1 1.09E+03/3

f28 4.50E+02/4 7.72E+02/5 4.76E+03/8 4.53E+03/7 1.27E+03/6 1.35E+02/1 3.00E+02/2 4.01E+02/3

Rα 3.82 3.82 5.25 6.54 3.68 4.43 2.68 2.57

t-test(+, =, -) 15/6/7 15/5/8 18/3/7 19/3/6 16/6/6 17/3/8 13/6/9 0/0/0

https://doi.org/10.1371/journal.pone.0273155.t003
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DESMA algorithm has the best effect and the strongest stability. To sum up, the proposed

DESMA algorithm has a positive effect. It not only helps the MA algorithm to jump out of the

local optimum but also greatly improves the convergence speed and convergence accuracy.

The results of the t-test (significance level 0.05) of 28 functions are presented at the bottom

of Table 3, in which "+" represents that an algorithm is better than the compared one, " = "

indicates they have no differences, and "-" indicates the otherwise. From the results, we can see

that our method outperforms the others significantly.

To verify the convergence speed and convergence accuracy of the DESMA algorithm, this

paper designs the average convergence curve of the algorithm, as shown in Fig 2. It can be seen

from Fig 2 that the eight algorithms have different evolutionary trends, and the DESMA algo-

rithm is stronger than other algorithms in terms of convergence accuracy. On the functions

f21, f22, and f28, the convergence speed of DESMA is slightly lower than that of EFWA, but its

convergence accuracy is slightly stronger than that of MA and far stronger than ISOS, EFWA,

HHO, GWO, GBO, and SMA. Moreover, on the functions f12, f18, f21, f22, f23, and f28, the

DESMA algorithm is in the first position in terms of both the convergence speed and conver-

gence accuracy. It is proved that adding a search radius near the global optimal solution in the

DESMA algorithm can effectively prevent the algorithm from falling into the local optimal

solution, find the global optimal solution more stably, and further improve the convergence

performance of the algorithm.

As can be seen from Fig 3, the ISOS and GWO algorithms have a shorter running time, fol-

lowed by EFWA, DESMA, MA, HHO, GBO, and SMA are the worse among them in terms of

running time. Although the DESMA algorithm isn’t the best among them, its optimization

ability is better than the compared algorithms, and thus it can be considered acceptable.

5. Conclusion

To avoid falling into the local optimum, improve the searchability and convergence accuracy

of MA. This work designs a dynamic elite strategy, thereby an improved MA is proposed. It

first determines a specific space near the best mayfly in the current population and set the

search radius dynamically. If the current global optimal solution is better than the previous

generation global optimal solution, the search range of the elite mayfly will be expanded, other-

wise, narrow the search range. Then, generating a certain number of elite mayflies within this

range, selecting the elite mayfly with the best fitness value to replace the best mayflies in the

current population if its fitness value is better than that of the current best one. This work con-

ducts simulation experiments on the performance of the DESMA algorithm from various

aspects and uses 28 benchmark test functions of benchmark to compare DESMA with MA,

ISOS, EFWA, and HHO algorithms. The experimental results show that DESMA achieves bet-

ter results on most functions, and the average ranking takes the place. At the same time, the

convergence speed and convergence accuracy of the DESMA algorithm is greatly improved

compared with its peers.

Even though the proposed algorithm has shown the superiority on 28 functions, it has the

following limitations: 1) the enlargement and reduction factors in the proposed algorithm are

set to fixed values, which cannot be adaptively adjusted for different functions during evolu-

tion; and 2) the proposed algorithm is not applied to real-world problems.

In the future, applying the proposed algorithm to optimize the real-world complex engi-

neering problems [52–54] has become the key research direction for the next step. At the same

time, the methods and related applications based on parameter adaptation are also key issues

to be considered [55–58].
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