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Abstract: A low-cost air quality station has been developed for real-time monitoring of main
atmospheric pollutants. Sensors for CO, CO2, NO2, O3, VOC, PM2.5 and PM10 were integrated
on an Arduino Shield compatible board. As concerns PM2.5 and PM10 sensors, the station underwent
a laboratory calibration and later a field validation. Laboratory calibration has been carried out at
the headquarters of CNR-IBIMET in Florence (Italy) against a TSI DustTrak reference instrument.
A MATLAB procedure, implementing advanced mathematical techniques to detect possible complex
non-linear relationships between sensor signals and reference data, has been developed and
implemented to accomplish the laboratory calibration. Field validation has been performed across
a full “heating season” (1 November 2016 to 15 April 2017) by co-locating the station at a road
site in Florence where an official fixed air quality station was in operation. Both calibration and
validation processes returned fine scores, in most cases better than those achieved for similar systems
in the literature. During field validation, in particular, for PM2.5 and PM10 mean biases of 0.036 and
0.598 µg/m3, RMSE of 4.056 and 6.084 µg/m3, and R2 of 0.909 and 0.957 were achieved, respectively.
Robustness of the developed station, seamless deployed through a five and a half month outdoor
campaign without registering sensor failures or drifts, is a further key point.

Keywords: air quality monitoring; low-cost sensors; next generation networks; laboratory calibration;
field validation; PM2.5; PM10

1. Introduction

Air quality has a huge impact on the quality of life, and long-term exposure to polluted air
can result in permanent health issues [1]. A number of epidemiological studies have clearly linked
atmospheric pollutants to asthma, bronchitis, heart attacks and strokes [2–4]. For these reasons, air
quality monitoring is required by national air quality regulations, such as the European Directive
2008/50/EC [5]. The equipment necessary to meet the standards established by these regulations on air
quality monitoring has a high cost of procurement and maintenance [1]. Monitoring of air pollutants is
primarily performed using analytical instruments, such as optical and chemical analysers [6]. Usually,
air pollutant analysers are complicated, bulky and expensive, with each instrument costing anywhere
from about 6000 to tens of thousands euros, together with a significant amount of resources required
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to routinely maintain and calibrate them [7,8]. Setting up and managing networks of fixed air quality
stations also require significant investment [6]. Spread sparsely around or within a particular city,
these stations can provide detailed and highly accurate measurements [8], but at limited point-based
locations. This makes it difficult to compile representative and reliable information for a whole urban
area, and thereby, to form a clearer picture of pollution field trends [6].

Alternatives to existing high-cost sparse fixed monitoring stations have been discussed and
investigated previously by several groups (e.g., [9,10]). Recently, there has been an emerging trend
of using the next generation air sensors to provide highly resolved air quality data as an alternative
or integrative monitoring option. Miniaturization and other technological advances have brought
to market a number of low-cost (<€2000) sensors designed to measure atmospheric particles and
gases [11–13], including for example: CO [14–16], NO2 [15–18], O3 [1,15–17,19,20], VOC [21,22],
PM2.5 [16,22–27], PM10 [1,25], and black carbon [28]. Due to their low cost, small size and low power
consumption, the new technologies are very appealing in situations where traditional monitors are
impractical [6,29]. Aside from supplying a more widespread network able to effectively capture the
spatio-temporal variability of air pollution, the deployment of low-cost sensors in significant numbers
can also assist in detecting pollution hotspots, assessing real-time exposure for designing mitigation
strategies, and creating pollutant emission inventories once local atmospheric conditions and sources
(e.g., cars) operational conditions are known [6]. In any case, these low-cost devices are not meant to
replace official air control systems, but to integrate them [11,30]. The 2008/50/EC EU Directive [5],
currently in force in Europe, has in fact introduced the concept of “indicative measurements”, intended
as measurements which shall meet data quality objectives less strict than those required for fixed
measurements. To provide adequate information on air quality spatial distribution, particularly within
zones or agglomerations where upper pollution thresholds are exceeded, this directive states that
indicative measurements may be used for supplementing air pollution levels measured by fixed
monitoring stations. The legislative importance of indicative measurements is therefore to be stressed,
as “the results of [ . . . ] indicative measurement shall be taken into account for the assessment of air
quality with respect to the limit values” [5,7].

Nevertheless, some drawbacks of low-cost sensors should be borne in mind. These include, aside
from lower sensing accuracy than traditional monitoring stations [11]: (i) sensitivity to environmental
factors like temperature, humidity, and pressure; (ii) degradation of sensing accuracy with age;
(iii) sensor drifts, requiring frequent recalibration; (iv) slowness to respond to changes in pollutant
levels, causing pollutant bursts encountered in mobile deployments to be underestimated.

To pursue the goal of providing air quality indicative measurements, a low-cost air quality
station—named “AIRQino”—has been developed for real-time monitoring of main (both gaseous
and particulate) atmospheric pollutants. The station has been undergone to a laboratory calibration,
and later to a field validation. At this first stage, both calibration and validation processes were
applied to PM2.5 and PM10 sensors. The laboratory calibration has been carried out at the headquarters
of the CNR-IBIMET institute in Florence (Italy) against a TSI DustTrak reference instrument. Field
validation has been performed across a full “heating season” (1 November 2016 to 15 April 2017),
when an extensive use of domestic heating, along with unfavourable weather conditions, leads to
increased pollution levels. AIRQino has been co-located at a road site in Florence where an official
fixed air quality station—employing a gravimetric sampling method—was operated by the Tuscany
Region Environmental Protection Agency (ARPAT). The differences marked by AIRQino with respect
to most of similar existing low-cost sensor platforms include, for example, finer scores achieved in
both calibration and validation processes, as well as system’s robustness, as it was deployed through
a five and a half month outdoor campaign without registering sensor failures or drifts. The novelty
brought by this work mainly includes: (i) a remarkable accuracy of the mere factory-calibrated
PM2.5 and PM10 sensors integrated in the system; (ii) fine and reliable results achieved during both
calibration and validation processes; (iii) development of a calibration procedure implementing
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advanced mathematical techniques to detect possible complex non-linear relationships between sensor
signals and reference data.

2. System Development

2.1. System Hardware

AIRQino (Figure 1) is a complete air quality sensors board equipped with a set of industrial
integrated sensors [31]. The board is Arduino Shield compatible, integrated with low-cost and
high-resolution sensors, designed to monitoring environmental parameters and atmospheric pollutants,
namely: air temperature, relative humidity, CO, CO2, NO2, O3, VOC, PM2.5, PM10 (Figure 2). The air
sampling system has been designed to meet two basic requirements: low-cost, and minimal interference
with reactive gases. The air flow enters through two IP 33 ventilation devices (mod. 3540631, Fibox Inc.,
Glen Burnie, MD, USA) and is guaranteed by a MC20080V1 brushless fan (Sunon Inc., Brea, CA, USA)
with a nominal flow-rate of 2.7 m3/h. The sensors, installed near the air inlet, are exposed to a high
air flow-rate that guarantees a low contamination of the reactive gases (NO2 and O3). The particulate
matter is aspirated through a stainless steel sampling line (8 mm internal diameter pipe) designed and
tested to minimize the dimensional size of the sampled particles.

The board integrates a microprocessor unit that acquires all signals from the sensors and analyses
them. Through the General Packet Radio Service (GPRS) technology, geolocated data collected from
the sensors are transmitted to a webserver connected to the applications, allowing visualization of
real-time observations on a web browser.

A spatial data infrastructure has been implemented, which is composed of a central Geo Database
for data storage and management, a GIS engine, and a web interface. Through common web or mobile
browsers, all collected data are real-time visualized in table or chart format, or tracks and spot values
on a Google mashup [31].

The application scenario of the system is for continuous operation for at least 1 year without
maintenance. Replacement of the sensors board—removable from the AIRQino board—is scheduled
every 2 years. The system is equipped with a watchdog module for automatic reset of the CPU at
scheduled intervals.

The AIRQino board can work as an Arduino shield that can access data through the PD2 (TX) and
PD3 (RX) ports and provide the 5 V power supply. It can also be used in stand-alone mode using a USB
interface able to data communication and 5 V power supply. The average power consumption of the
board, with all sensors mounted, is about 230 mA@5 V, with peaks of about 450 mA. In stand-by mode
(5 V sensors not powered), the absorption is about 65 mA@5 V. The PM sensor requires an additional
average 90 mA, with peaks of 1.5 A. With special interface boards, the board can also be connected in
Bluetooth or Wi-Fi modes.

The system is provided with an internal DC-DC converter unit that accepts a wide range of
voltage input, from 10 V to 30 V DC. Power consumption is 200 mA@12 V DC, about 2.5 W. The system
is relatively small in size (28 cm × 24 cm × 20 cm) and light in weight (1.5 kg), with a total cost
of €1000.

Power management has been carefully studied and designed to obtain the best system’s
performance and reliability [32]. One of power system main features is the wide range of input
voltages accepted. The system is equipped with a low-cost DC-DC unit, the CPT-C5, a power converter
module output 5 V, input 12/24 V, low heat, and adopts a synchronous rectification technology (i.e., 5 A
long-term without any additional cooling measures). The system—particularly the AIRQino sensor
board—is designed to minimize power consumption and is equipped with a CPU-controlled digital
switch which turns off the sensors as well as the air intake fan when not in use [33–35]. During
current experimental application, the system was connected to the mains without any particular power
limitations, which therefore kept all sensors always on. The 2.5 W power requirement is the maximum
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power consumption during sensors reading and data transmission. The average power consumption
depends on the sampling frequency of sensors reading and data transmission to the web server.

Analogue sensors are interrogated every second and analyzed by the CPU applying a moving
average of 120 values in order to minimize oscillations and stabilize the reading. The sensors board
is also equipped with a built in 5 V voltage reference to provide stable and accurate reference to the
10 bit ADC converter. A stable power supply is guaranteed by the CPT-C5 DC-DC module.
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Figure 2. Picture of the integrated circuit board.

2.2. Sensors’ Specifications

The AIRQino station is composed of environmental, gaseous, and particulate matter sensors,
whose characteristics are detailed below.

• air temperature and relative humidity: AM2315 (Adafruit, New York City, NY, USA);
• CO: TGS-2600 (Figaro Inc., Arlington Heights, IL, USA);
• CO2: S8 (SenseAir, Delsbo, Sweden);
• NO2: MiCS-2714 (SGX-Sensortech, Neuchatel, Switzerland);
• O3: MiCS-2614 (SGX-Sensortech);
• VOC: MiCS-5524 (SGX-Sensortech).
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Particulate matter sensors for PM2.5 and PM10 (µg/m3), which are the focus of this study, are
based on the Novasense SDS011 detector (Inovafitness, Jinan, China). This device is based on the laser
scattering principle. Light scattering can be induced when particles go through the detecting area:
the scattered light is transformed into electrical signals and these signals are amplified and processed.
The number and diameter of particles can be obtained by analysis because the signal waveform has
certain relations with the particles diameter. For these sensors it is suggested a replacement every
2–3 years depending on local environmental conditions, particularly the internal contamination caused
by high level of dust in the atmosphere.

3. Laboratory Calibration

3.1. Laboratory Calibration Setup

A calibration laboratory was setup at the headquarters of CNR-IBIMET in Florence (43◦47′52”
N, 11◦11′31” E), where high quality analytical devices have been operated as reference instruments:
for PM2.5 and PM10 sensors calibration, the DustTrak DRX model 8533 (TSI Inc., Shoreview, MN, USA)
has been used. AIRQino stations have been located outside the institute in a dedicated space: therein
the same sampled air was simultaneously injected to the reference instruments through teflon tubes.

3.2. Reference Instrumentation for PM2.5 and PM10 Calibration

The TSI DustTrak desktop monitor (Figure 3) is a battery-operated, data-logging, light-scattering
laser photometer that simultaneously measures size-segregated mass fraction concentrations
corresponding to PM1, PM2.5, PM4, PM10 and total PM. Real-time particle mass concentration is
determined by the intensity of the light scattered by the particles in the aerosol stream. The DustTrak
detection range is from 0.001 to 150 mg/m3.
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3.3. Calibration Procedure

An automated procedure, developed in MATLAB and presented in Figure 4, has been
implemented in order to accomplish the AIRQino laboratory calibration. PM2.5 and PM10 readings
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from the AIRQino and DustTrak reference stations spanned 3–15 July 2016. Data acquisition frequency
was 2 min for DustTrak, while varying from 1 to 3 min for AIRQino.Sensors 2018, 18, x FOR PEER REVIEW  6 of 20 
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Once readings have been collected from both AIRQino and DustTrak stations, the calibration
procedure—as depicted in Figure 4—has been run by implementing all the following operations:

• timescale alignment of both data series along the common interval;
• optimized time interpolation and resampling every 1 min;
• preliminary scatter-plot of sensor signal vs. reference signal as compared to the least squares line

to detect a possible linear relationship;
• “simple” linear regression, i.e., without outliers removal, based on least squares minimization;
• “advanced” linear regression, i.e., including analysis of residuals based on [36], and outliers

removal using the Cook’s distance, a measure that combines the information of leverage and
residual of the observation [37];

• robust linear regression, aimed at reducing the influence of outliers on least square fitting [38]
using the M-estimation method [39], which performs an iterative weighted least squares
estimation ultimately achieving a weight matrix [40]; the M-estimation function is given in
the form of a weight function w(e) of residuals e, with the default tuning constant k giving
coefficient estimates that are approximately 95% as statistically efficient as the ordinary least
squares estimates, provided that the response has a normal distribution with no outliers [41];
in applying the M-estimation, the following weight functions have been used [42]: (i) Andrews;
(ii) Bisquare; (iii) Cauchy; (iv) Fair; (v) Huber; (vi) Logistic; (vii) Talwar; (viii) Welsch;

• non-linear regressions: polynomial, i.e., (i) quadratic and (ii) cubic; (iii) exponential; (iv) power;
for exponential and power regressions, a MATLAB implementation of Levenberg-Marquardt
non-linear least squares algorithm has been employed which requires initial estimates of the
parameters as input to successfully converge [43].
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Table 1 summarizes both the linear and non-linear regression laws implemented in the calibration
procedure, where x is the predictor (i.e., sensor signal), F(x) is the expected value (reference signal),
and βi are the regression coefficients.

Table 1. Regression laws implemented in the calibration procedure.

Regression Laws Equation

Linear F(x) = β0 + β1 x
Quadratic F(x) = β0 + β1 x + β2 x2

Cubic F(x) = β0 + β1 x + β2 x2 + β3 x3

Exponential F(x) = β0 exp(β1 x)
Power F(x) = β0 xβ1

3.4. PM2.5 and PM10 Calibration Results

In Figure 5 the frequency distribution of PM2.5 and PM10 concentrations measured by the DustTrak
is plotted, as well as the corresponding log-normal probability density function.
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In Tables 2 and 3 the statistics of the calibration procedure applied to PM2.5 and PM10 sensors are
summarized, respectively, where a total of 13,222 records have been processed. To assess performances
of the regression analysis, the following metrics have been used: coefficient of determination (R2);
mean bias (MB); root mean square error (RMSE); sum of squared errors (SSE); sum of squares due to
regression (SSR); total sum of squares (SST, where SST = SSE + SSR).

The SSE, measuring the total deviation of the response values from the fit to the response values,
is defined as [44]:

n

∑
i = 1

(yi − ŷi)
2 (1)

where yi is the i-th value of the variable to be predicted and ŷi is the predicted value of yi.
The SSR is defined as the sum of squared deviations of the fitted values from their mean [44]:

n

∑
i = 1

(ŷi − y)2 (2)

where y is the mean value of the response variable.
The coefficient of determination R2 is the proportion of the total sum of squares explained by

the model [44]:
R2 = SSR/SST (3)

For non-linear models as exponential and power laws, R2 is not a useful metric, as SST 6= SSE + SSR
in many cases, and thus R2 has been withdrawn from the analysis. Conversely, R2 is valid for linear
models that use polynomials to model curvature in the data [45].

Table 2. Statistical scores of PM2.5 sensor laboratory calibration (N = 13,222).

Regression Model R2 MB (µg/m3) RMSE (µg/m3) SSR (mg/m3)2 SSE (mg/m3)2 SST (mg/m3)2

Linear

Without outlier removal 0.8095 −0.0342 3.3 0.6228 0.1475 0.7743
With outlier removal

(3.36%) 0.7655 0.0388 2.6 0.2793 0.0852 0.3645

Robust linear

Andrew 0.8499 −0.2461 2.7 0.5855 0.1033 0.6888
Bisquare 0.8501 −0.2456 2.7 0.5856 0.1032 0.6888
Cauchy 0.8484 −0.2453 2.8 0.5841 0.1043 0.6885

Fair 0.8447 −0.2209 2.8 0.5897 0.1084 0.6981
Huber 0.8532 −0.2446 2.7 0.5857 0.1007 0.6864

Logistic 0.8478 −0.2344 2.8 0.5876 0.1054 0.6931
Talwar 0.8634 −0.1993 2.6 0.5785 0.0915 0.6701
Welsh 0.8499 −0.2453 2.7 0.5853 0.1033 0.6887

Non-linear

Quadratic 0.8098 −0.0462 3.3 0.6270 0.1473 0.7743
Cubic 0.8197 −0.1001 3.2 0.6347 0.1396 0.7743

Exponential - −0.7755 5.4 0.3729 0.2629 0.7683
Power - −0.0643 3.4 0.1531 0.6513 0.7683

In the PM2.5 calibration (Table 2), the “simple” linear regression analysis returned R2 = 0.8095,
RMSE = 3.3 µg/m3, and SST = 0.7743 (mg/m3)2. During the “advanced” linear regression analysis,
a residual analysis was additionally performed, which highlighted the presence of outliers. To improve
the regression, a cut-off threshold computed by the Cook’s distance [46] was applied, which conversely
resulted in SSR value lower than in the case of “simple” linear regression: since SSR quantifies how
much SST the model explains, the model was not improved by the outliers removal from the original
data (3.36%) accomplished by the Cook’s distance method, which is thus not suited for this dataset.
Therefore, the “advanced” linear regression resulted in better RMSE and SST values, while in a worse
value for R2. On the contrary, with respect to the initial linear regression, the use of a robust linear
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regression effectively reduced the influence of outliers on least square fitting with respect to the
Cook’s cut-off method, as it brought about a contemporary improvement of both SST and R2 values,
suggesting that outliers detection is in any case a winning strategy. Very slight differences were
achieved in all statistical scores from all applied robust linear regression models: in any case, Talwar
proves to be the best M-estimation weight function, resulting in the overall highest value of R2 (0.8634)
and lowest value of RMSE (2.6 µg/m3). The Talwar M-estimation weight function is given as:

w(e) =

{
1 f or |e| ≤ k
0 f or |e| > k

(4)

with default tuning constant k = 2.795.
The use of polynomial regression models was in principle expected to improve the regression

analysis, as a quadratic model can explain curvature in the data, while a cubic model can describe a
peak-and-valley pattern in the data. Conversely, neither polynomial model proved to significantly
improve the initial linear regression, as basically exhibiting the same statistical scores. Noteworthy,
neither exponential and power regression models deliver a significant improvement with respect
to the initial linear regression: although SSR values are largely lower than all other models
(0.1531–0.3729 (mg/m3)2), RMSE and SSE values are higher, vice versa.

In general, PM10 calibration returned worse scores than PM2.5 calibration (Table 3). The initial
(without outliers removal) linear regression analysis returned R2 = 0.6747, RMSE = 4.5 µg/m3,
and SST = 0.8199 (mg/m3)2. Unlike the case of PM2.5, the “advanced” linear regression analysis
applied to PM10 brought about an improvement in all statistical scores: R2 = 0.7221, RMSE = 3.2 µg/m3,
and SST = 0.4830 (mg/m3)2. Also for PM10 the presence of outliers was ascertained by the residual
analysis: in this case, though, application of the Cook’s cut-off method for outliers removal from the
original data (3.72%) improved all the statistics. However, similarly to the case of PM2.5, the robust
linear regression led to a further improvement: all robust linear regression models returned the
highest R2 values, particularly if using the Talwar M-estimator (R2 = 0.7679), which also returned
RMSE = 3.3 µg/m3 and SST = 0.6408 (mg/m3)2. Noticeably, neither polynomial model improved the
scores achieved by the “advanced” linear model, marking only a slight improvement even against the
“simple” linear model. Exponential and power models, although again showing the lowest SSR values
(0.2721–0.3098(mg/m3)2), returned the highest RMSE values (4.6–4.9 µg/m3), thus confirming not to
be the best regression solution.

Table 3. Statistical scores of PM10 sensor laboratory calibration (N = 13,222).

Regression Model R2 MB (µg/m3) RMSE (µg/m3) SSR (mg/m3)2 SSE (mg/m3)2 SST (mg/m3)2

Linear

Without outlier removal 0.6747 0.0836 4.5 0.5532 0.2667 0.8199
With outlier removal

(3.72%) 0.7221 0.0312 3.2 0.3448 0.1342 0.4830

Robust linear

Andrew 0.7499 −0.1249 3.5 0.4998 0.1666 0.6665
Bisquare 0.7500 −0.1240 3.5 0.4999 0.1665 0.6665
Cauchy 0.7485 −0.1184 3.5 0.5000 0.1679 0.6680

Fair 0.7459 −0.0977 3.6 0.5056 0.1721 0.6778
Huber 0.7480 −0.1043 3.5 0.5023 0.1692 0.6715

Logistic 0.7481 −0.1047 3.5 0.5039 0.1696 0.6735
Talwar 0.7679 −0.1109 3.3 0.4921 0.1486 0.6408
Welsh 0.7500 −0.1204 3.5 0.5005 0.1667 0.6673

Non-linear

Quadratic 0.6981 0.1574 4.3 0.5806 0.2475 0.8199
Cubic 0.7081 0.0115 4.3 0.5724 0.2393 0.8199

Exponential - −0.1506 4.9 0.3098 0.3892 0.8145
Power - −0.0556 4.6 0.2721 0.6122 0.8145
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The best regression models for each pollutant, along with the corresponding correlation
coefficients β0 and β1 achieved during the calibration process, are summarized in Table 4: for both
sensors, the robust linear regression using the Talwar M-estimator proved to be the best model.

Table 4. Statistical summary of the best regression models achieved from PM2.5 and PM10 sensors
laboratory calibration (N = 13,222).

Pollutant Regression Model β0 β1 R2 MB
(µg/m3)

RMSE
(µg/m3) SSR (mg/m3)2 SSE (mg/m3)2 SST (mg/m3)2

PM2.5
Robust linear:

Talwar 6.3 2.0 0.8634 −0.8634 2.6 0.5785 0.0915 0.6701

PM10
Robust linear:

Talwar 5.0 0.7 0.7679 −0.7679 3.3 0.4921 0.1486 0.6408

4. Field Validation

AIRQino-integrated PM2.5 and PM10 sensors have been validated on-site against an official fixed
air quality station (43◦47′08” N, 11◦17′12” E) currently in operation (i.e., an urban background station
managed by ARPAT) located along via Bassi, a residential area in the city of Florence (Figure 7). ARPAT
station employed a dual-channel filter-based gravimetric sampling method [47]. The AIRQino station
was installed on a windowsill, about 3 m from ground level, of the Carducci School Institute, located
along via Bassi as well (43◦47′01” N, 11◦17′11” E), about 200 m away from the ARPAT station.
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station (Cartography sources: Bing and Google Maps).

Since daily average values of PM2.5 and PM10 concentrations are measured by the ARPAT
station, field validation was limited to daily concentrations. To enhance robustness of the validation
process, a monitoring campaign including the cold months was selected, i.e.,—consistently with
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Zikova et al. [27]—a “heating season”, when the household heaters were on and, thus, residential
wood combustion contributed as an additional emission source to the PM concentrations. Based on
heating regulations in Florence, this period spanned from 1 November 2016 to 15 April 2017.

In comparing daily averaged concentrations measured by the AIRQino station against the ARPAT
station, two different options have been considered, aimed at assessing two opposite (i.e., worst-case vs.
best-case) conditions: (i) uncalibrated sensors, i.e., the mere factory-calibrated sensors, which directly
return concentrations in µg/m3 (see Section 2.2); (ii) sensors calibrated in laboratory, i.e., those which
underwent the robust linear regression using the Talwar M-estimator (see Section 3.4). Figure 8 shows
the frequency distribution and related log-normal probability density function of PM2.5 and PM10

concentrations measured by the ARPAT station.
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concentrations measured by the ARPAT reference station during field validation.

Table 5 summarizes the basic statistics of 24-h averaged PM2.5 and PM10 concentrations measured
in via Bassi by the two different AIRQino configurations (i.e., with uncalibrated and calibrated sensors)
as compared to the ARPAT observations.

Table 5. Statistical summary of 24-h averaged PM2.5 and PM10 concentrations (µg/m3) measured in
via Bassi (Florence) by calibrated and uncalibrated AIRQino stations, and ARPAT reference station
(1 November 2016 to 15 April 2017).

Pollutant Station Mean Standard Deviation Range

PM2.5

ARPAT 18.45 12.64 3.00–79.00
AIRQino

uncalibrated 22.85 17.32 3.11–103.53

AIRQino calibrated 18.49 12.79 3.92–78.06

PM10

ARPAT 24.80 14.31 3.00–90.00
AIRQino

uncalibrated 25.52 18.41 3.49–108.79

AIRQino calibrated 25.40 15.17 7.25–94.00

Data sample: 155; valid data: 96.87%. No. exceedances of PM10 daily limit value (50 µg/m3): 11.

The statistical scores of this comparison are reported in Table 6, where the following metrics have
been used: mean bias (MB) and normalized mean bias (NMB); mean absolute error (MAE); root mean
squared error (RMSE) and normalized root mean squared error (NRMSE); coefficient of determination
(R2); fraction of predictions within a factor of two of observations (FAC2).

First of all, it should be stressed that uncalibrated sensors deliver quite accurate measurements,
particularly in capturing day-by-day concentrations variation, as R2 values of 0.840 (PM10) and
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0.900 (PM2.5) are achieved (Table 6). While PM2.5 concentrations are biased by 4.394 µg/m3, PM10

are only by 0.720 µg/m3, corresponding to normalized values of 21.401% and 2.863%, respectively.
All ARPAT observations are over-estimated by uncalibrated AIRQino sensors.

Table 6. Statistical scores of the comparison in measuring 24-h averaged PM2.5 and PM10 concentrations
(µg/m3) between calibrated and uncalibrated AIRQino stations vs. ARPAT reference station
(1 November 2016 to 15 April 2017).

Pollutant Score
AIRQino Station

Uncalibrated Calibrated

PM2.5

MB (µg/m3) 4.394 0.036
NMB (%) 21.401 0.196

MAE (µg/m3) 4.827 2.683
RMSE (µg/m3) 7.955 4.056

NRMSE (%) 38.746 21.959
R2 0.900 0.957

FAC2 0.987 1.000

PM10

MB (µg/m3) 0.720 0.598
NMB (%) 2.863 2.384

MAE (µg/m3) 5.103 4.309
RMSE (µg/m3) 7.802 6.084

NRMSE (%) 31.011 24.240
R2 0.840 0.909

FAC2 0.987 0.987

Data sample: 155; valid data: 96.87%.

Laboratory calibration resulted in a general improvement in the measurement of PM
concentrations: this improvement was moderate in the R2 values (from 0.900 to 0.957 for PM2.5,
and from 0.840 to 0.909 for PM10), and in the MB values for PM10 (from 0.720 to 0.598 µg/m3),
while remarkable in the MB values for PM2.5 (from 4.394 to 0.036 µg/m3). Summarizing, AIRQino
calibrated measurements were on average biased by less than 0.2% for PM2.5, and less than 2.4% for
PM10. Also AIRQino calibrated sensors over-estimated ARPAT reference observations.

The statistical analysis has been graphically complemented by the scatter-plots between AIRQino
and ARPAT measured concentrations.

As for PM2.5 concentrations (Figure 9), the AIRQino uncalibrated station returns a clear
over-estimation of ARPAT observations (Figure 9a), which is however dramatically adjusted by
the calibration process (Figure 9b) so as to make the least squares line to almost match the best-fitting
line (y = x). The number of points outside the dashed lines—encompassing under-estimations (y = x/2)
or over-estimations (y = 2x) by a factor of two—is 2 for uncalibrated, and 0 for calibrated station: this
is the same information provided by FAC2 (Table 6), indicating that in 98.7% cases estimations are
within a factor of two for uncalibrated station, and in 100% they are for calibrated station.

The scatter-plot of PM10 concentrations (Figure 10) generally exhibits a wider spread around
the least squares line than PM2.5 concentrations (Figure 9), particularly for the lower concentrations.
As compared to the corresponding PM2.5 scatter-plot, for PM10 a lower slope is exhibited by the
trendline of uncalibrated station (Figure 10a), which is, again, basically straightened to 1:1 by the
calibration process (Figure 10b). For both uncalibrated and calibrated stations, only in 2 days ARPAT
PM10 daily concentrations are exceeded by a factor of two, i.e., FAC2 = 98.7% (Table 6).

Figure 11 shows the time series of uncalibrated and calibrated observations of AIRQino station as
compared to the ARPAT station observations.

The AIRQino uncalibrated station is capable of well capturing the PM2.5 day-by-day variations
(Figure 11a), as expected since R2 = 0.900 (Table 6). However, the accuracy improvement achieved by
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the calibration process is evident if analysing the pattern of the calibrated station, as it almost perfectly
matches both peak and valley PM2.5 concentrations.

A similar general pattern is exhibited by the AIRQino station in the measurement of PM10

concentrations (Figure 11b), where the quite fine observations of the uncalibrated station are further
improved by the calibration process, particularly in best fitting the PM10 peak concentrations.Sensors 2018, 18, x FOR PEER REVIEW  13 of 20 
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Figure 9. Scatter-plot of 24-h averaged PM2.5 concentrations (µg/m3) measured in via Bassi (Florence)
by AIRQino (a) uncalibrated and (b) calibrated stations vs. ARPAT reference station (1 November 2016
to 15 April 2017). Dashed lines indicate the perfect agreement between the series (y = x), as well as
over-estimation (y = 2x) and under-estimation (y = x/2) by a factor of two.
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5. Discussion

The results achieved from current laboratory calibration have been compared to other calibrations
accomplished in the literature.

For example, Holstius et al. [23] carried out two field calibrations of a low-cost PM2.5–measuring
sensor at a regulatory monitoring site in West Oakland (CA, USA) using both linear and non-linear
regression models. During the first calibration, using 1-h data collected from 15 to 23 April 2013,
they achieved R2 = 0.64–0.70 and RMSE = 4.6–5.1 µg/m3 against a TSI DustTrak 8530 reference station,
and R2 = 0.55–0.60 and RMSE = 3.4–3.6 µg/m3 against a β-attenuation monitor (BAM) reference station.
During the second calibration, using 24-h data collected from 1 Aug to 15 Nov 2013, they achieved
R2 = 0.72 against a BAM reference station. Compared to both these PM2.5 calibrations, scores from
present calibration are finer, as R2 = 0.8634 and RMSE = 2.6 µg/m3 (Table 2).

Another field calibration was performed by Velasco et al. [1] in the city of Turin (Italy) after
co-locating their low-cost sensor to an ARPA Piedmont fixed station using 24-h PM10 concentrations
collected during the autumn 2015: by employing a linear regression, they achieved a Pearson
correlation coefficient (r) of 0.61, whose square value is lower than R2 = 0.7679 obtained from present
PM10 laboratory calibration (Table 3).

On the contrary, scores from current PM2.5 calibration are outperformed by those obtained
by Shao et al. [24], who compared their low-cost PM2.5 sensing system against a Tapered Element
Oscillating Microbalance (TEOM) reference station in Wolongqiao (China) based on 1-h data collected
from 7 to 14 March 2016. In doing so, they used a non-linear model as a function of PM readings
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and scattered light fluxes. Their sample were best fitted by using a quadratic polynomial regression,
which returned R2 values between 0.901 and 0.945 (vs. R2 = 0.8634 from present calibration).

In any case, the far larger sample size (N = 13,222) used for Florence laboratory calibration
with respect to those cited above is worth noticing, thus showing reliability and stability of
calibration results. Furthermore, since only employing PM sensors readings as a regressor, simplicity
of the currently-implemented PM calibration model—and thus its easier portability to other
contexts/applications—should also be highlighted. This marks a clear distinction from multi-linear
regressions or non-linear multi-variate models such as those that also consider relative humidity
(e.g., [16,48]), air temperature (e.g., [48]), or scattered light fluxes (e.g., [24]) as regressors.

The calibration procedure originally developed and applied here (Figure 4) represents an added
value, particularly as implementing several advanced mathematical and statistical techniques capable
of exploring and detecting possible complex non-linear relationships between sensor signals and
reference data, such us plots of residuals, which are very powerful methods to check the validity of
linear relationship assumptions and provide information on how to improve the model (i.e., robust
regression). It could therefore establish, along with very refined tools such as those implemented, e.g.,
by [49,50], as a state-of-the-art methodology for low-cost sensing calibration. Although such procedure
is well capable of detecting and correcting non linearities in the sensors response, the results obtained
here reveal a strong linearity of these detectors across a large range of environmental conditions (the
minimum length of a dataset, to capture a complete sensor output, includes a day-night cycle in order
to evaluate the presence of some periodical patterns), leading to the same scores for linear and non
linear fitting models (Table 3).

The scores resulting from AIRQino field validation have been also compared with validation of
similar low-cost systems. For example, if considering concentrations measured at the same 24-h time
scale, a straight comparison can be made with the field validation carried out by Zikova et al. [27] of
their PM2.5-measuring system in the city of Rochester (NY, USA). Therein they placed their systems at
26–27 residential locations and compared them against a TEOM reference station across two distinct
“heating periods”: (i) early December 2015 to early April 2016; (ii) end of October 2016 to early April
2017. During period (i), only in 1.1% locations an r coefficient higher than 0.9 (corresponding to
r2 = 0.81) was achieved, while during period (ii) this percentage reduced to 0.9% locations. Therefore,
temporal variability of PM2.5 measurements from the majority of these units is outperformed by the
one exhibited by the AIRQino PM2.5 measurements (R2 = 0.900–0.957, Table 6).

If also comparing Florence daily-based validation with those (more challenging) employing
hourly measured concentrations, the PM2.5 application by Zikova et al. [26] can be analysed. In [26],
66 sensing units were co-located with a Grimm laser particle spectrometer in the city of Potsdam, NY,
and a weighted least square linear regression was applied through two outdoor monitoring campaigns:
(i) using 58 units from 15 to 17 October 2015; (ii) using 9 units from 20 to 23 November 2015. During
campaign (i), for 84% units they found r > 0.80, and for 36% r > 0.95; during campaign (ii), for 60%
units they found r > 0.60, and for 16% r > 0.80. Overall, they also achieved RSME values of about 7 and
8 µg/m3 for the two campaigns, respectively. These scores, although on a 1-h rather than 24-h basis,
are lower than those achieved within PM2.5 Florence validation.

Based on hourly values, Mukherjee et al. [25] validated two different low-cost PM sensors over a
12-week campaign (14 April to 6 July 2016) in the Cuyama Valley (CA, USA) using a Grimm and a BAM
as reference instruments. In measuring PM2.5 concentrations, they at best achieved R2 = 0.71 against
the Grimm; for PM10 concentrations, they at best achieved R2 = 0.84 against the Grimm, and R2 = 0.81
against the BAM. By comparison, for both PM2.5 and PM10 measurements Florence validation scores
are finer, although they are achieved based on a smaller sample size (N = 155 vs. 825–1755).

AIRQino field validation skills were also better when compared against the different microsensor
systems by various developers installed side-by-side with reference analysers and then assessed in
the framework of the 1st EuNetAir Air Quality Joint Intercomparison Exercise organized in Aveiro
(Portugal) from 13 to 27 October 2014 [51]. Although compared against 1-h averaged concentrations,
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for both PM2.5 and PM10 sensors current accuracy was largely higher based on all considered metrics
(see Table 4 therein). For PM10 sensor, in particular, the significantly different performances may
be graphically appreciated by comparing current scatter-plots (Figure 10) to those presented in
Figure 5 therein.

A high resolution field validation was performed by Sun et al. [16] in measuring PM2.5

concentrations after deploying their system in Hong Kong from 16 to 18 Jan 2015, using a non-linear
model as a function of PM readings and relative humidity. Compared against an official reference
station, at 5-min resolution they found R2 = 0.92, NMB = 13%, and MAE = 5.5 µg/m3, again
outperformed by currently achieved scores. On the contrary, a comparable accuracy in PM2.5

measurement was achieved in the above-cited field validation by Shao et al. [24]: based on a sample
size similar to that of the present work (N = 158), against a TEOM reference station in Wolongqiao
(China) they found R2 = 0.948–0.966 and RMSE = 8.375–10.408 µg/m3.

The sensors deployed in this study (by Novasense, see Section 2.2) came with their own factory
calibration, that gave acceptable results, although generally overestimating the reference measurements
by 18–30% (Figures 9 and 10). Using directly the factory calibration leads sometimes to more accurate
measurements than those achieved after field calibration within the above-cited literature works.
For PM10 sensor, for example, R2 values of 24-h concentrations (0.84, Table 6) are higher than those
(0.61) achieved in the field calibration by Velasco et al. [1], with mean concentrations also slightly
biased (2.863%). For PM2.5 concentrations, in reproducing temporal variation the factory-calibrated
sensor returned finer scores (R2 = 0.90, Table 6) than those achieved by Mukherjee et al. [25] (R2 = 0.71),
Holstius et al. [23] (R2 = 0.72), and the majority of sensors validated by Zikova et al. [26,27]. Similarly,
the MAE scores are finer than those reported by Sun et al. [16] (4.827 vs. 5.5 µg/m3); on the contrary,
with respect to the same studies, the achieved MB and RMSE scores are worse, thus effectively requiring
a proper laboratory calibration. However, present results show that the best performances are obtained
after a laboratory calibration of each sensor against a light-scattering laser photometer (Table 6). It is
worth noting that those performances were assessed in the field against an independent instrument
employing a physically different (i.e., gravimetric) sampling method.

It is clear that, aside from the mere sensing accuracy during both the calibration and validation
processes, a number of further requirements shall be met by the low-cost systems, as recommended,
e.g., by the EPA’s Air Sensor Guidebook [20], including their consistency, stability and durability in
real-world outdoor conditions [6]. Under this respect, robustness of the AIRQino station is worth
noticing, as it was seamless deployed for a five and a half month outdoor campaign without registering
significant sensor failures or drifts. Outdoor validations across comparably long periods are not
particularly frequent in the literature, with few exceptions such as, e.g., the one cited above by
Zikova et al. [27] of 26–27 PM2.5-measuring elements, deployed across two “heating seasons” as well.

6. Conclusions and Future Work

Key findings of the current work include: (i) a remarkable accuracy of the mere factory-calibrated
PM2.5 and PM10 sensors integrated in the system, particularly in capturing concentrations temporal
variation; this proved to be a fair starting point for later sensors calibration and validation; (ii) fine and
reliable results achieved during sensors laboratory calibration; (iii) fine scores achieved during sensors
field validation; (iv) robustness of the developed sensing system, seamless deployed through a five
and a half month outdoor campaign with no appreciable sensor failure or drift.

Since field validation was performed against a dataset of 24-h averaged PM concentrations,
in a future work a test of PM sensors at higher temporal resolution will be addressed. Furthermore,
PM sensors will be tested against higher ambient PM concentrations.

Future work’s directions should include extension of both laboratory calibration and field
validation to the gas sensors (i.e., O3, NO2, CO) already integrated in the system. Unlike the present
case when 24-h averaged PM concentrations have been used, for gas sensors validation different
statistical scores should be expected since 1-h averaged concentrations will be used. This task will take
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advantage of the calibration tool developed here, as well as new robust calibration models (e.g., [52,53])
which will be thoroughly analysed for possible use.

To further test real-world consistency, stability and durability of the AIRQino station, its deployment
over longer periods (one full year) as well as more aggressive environments (e.g., coastline sites) are
also envisaged in the near future.
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