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Abstract: Besides their function in primary hemostasis, platelets are critically involved in the physio-
logical steps leading to wound healing and tissue repair. For this purpose, platelets have a complex
set of receptors allowing the recognition, binding, and manipulation of extracellular structures and
the detection of pathogens and tissue damage. Intracellular vesicles contain a huge set of mediators
that can be released to the extracellular space to coordinate the action of platelets as other cell types
for tissue repair. Therapeutically, the most frequent use of platelets is the intravenous application of
platelet concentrates in case of thrombocytopenia or thrombocytopathy. However, there is increasing
evidence that the local application of platelet-rich concentrates and platelet-rich fibrin can improve
wound healing and tissue repair in various settings in medicine and dentistry. For the therapeutic use
of platelets in wound healing, several preparations are available in clinical practice. In the present
study we discuss the physiology and the cellular mechanisms of platelets in hemostasis and wound
repair, the methods used for the preparation of platelet-rich concentrates and platelet-rich fibrin, and
highlight some examples of the therapeutic use in medicine and dentistry.
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1. Introduction

In case of vascular injury, platelets detect the presence of subendothelial structures (ex-
tracellular matrix components) leading to the adhesion and aggregation of the anuclear cell
type and primary hemostasis [1,2]. Secondary, platelets induce the activation of plasmatic
coagulation and hemostasis. For the description of these complex temporal and spatial
sequence of events occurring on the platelets’ surface, the cell-based coagulation model was
developed [3]. Subsequent to clot formation, a further important mechanism of platelets
takes place: activated GPIIb/IIIa receptors located on filopodia bind to fibrin, resulting in
outside-in signaling of platelets and the activation of the contractile apparatus [4–7]. As a
result, the platelets’ filopodia pull at the fibrin fibers to retract the clot [8]. Interestingly, the
volume is reduced by the platelets action to at least 50% of volume and is inhibited when
the red blood cells are tightly packed [9]. The huge effect of clot retraction has important
physiological consequences: the size of the wound is retracted, the firmness of the clot is
increased, densely packed polyhedral red blood cells form an impermeable membrane, and
ischemia due to thrombosis of a vessel can be resolved by reperfusion [9–11]. In addition
to their function in hemostasis, the clot consisting of platelets, leukocytes, fibrinogen, and
erythrocytes coordinates inflammation and wound healing [12,13]. Inflammation is an
important consequence of hemostasis, as injury can potentially be accompanied by the
entry of pathogens. Besides leukocytes, platelets are an important and early step in the im-
mune response to danger and infection and constitute an important cell type of both innate
and adaptive immunity [2,14]. Platelets can detect pathogens and danger via pathogen
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recognition receptors, bind bacteria and viruses, induce the release of bactericidal NETs
from neutrophils, and release platelet microbial proteins when stimulated with throm-
bin or lipopolysaccharides [14,15]. A further step initiated by platelets is wound repair,
propagated by the release of various growth factors from alpha-granules attracting several
different cell types necessary for wound healing. In the following, we will highlight the
different functions of platelets, from vascular injury to wound healing, and will discuss the
involvement in a platelet-centered approach. Moreover, we will discuss the preparation
technique and the current use of platelet-rich plasma for local therapies in humans.

2. Platelet Physiology

Platelets are small anuclear cells with a short half-life of 10 days derived from
megakaryocytes [16]. Platelets have a uniform discoid shape, a complex intracellular
structure with a cytoskeleton maintained by dynamic action, can synthesize proteins, are
capable of dividing, and can respond to various stimuli with shape change, adhesion,
aggregation as well as exposure of phosphatidylserine on the surface to induce clot forma-
tion and hemostasis [17–19]. For a long time, the importance of these cells in hemostasis
was acknowledged and platelet concentrates are nowadays a valuable treatment option in
bleeding patients with thrombocytopenia or thrombocytopathy [20]. Besides this function,
the involvement in wound healing and immune system function has been recognized.
Thus, platelets have been demonstrated to affect inflammation, thrombosis, atherosclerosis,
and metastasis [2,21,22].

For their diverse functions, platelets are equipped with multiple receptors to recognize
their environment [23]. Physiological answers are achieved by inside-out signaling, leading
to the important activation of the GPIIb/IIIa receptor (αIIbβ3) and to changes of the
cytoskeleton, as well as the release of hundreds of mediators stored in intracellular granules.
Moreover, platelets can communicate with other cells via extracellular vesicles (EV) and
90% of blood stream vesicles, which were named platelet dust in earlier times, derive from
this cell type [24].

2.1. Platelet Granules and Mediators

Platelet mediators are released in alpha-granules, delta-granules (dense bodies), and
lambda granules [8,25–27].

Alpha granules are described to release more than 300 proteins responsible for co-
agulation, anticoagulation, and fibrinolysis as well as being involved in inflammation,
immunity, cell adhesion, and growth [14]. Among the mediators involved in coagulation
are the factors V, XIII, and IX, fibrinogen, and the von Willebrand factor. Anticoagulant
proteins include antithrombin, protein S, and tissue factor pathway inhibitors. Moreover,
plasminogen and plasminogen activator inhibitor, proteins involved in fibrinolysis, can be
released. Mediators involved in the recruitment of immune cells are the chemokines CXCL1,
epithelial neutrophil activating peptide-78, platelet factor 4, monocyte chemoattractant
protein-1, macrophage inflammatory protein 1 alpha, thymus- and activation-regulated
chemokine (TARC), and regulated on activation, normal T cell expressed and secreted
(RANTES = CCL5), as well as integral membrane proteins GPIIb/IIIa, GPIbalpha-IX-V,
GPVI, TLT-1, and P-selectin. Moreover, many growth factors including platelet derived
growth factor (PDGF), connective tissue growth factor (CTGF), stromal-derived factor-
1 alpha, vascular endothelial growth factor (VEGF), tumor growth factors (TGFalpha,
TGFbeta), and the fibroblast growth factor FGF-1, as well as the microbicidal proteins
thymosin-beta4 and thrombocidin 1 and 2 can be released.

In contrast to alpha-granules, both the content and the function of delta-granules
(dense bodies) are far less diverse, and the bioactive amines (serotonin, histamine), nu-
cleotides, and poly- and pyrophosphates are all involved in clot formation and coagulation.

Lambda-granules are comparable to lysozymes in other cell type, are responsible
for the degradation of proteins, lipids, and carbohydrates, and are thus involved in the
removal of cell debris [28].
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2.2. Extracellular Vesicles

An interesting new area of research are platelet derived extracellular vesicles. They are
classified in micro-vesicles (100–1000 nm) and exosomes (30–100 nm), which are generated
by different mechanisms (fusion of multi-vesicular bodies vs. budding from plasma
membrane) and can be differentiated by cell surface markers [29]. They contain proteins,
lipids, metabolites, miRNA, and nucleic acids and are involved in cell crosstalk and are thus
involved in coagulation, inflammation, immunoregulation, and angiogenesis. Moreover,
EVs have important functions in tissue repair and may exert the beneficial effects of platelet-
rich plasma used in humans. In this regard, this beneficial effect can be “highjacked” by
cancer cells for development and progression.

3. Platelets in Hemostasis

Hemostasis can be divided into three stages. Initially, vasoconstriction occurs at
the side of vessel injury. Thereafter, a platelet plug is formed at the place of injury, a
phenomenon called primary hemostasis. Secondary hemostasis leads to activation of
coagulation system and the typical thrombus formation.

Under physiological conditions, resting platelets circulate in the blood stream to
detect disturbances of vascular integrity. In case of vascular injury, platelets bind to von
Willebrand factor via the glycoprotein GP Ibalpha of the GPIb-IX-V complex and GPVI. In
turn, these events activate platelets GPIIb/IIIa, inducing aggregation and stable binding
of platelets to the injury via fibrin and von Willebrand factor [1,4,30]. Moreover, platelet
activation leads to the release of granules with pro-aggregatory and pro-coagulatory
content, and tissue factor exposition on extravascular cells initiates further activation of
platelets.

3.1. The Classical View on the Coagulation System

In an initial attempt to understand the cooperative function of coagulation factors
leading to hemostasis, the coagulation factors were initially described as an enzyme cascade
leading to the generation of fibrin and hemostasis [31,32]. The coagulation factors were
grouped in an intrinsic and an extrinsic pathway, which converged to the common pathway.
The details are shown in Figure 1. While this classical model is very suitable to classify the
effects of drugs and coagulation defects, it does not reflect the in vivo conditions and the
important contribution of platelets.Biomedicines 2021, 9, 869 4 of 13 
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3.2. The Cell-Based Coagulation Model

To describe the concerted action of coagulation factors and platelets more exactly, the
cell-based coagulation model has been proposed [3] which is shown in Figure 2. Under
physiological circumstances, coagulation factors are restricted to the vascular space by the
endothelium and have no contact to extravascular cells commonly expressing tissue factor
on their surface. Vascular injury leads to the exposition of tissue factor bearing cells to the
coagulation factors. Factor VII binds to tissue factor, is activated, and in turn activates the
coagulation cascade. The minute amounts of thrombin are capable in activating platelets in
the amplification phase. In the third step, the propagation phase, large amounts of thrombin
are generated on the surface of the activated platelets sufficient to form a fibrin clot.
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platelets in hemostasis.

The cell-based coagulation system is a simplification which does not include the
function of red blood cells in hemostasis [12]. Red blood cells improve hemostasis through
an increase of blood viscosity, cause the margination of platelets in the blood stream, can
adhere to the endothelium, and can thus favor thrombotic events under certain pathological
conditions (e.g., diabetes). Moreover, red blood cells are involved in NO-metabolism, can
release thromboxane A2 and ADP, and thus affect platelet aggregation and adhesion.
Hemolysis of red blood cells and release of hemoglobin, generating ROS, can further
activate coagulation and platelet activation. In addition to red blood cells, leukocytes have
been shown to be involved in coagulation, thrombosis, and tissue damage [33].

3.3. Control of Hemostasis

There are several important pathways controlling coagulation. Thrombin, built during
coagulation at the side of vascular injury, binds to endothelial thrombomodulin. The
complex activates protein C which, in turn, inactivates the activated coagulation factors
V an VIII:C. Protein S, which is the cofactor of protein C, assists the downregulation of
coagulation [34]. Antithrombin is the most important circulating inhibitor of coagulation
and binds and inactivates thrombin as well as several coagulation factors [35].
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In case of clot formation, tissue plasminogen activator is released at the site of injury
and converts plasminogen to plasmin [36]. Plasmin, in turn, degrades fibrin to fibrin
degradation products. The activity of the fibrinolytic system is modulated by plasmino-
gen activator inhibitor I and II, plasmin inhibitor, and thrombin-activatable fibrinolysis
inhibitor.

4. Platelets in Clot Retraction

Subsequent to the formation of fibrin fibers, GPIIb/IIIA receptors located on the
filopodiae of the activated platelets bind to fibrin fibers and induce via outside-in signaling
the activation of the contractile apparatus [9–11]. As a result, platelets pull at the fibrin
fibers and lead to the contraction of the clot. Clot retraction is limited when red blood cells
are compacted [37]. While the cellular mechanisms of signal-transduction and the con-
tractile mechanisms have been investigated in detail, only sparse information in humans
is available. It is generally accepted that clot retraction is an important mechanism to (i)
improve wound healing and to (ii) enable the reperfusion of a vessel in case of thrombo-
sis [38]. Moreover, thrombasthenia Glanzmann-Naegeli and Bernhard-Soulier syndrome
are characterized by a bleeding phenotype associated with disturbed clot retraction and de-
fective GPIIb/IIIa receptors [8]. Only few information of altered clot retraction in acquired
diseases is available: increased clot retraction has been demonstrated in coronary heart
disease, while a decrease was shown in uremic patients [39,40].

5. Platelets in Immunology and Wound Healing

Wound healing starts with hemostasis, the formation of a fibrin scaffold, and an
inflammatory response as a first line of defense with a recruitment of neutrophils and
monocytes. Platelets are involved in both the innate immune system and adaptive im-
munity responses [41]. For this purpose, platelets are equipped with several pattern
recognition receptors such as Toll-like receptors and C-type lectin receptors, which can de-
tect pathogen associated molecular patterns and danger associated molecular patterns [42].
TLR4-induced activation of platelets results in the release of proinflammatory mediators,
the recruitment of leukocytes, and aggregates of platelets with leukocytes or monocytes [15].
Leukocytes, in turn, release cytokines and chemokines to modulate inflammation. More-
over, neutrophils can release reactive oxygen species as well as their nuclear content to
form neutrophil extracellular traps (NETs) to fight pathogens [43].

Besides their function in innate immunity, platelet CD40-ligand, expressed upon
activation, can bind to many immune cell types, including B-cells, T-cells, and endothelial
cells via their CD40-receptors [44]. In this way, platelets can modulate the release of
cytokine and immunoglobulin production.

Subsequent to this initial phase necessary to eliminate pathogens, angiogenesis occurs,
which includes endothelial cell proliferation, migration, and branching of vessels [45].
Moreover, pericytes as well as all other cell types of the perivascular space proliferate. In
addition, circulating progenitor cells from the bone marrow support new vessel formation.
During the development of blood vessels, fibroblasts proliferate and invade into the clot
and shift the cellular environment from the inflammatory to a growth state. Differentiation
of some fibroblasts to myofibroblasts leads to a further retraction of the wound and finally
to scar formation, in parallel to re-epithelialization. Platelets have been involved in the
whole process of healing via the release of multiple growth factors in their secretome [46].
Increased platelet concentration using platelet-rich plasma in the wound has regularly
improved wound healing in several animal models and is FDA approved. However, throm-
bocytopenia in a mouse model did not affect wound healing as judged by angiogenesis,
collagen synthesis, and re-epithelialization [47].

6. Preparation of Platelet-Rich Plasma and Platelet-Rich Fibrin

The rational for the use of blood based local therapy relies on the finding that a blood
clot improves wound healing by the release of growth factors, chemokines, and antibiotic
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agents from platelets [14,48]. An increase of platelet count in the wound was shown to
enhance wound healing in an experimental setting. While platelets are shown to be an
important source of mediators, there is ample evidence that the other constituents of blood,
including leukocytes and fibrin, can also contribute to wound healing. Leukocytes are
important for local defense and are capable in releasing growth factors (similar to platelets).
However, the eventual harms due to their inflammatory action is an object of the debate.
Moreover, the fibrin mesh serves as a scaffold for immune cells, fibrocytes, and stem cells.
Different preparation methods of platelet concentrates are shown in Figure 3.
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6.1. Platelet Rich Plasma

In 1997, autologous platelet-rich plasma was first used in oral and maxillofacial
surgery [49]. For the preparation, anticoagulated whole blood is centrifuged to separate
red blood cells from platelets [27]. Red blood cells sediment at the bottom of the vial and
plasma is located at the top. Between red blood cells and plasma there is a small layer
called the buffy coat containing leukocytes and platelets. Depending on the conditions of
centrifugation, the plasma contains a variable number of platelets. The plasma containing
platelets is collected, sedimented in a second centrifugation step, and reconstituted in a
defined amount of plasma. Thereafter, coagulation is initiated by the addition of Ca++ or
thrombin [50,51]. The aim of the centrifugation steps is the enrichment of platelets (as well
as leukocytes) to enhance the therapeutic effect. Typically, an enrichment of platelets from
150 × 109–350 × 109/L in whole blood to about 1000 × 109/L in platelet-rich plasma are
judged to be advantageous [50]. Meanwhile, more than 40 different procedures for the
preparation of platelet-rich plasma are described [50].
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6.2. Platelet Rich Fibrin

In 2006, Choukroun et al. described the use of another platelet preparation obtained in
a single centrifugation step and called it platelet-rich fibrin [52–56]. The procedure includes
a single centrifugation (400× g; 12 min) of whole blood without anticoagulation in a glass
vial. After a single centrifugation step, the red blood sediment is separated from a clot
formed during centrifugation containing enriched platelets, as well as leukocytes at the
border line. The simpler handling with only one centrifugation step and without the need
of thrombin addition is the important advantage of this method. Indeed, this method is
widely used in clinical medicine. Meanwhile, several different centrifugation protocols
are available, which show different enrichment in platelet and leukocyte count as recently
reviewed [48]. For the preparation enriched in platelets, centrifugation of whole blood
samples is used. In order to increase or delay coagulation and thus the formation of the
fibrin mesh, centrifugation is performed in either glass or plastic tubes. Centrifugation with
60–1200× g for 3 to 15 min leads to a separation of cell types due to the different physical
properties [57]. Red blood cells are sedimented at the bottom of the vial. Located above
the red blood cell sediment, there is a small layer named the buffy coat which consists
of platelets and leukocytes. On top of the buffy coat, the plasma is located. Depending
on the centrifugation conditions, platelet concentration of plasma varies. The harsher the
centrifugation conditions, the more platelets will sediment in the buffy coat. According to
the different protocols, leukocyte-poor platelet-rich fibrin, leukocyte-rich fibrin, and liquid
platelet rich fibrin can be differentiated [48,58].

6.3. Platelet Lysates

A third method claimed platelet lysate has recently been developed [59]. For this
platelet product, platelet-rich plasma is treated by either freeze thaw cycles or sonication.
The resulting platelet lysates can be stored frozen for an extended time. While the use
in clinical medicine is relatively new, the preparation is often used as a source of growth
factors in cell cultures.

6.4. Platelet Extracellular Vesicles

In the future, a fourth method for the use of platelet in clinical medicine might derive
on the finding that activation of platelets leads to the mass release of extracellular vesicles,
which could serve as the source of growth factors in local therapies [60]. Two types
of extracellular vesicles can be differentiated: exosomes (30–100 nm) and microvesicles
(100–1000 nm) [61]. There is no information available on the advantages and disadvantages
of each preparation regimen in human use. However, different compositions have been
demonstrated and may lead to different characteristics.

7. Therapeutic Use of Platelet Rich Concentrates in Human Diseases

Countless in vivo and in vitro studies exist on the clinical use of platelet concentrates in
medicine, and there are more than three hundred reviews and meta-analyses on the clinical
use in different settings. It is therefore beyond the scope and the possibilities of a single
review to give in-depth information on the use of all subspecialities. According to most
reviews and meta-analyses, the level of evidence is somewhat limited by the fact that small
studies with few patients and a high risk of bias dominate the literature. Moreover, the use
of many different platelet rich concentrates complicates the interpretation and comparison
of the results, and the need for studies with standardized platelet-rich concentrates has
been emphasized [62]. In this regard, the evidence for the use of other commonly used
blood products, including red blood cell concentrates, platelet concentrates, fresh frozen
plasma, and factor concentrates, is often limited in different settings and reflects that
research is most often investigator-initiated studies with limited financial support. Thus,
further well-designed prospective studies may be valuable to better judge the advantages
and disadvantages of platelet concentrate based therapies and to find the best platelet
preparation. However, despite these limitations, there seems to be sufficient evidence in
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the literature for the use of platelet-rich plasma and platelet-rich fibrin in many clinical
settings.

Platelet-Rich Concentrates in Medicine and Dentistry

Platelet concentrates are applied in many medical subdisciplines including sports
medicine, plastic surgery, dermatology, otolaryngology, gynecology, urology, and diabetol-
ogy, among others. Moreover, platelet-rich concentrates are widely used in dentistry and
oral and maxillofacial surgery [63–65].

The use of platelet-rich concentrates in wound healing is well established [66,67].
Platelet-rich fibrin and platelet-rich plasma are used in chronic diabetic wounds as an
efficient, economical, and simple adjuvant method to support tissue regeneration [68,69].
It can also be injected to treat scars such as acne or striae distensae [70,71]. Moreover,
platelet-rich concentrates are increasingly used in androgenetic alopecia [72,73] as well as
skin rejuvenation and skin augmentation [66,74].

Another area is the use in chronic, mostly degenerative pain conditions. In knee
arthrosis, degenerative disc disease (intradiscal treatment), facet pathologies (intrafacial
injection), and sacroiliitis, reduced pain scores and increased functionality were observed
after platelet-rich plasma therapy [75]. Improvement can also be observed in severe
temporomandibular joint disorders through platelet-rich fibrin injection after arthrocentesis
into the upper join space or with adjuvant platelet-rich plasma insertion during arthroscopy
procedures or arthrocentesis [76,77].

In dentistry, the application of platelet preparation is widely used for bone repair, a
significantly faster healing of bony defects was determined radiologically after adjunctive
use of platelet-rich fibrin [78].

Wide ranges of possible applications are also known in the treatment of periodonti-
tis [65]. Bone defects can be filled with previously platelet-rich fibrin-inoculated substitutes,
which leads to a significant reduction in probing depths [63,79,80]. In addition, the ap-
plication of a platelet-rich fibrin membrane can prevent the ingrowth of epithelial cells
into the treated bony defect and can promote the ingrowth of osteogenic and angiogenic
cells [81,82]. The use of platelet-rich fibrin in the surgical treatment of Class II furcation
appears to improve periodontal regeneration. In combination with bone graft substitutes,
vertical clinical attachment loss was significantly reduced [83]. Moreover, improved regen-
eration of the periodontal attachment has been demonstrated [63,64,67]. Platelet-rich fibrin
membranes are also considered a promising alternative for covering recessions; compared
to subepithelial connective tissue grafts—the gold standard—no significant difference in
gingival recessions, clinical attachment level, and probing depths were observed [63,84].
Thus, the results of the study indicate that the use of invasive procedures and the necessity
of a graft can be avoided by platelet-rich fibrin.

Another application of platelet concentrates is the use in vitality-preserving endodon-
tics. A positive influence of platelet-rich fibrin and platelet-rich plasma preparations on
healing after vital amputation was observed. However, platelet-rich plasma seems to
lead to less coronal discoloration. The combined use of platelet-rich plasma and mineral
trioxide aggregate (MTA) showed a better prognosis compared to the use of MTA alone for
apexogenesis [85,86]. Similarly, positive effects were observed with the use of platelet-rich
plasma or platelet-rich fibrin compared to the most used therapeutic method of blood clot
revascularization, for the regeneration of immature permanent teeth [87].

8. Conclusions

Platelet-rich plasma and platelet-rich fibrin are used as a source of various mediators,
which favor hemostasis, wound healing, and tissue repair. The effects can be explained by
the application of supernormal concentrations of various platelet-derived mediators, in-
cluding many growth factors, chemokines, hemostatic and antibiotic peptides, as well as the
fibrin mesh serving as a scaffold for repair. While there is much evidence that the platelet-
concentrates are effective in many clinical settings, the advantages and disadvantages of
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different preparations are not known. Furthermore, there is a lack of standardization in
respect to platelet count, leukocyte count, and fibrinogen.
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