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While the intratumor microbiome has become increasingly implicated in cancer development, the micro-
bial landscape of papillary thyroid carcinoma (PTC) is essentially uninvestigated. PTC is characterized by
varied prognosis between gender and cancer subtype, but the cause for gender and subtype-based dis-
similarities is unclear. Women are more frequently diagnosed with PTC, while men suffer more
advanced-staged PTC. In addition, tall cell variants are more aggressive than classical and follicular vari-
ants of PTC. We hypothesized that intratumor microbiome composition distinctly alters the immune
landscape and predicts clinical outcome between PTC subtypes and between patient genders. Raw
whole-transcriptome RNA-sequencing, Level 3 normalized mRNA expression read counts, and DNA
methylation 450 k sequencing data for untreated, nonirradiated tumor, and adjacent normal tissue were
downloaded from the Genomic Data Commons (GDC) legacy archive for 563 thyroid carcinoma patients.
Microbe counts were extracted using Pathoscope 2.0 software. We correlated microbe abundance to clin-
ical variables and immune-associated gene expression. Gene-set enrichment, mutation, and methylation
analyses were conducted to correlate microbe abundance to characterize microbes’ roles. Overall, PTC
tumor tissue significantly lacked microbes that are populated in adjacent normal tissue, which suggests
presence of microbes may be critical in controlling immune cell expression and regulating immune and
cancer pathways to mitigate cancer growth. In contrast, we also found that microbes distinctly abundant
in tall cell and male patient cohorts were also correlated with higher mutation expression and methyla-
tion of tumor suppressors. Microbe dysbiosis in specific PTC types may explain observable differences in
PTC progression and pathogenesis. These microbes provide a basis for developing specialized prebiotic
and probiotic treatments for varied PTC tumors.
� 2021 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Bio-
technology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Thyroid cancer is the fifth most common cancer in women, and
it is estimated that over 12,000 men and 40,000 women will be
diagnosed with thyroid cancer in 2021 [1]. Advanced-stage thyroid
cancer presents itself more frequently in men than women, but the
cause of this disparity is unclear [2,3]. Despite advancements in
diagnostic technology for thyroid cancer, precision medicine and
nonsurgical treatment options for papillary thyroid carcinoma
(PTC) and its most common subtypes, classical (CPTC), follicular
variant (FVPTC), and the more aggressive tall cell papillary thyroid
carcinoma (TCPTC) are severely lacking [4–9].

A recent study identified the presence of microbes in blood and
thyroid cancer tissue, suggesting that there exists a predictable and
significant abundance of microbes within PTC issues [10]. Further-
more, there is mounting evidence that the intratumor microbiome
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is implicated in cancer progression and mitigation through their
metabolites. For example, the absence of folate-producing Bifi-
dobacterium and Lactobacillus was correlated with hypomethyla-
tion at regions of the p53 gene in colorectal cancer [11]. This
research suggests that tissue-specific microbes may play a tumor
suppressive role, specifically by causing or preventing the repair
of DNA damage. Past microbiome studies have used The Cancer
Genome Atlas (TCGA) data and machine learning to identify diag-
nostic microbial signatures in various cancers but have not eluci-
dated how microbe composition varies in PTC and how microbes
interact with pathways to influence cancer progression [10]. We
hypothesize that the intratumor microbiome in thyroid carcinoma
plays a critical role in determining the varying immune landscape
across different types of PTC.

In this study, we characterized the abundance of microbes in
PTC using RNA sequencing data obtained from TCGA. We identified
microbes differentially abundant between males and females and
between different PTC subtypes. To determine the mechanisms
by which specific microbes may influence the immune landscape,
we correlated microbe abundance to clinical variables, immune-
associated (IA) gene expression, immune-cell expression, and can-
cer and immunological pathways. Finally, we correlated microbe
abundance with known copy number variations (CNV) and muta-
tions and methylation sites (Fig. 1). With this study, we aim to
characterize the thyroid carcinoma intratumor microbiome and
investigate microbiome’s unique clinical significance in thyroid
carcinoma prognosis.
2. Materials and methods

2.1. Data acquisition

Raw whole-transcriptome RNA-sequencing, Level 3 normalized
mRNA expression read counts, and DNA methylation 450 k
sequencing data for untreated, nonirradiated tumor and adjacent
normal tissue were downloaded from the Genomic Data Commons
(GDC) legacy archive for 563 thyroid carcinoma (THCA) patients
(354 CPTC, 101 FVPTC, 35 TCPTC, 135 male, 366 female tumor sam-
ples) [12,13]. The GDC provides web-based access to data and
metadata from cancer genomics studies aggregated in TCGA, and
The Broad Institute developed a suite of tools and pipelines to
assist in aggregating and analyzing various types of large-scale
genomic and proteomic data. Clinical information for all patients
was downloaded from Broad GDAC Firehose [14]. Genomic alter-
ation information for each patient was obtained from the last anal-
ysis report (2016) of the Broad Institute TCGA Genome Data
Analysis Center [15].
2.2. Extraction of microbial reads

RNA-sequencing data were filtered for bacterial reads via direct
alignment to a reference library of bacterial sequences using the
Pathoscope 2.0 software and the NCBI nucleotide database [16].
To account for the inherent compositionality of microbe data, we
performed a ratio transformation of the microbe abundance data.
Ratio transformations capture the relationships between samples
in the data, regardless of whether the data are counts or propor-
tions. Log-ratios make the dataset linearly related, so that log-
ratio abundances of features can be compared to other samples
in the data [17,18]. We used the R ‘‘compositions” package to per-
form the variance-stabilizing Aitchison’s log transformation to
eliminate negative correlation bias and account for large amounts
of variability between samples.
1987
2.3. Evaluation of contamination

Contamination of RNA-sequencing data may originate from
appliance contamination or sequencing errors [19]. In order to
account for contamination, we employed multiple contamination
correction methods based on TCGA sampling and sequencing
methodology [20]. First, scatterplots of microbial abundance ver-
sus date of sequencing were produced; potential contaminants
were determined based on unrepresentative overabundance of
bacteria, or overabundance solely across three (or less) consecutive
dates. Second, boxplots of microbe abundance versus sequencing
plates were produced to identify unrepresentative overabundance
of bacteria, or overabundance of bacteria solely in samples
sequenced on the same plate. Third, total abundance across all
microbes was compared against the abundance of each individual
microbe, per patient. As the total number of read counts for each
sample increases, it is reasonable to assume that the abundance
of any specific microbe will also increase if the microbe is not a
contaminant. We identified potential contaminants in scatter plots
of individual microbe abundance versus total abundance with a
slope of zero (margin around 0 of ±0.1)

2.4. Differential abundance between patient cohorts and correlation to
MACIS (distant metastasis, patient age, completeness of resection, local
Invasion, and tumor Size) score and clinical variables

The Kruskal-Wallis test was used to determine differential
abundance (p < 0.05) and correlations betweenmicrobe abundance
and lymph node metastasis, MACIS score, neoplasm cancer status,
pathologic stage, pathologic tumor-node-metastasis stage, and
residual tumor (p < 0.05).

2.5. Correlation of microbial abundance to immune-associated
elements, copy number variants and mutations, and methylation sites

Dysregulated immune-associated (IA) genes are defined as
genes with altered expression between tumor and normal tissue.
The genes were determined using edgeR analysis of mRNA expres-
sion data obtained from TCGA (FDR < 0.05 and |log fold change| > 1)
[13]. EdgeR offers highly accurate statistical methods for multi-
group experiments [21,22]. Dysregulated IA genes were clustered
using the Cytoscape Reactome FIViz software. The Kruskal-Wallis
test was used to determine the presence of correlation between
differentially abundant microbes and dysregulated IA genes
(p < 0.01). The p-value cut-off was reduced to 0.01 to focus on
the most statistically significant correlations. The threshold was
determined by p-value in order to evaluate effect size and assess
the probability of the results supporting the hypothesis.

Using the software tool CIBERSORTx andmRNA expression data,
we used gene expression profiles to estimate immune infiltration
[23]. The input was a matrix of gene expression read counts by
THCA samples, compiled from mRNA sequencing data [13]. CIBER-
SORTx software returned expression values for 22 immune cell
types.

We conducted Gene Set Enrichment Analysis (GSEA) to corre-
late microbe abundance to known cancer pathways and immuno-
logical signatures. The GSEA software and signatures from the C2,
C6, and C7 collections were downloaded from the Molecular Signa-
tures Database [24]. Statistically significantly (p < 0.05) enriched
signatures were plotted.

The surface-level trends of mutation presence were analyzed by
calculating the percentage of patients with each mutation, indi-
cated by a binary value per mutation. The GDAC files were com-
piled into input files for the REVEALER (repeated evaluation of



Fig. 1. Schematic of project workflow and analyses. After obtaining sequencing data from The Cancer Genome Atlas (TCGA), we used the Pathoscope software to extract
microbial read counts. We normalized the microbial counts using Aitchison’s log transformation. 1) We performed differential abundance to identify which microbes were
significant differentially abundant in tumor vs. normal samples. The overlap in differentially abundant microbial species between various cohorts is demonstrated through
venn diagrams: male versus female thyroid carcinoma and classical papillary thyroid carcinoma (CPTC) versus follicular variant papillary thyroid carcinoma (FVPTC) versus
tall cell papillary thyroid carcinoma (TCPTC). 2) Three methods of contamination correction were used to identify potential contaminants among the significantly
differentially abundant microbes we identified in Step 1. We performed correction by sequencing plate, sequencingdata, and abundance in one individual sample vs. all
samples. We also compiled a list of common contaminants from previously published research and eliminated these microbes from further study. 3) MACIS (distant
Metastasis, patient Age, Completeness of resection, local Invasion, and tumor Size) score and clinical variable analysis of differentially abundant microbes were performed
using the Kruskal-Wallis statistical test. Clinical variable data (pathologic stage, TNM stage) for each sample were obtained from the Broad Institute GDAC Firehose database.
4) Correlation of microbial abundance to immune-associated gene expression and immune cell infiltration: We performed gene differential expression analysis on Level 3
normalized mRNA expression read count data obtained from Genomic Data Commons legacy archive/TCGA. We then correlated microbe abundance with dysregulated
immune-associated gene expression using Kruskal-Wallis and visualized and categorized the data using Cytoscape Reactome FIViz software. We used CIBERSORTx software
to obtain immune cell expression correlated with microbe abundance. 5) We used Gene Set Enrichment Analysis to identify immunological and oncogenic signatures
correlated with microbial abundance. 6) We used the Repeated Evaluation of Variables conditionAL Entropy and Redundancy (REVEALER) to identify chromosomal
amplifications, deletions, and mutations correlated with microbial abundance. 7) We used DNA methylation 450k sequencing data and a modified workflow of
methylationArrayAnalysis from Bioconductor to identify differentially methylated sites in thyroid carcinoma. We correlated differentially methylated sites with microbial
abundance using the Kruskal-Wallis statistical test.
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variables conditional entropy and redundancy) algorithm, which
identifies sets of specific CNVs, including chromosomal deletions,
amplifications, and alterations, and mutations that are most likely
implicated in changes to the target expression profile. The target
profile was identified as the expression of a single immune-
associated gene. The REVEALER algorithm runs in multiple itera-
tions in order to identify the most prominent genomic alterations.
For our study, we set the maximum number of iterations to three.
The algorithm also allows for the use of a seed, or a particular
mutation of CNV gain or loss event that may account for target
activity. Because we did not know the individual genetic alter-
ations that were responsible for each IA genes’ dysregulation, the
seed was set to null. Significant correlations were indicated by
p < 0.05 and CIC > 0.15 [25].

Using a modified workflow of methylationArrayAnalysis from
Bioconductor, we converted B-values to M-values and then per-
formed probe-wise differential methylation analysis on the matrix
of M-values in limma to obtain t-statistics and p-values for each
CpG site [26,27]. The Kruskal-Wallis test was used to correlate
microbe abundance to the extent of methylation.
2.6. Validation with external dataset

77 CPTC and 48 FVPTC samples were obtained from the Euro-
pean Nucleotide Archive (Project ID: PRJEB11591) [28]. Pathoscope
2.0 was used to align and extract microbial reads. Microbe abun-
dance was plotted to compare relative abundance between tumor
samples from TCGA and ENA.
1988
3. Results

3.1. Microbial landscapes of tumor tissue between genders are distinct

Principal component analysis (PCA) was conducted to measure
heterogeneity in microbe species between tumor and normal sam-
ples, tumor samples of varied subtype, and tumor samples from
different genders (Fig. 2). Overall, the principal component plots
show major clustering and indicate that the microbe populations
between the tumor samples are relatively homogenous. However,
the third PCA plot contains a clustering of female patient tumor
samples in the top right corner which makes clear that the micro-
bial landscapes of tumor tissues from the different genders may be
distinct. We found the microbes that contributed most to the top-
right cluster to be cyanobacteria species.
3.2. Contamination correction

To verify that our measurement of intratumor microbial abun-
dance was consistent across samples and not due to contamina-
tion, we conducted three methods of contamination correction.
We identified 17 and 21 potential contaminants using correction
by sequencing date and plate respectively (Fig. 3A, B). We com-
pared individual microbial abundance to the abundance of all
microbes to identify aberrant abundance potential contaminants
(Fig. 3C). Finally, we compiled a list of 175 commonly known con-
taminants from studies of bacterial contamination from reagents
and of the hospital microbiome [29,30]. In all, we identified 202



Fig. 2. Principal component analysis plots to visualize microbial landscape in the following comparisons: Tumor versus normal tissue, classical papillary thyroid carcinoma
versus follicular variant papillary thyroid carcinoma versus tall cell papillary thyroid carcinoma, and males versus females.

Fig. 3. Contamination correction. (A) Potential microbial contaminants were identified by producing scatterplots of individual microbe abundance versus date of sequencing
of sample. Independent clusters of high abundance across a few dates indicates that the microbe is not consistently differentially abundant across all samples. (B) Potential
microbial contaminants were identified by producing boxplots of individual microbe abundance versus sequencing plate. Singular boxplots of high abundance in one
sequencing plate indicates that the microbe is not consistently differentially abundant across all samples. Instead, the microbe appears to be differentially abundant due to
contamination in one sequencing plate. (C) Read counts of total abundance across all microbes was compared against the abundance of each individual microbe, per patient.
Potential contaminants were identified in scatter plots with a slope of zero. This method elicited zero potential contaminants, as all plots had a slope with magnitude
significantly greater than zero.
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potential contaminants to be eliminated from further investigation
(Supplementary Table 1).

3.3. Differential abundance of intratumor microbes

We found 45 microbes in CPTC, 34 in FVPTC, and 33 in TCPTC
to be differentially abundant between tumor and normal tissue.
1989
We found 33 microbes in male samples and 49 microbes in
female samples to be differentially abundant between tumor
and normal tissue. Of all the statistically significant correlations,
we focused on investigating the strongest correlations
(p < 0.05) of microbes that have been previously discovered
and studied in the context of cancer and inflammatory disease.
Micrococcus luteus, Frankia sp., Anabaena sp. K119, and uncultured
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Gammaproteobacteria bacterium were all similarly overabundant
in normal tissue in CPTC, FVPTC, and TCPTC (Fig. 4A). Trueperella
pyogenes and Stenotrophomonas maltophilia K279a were similarly
dysregulated in CPTC and FVPTC (Fig. 4B). We also identified
the strongest correlations of microbes uniquely differentially
abundant in each subtype cohort (Fig. 4C). Rhodococcus fascians
D188 was overabundant in normal samples in CPTC. Acinetobac-
ter baumannii AB0057 was overabundant in normal samples in
FVPTC. Bradyrhizobium sp. BTAi1 was overabundant in normal
samples in TCPTC.

In males, Synechococcus sp. CC9311 was overabundant in the
normal samples while in females, it was overabundant in tumor
samples (Fig. 4D). Overall, normal tissue had significantly more dif-
ferentially abundant microbes compared to tumor tissue samples
(Fig. 4E).
Fig. 4. Differential abundance of microbes. (A) Microbes identified to be similarly differe
corresponds to classical PTC (CPTC) data, green corresponds to follicular variant PTC (FVP
be similarly differentially abundant in CPTC and FVPTC. (C) Microbes identified to be u
CC9311 was significantly differentially abundant in both male and female thyroid tumo
tissue but overabundant in female tumor tissue versus normal tissue. (E) Venn diagram
cohorts. The number indicates the number of most significant correlations, and the down
samples. (For interpretation of the references to colour in this figure legend, the reader

1990
3.4. Microbe abundance correlation with MACIS (distant metastasis,
patient age, completeness of resection, local invasion, and tumor size)
score and clinical variables

The majority of significant correlations between microbe abun-
dance and clinical variables were negative, consistent with the
finding that tumor tissue contained lower microbe abundance
compared to adjacent normal tissue. Frankia sp. and uncultured
Gammaproteobacteria bacterium, which are abundant in all PTC
normal tissue samples, are correlated with lower MACIS score,
while Bradyrhizobium sp. BTAi1, which is uniquely abundant in
TCPTC normal tissue, is correlated with higher MACIS score. Fran-
kia sp. and Anabaena sp. K119, both of which are overabundant in
normal tissue samples of all PTC subtypes, are negatively corre-
lated with Pathologic M stage, while Stenotrophomonas maltophilia,
ntially abundant across all three papillary thyroid carcinoma (PTC) subtypes. Yellow
TC) data, and red corresponds to tall cell PTC (TCPTC) data. (B) Microbes identified to
niquely differentially abundant in CPTC, FVPTC, and TCPTC. (D) Synechococcus sp.
r samples. However, the microbe was absent in male tumor tissue versus normal
schematics summarizing microbes found to be differentially abundant in patient
arrow indicates that the microbe was sparse in tumor samples compared to normal
is referred to the web version of this article.)



Fig. 5. Correlation to clinical variables. Select boxplots of microbes significantly positively and negatively correlated with MACIS (distant Metastasis, patient Age,
Completeness of resection, local Invasion, and tumor Size) prognostic score and pathological M stage. M0 indicates that the cancer has not spread to other parts of the body,
while M1 indicates spread of cancer/distant metastases. All boxplots were produced using the Kruskal-Wallis test.
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dysregulated in only CPTC and FVPTC, is positively correlated with
pathologic M stage (Fig. 5).

3.5. Microbe abundance correlation to immune-associated genes

Dysregulated IA genes found by comparing gender and sub-
types cohorts to normal samples were inputted into Reactome
FIViz software and clustered into gene modules (Fig. 6A). We found
that the greatest number of dysregulated IA genes with the great-
est magnitude was correlated to Module 2 pathways in CPTC and
FVPTC. However, in TCPTC, IA genes that were correlated to Mod-
ule 3 pathways were the most dysregulated (Fig. 6B). IA gene dys-
regulation was comparable between male and female patient
cohorts. We determined that CPTC had the greatest absolute num-
ber of correlations between microbe dysbiosis and IA gene dysreg-
ulation (Fig. 6C).

3.6. Microbe abundance correlation to immune cell infiltration

We found FVPTC samples to be strongly correlated to the
expression of resting CD4 memory T-cells. In tumor versus normal
samples, we observed higher expression of immune cells in normal
tissue. Notably, follicular helper T-cells, resting dendritic cells, and
activated mast cells were highly expressed in normal tissue in
male patients, while naive B cells and resting CD4 memory T cells
were highly expressed in normal tissue in female patients (Fig. 6D).

3.7. Microbe abundance correlation to cancer and immunologic
pathways

By using GSEA to correlate microbe abundance to known cancer
and immunologic pathways and signatures, we found that
decreased abundance of microbes in CPTC and FVPTC tumor tissue
was correlated with decreased expression of EIF4E_UP and SRC_UP.
V1_UP oncogenic signatures. In TCPTC, we found that abundance of
1991
Anabaena sp. K119 in tumor tissue was correlated with the upreg-
ulation of the EIF4E_UP signature, which is consistent with the
more aggressive nature of TCPTC. Among the gender cohorts, the
majority of significantly correlated pathways were positively
enriched with microbe abundance (Fig. 7A). Although Synechococ-
cus sp. CC9311 was overabundant in female but not in male tumor
tissue, all overlapping pathways were similarly dysregulated in
both gender cohorts (Fig. 7B). We found that the majority of most
enriched pathways uniquely dysregulated in the different subtypes
were related to cell growth (Fig. 7C). In males, the greatest number
of uniquely dysregulated pathways belonged to the tumor
suppression-related group, and in females, the greatest number
of uniquely dysregulated pathways belonged to the DNA check-
point and damage-related group (Fig. 7D).
3.8. Microbe abundance correlation to copy number variations and
mutations

To further investigate how microbes may regulate gene expres-
sion, we used the REVEALER algorithm to correlate microbe abun-
dance to CNV and mutation rates (Fig. 8A). Microbe abundance in
FVPTC was correlated with the greatest number of chromosomal
alterations and mutations. Between the male and female patient
cohorts, microbe abundance in males was more frequently and
strongly correlated to a greater number of CNV. The Kruskal-
Wallis test confirmed that microbes dysregulated in TCPTC and
male patients were correlated with higher expression of the BRAF
V600E mutation, which is highly implicated in PTC progression
(Fig. 8B).
3.9. Microbe abundance correlation to gene methylation

We found the most differentially methylated CpG sites between
tumor and normal samples at promoter regions on chromosomes
with the greatest number of copy number alterations that we



Fig. 6. Correlation to immune dysregulation (A) Dysregulated immune-associated (IA) genes of each subtype and gender cohort were clustered into modules by Cytoscape
Reactome FIViz software. Module 0 corresponded to cytokine expression and signaling-related pathways. Modules 1, 2, and 3 describe signaling and cancer pathways that
were grouped together according to strongest pairwise relationships of functional interactions, or interactions in which two proteins are involved in the same reaction as
input, catalyst, activator, or inhibitor. (B) Pathway enrichment analysis using Reactome FI was performed to identify pathways most correlated with IA gene modules (p < 0.05
and FDR < 0.05) (C) Barplot summarizing the number of microbes (differentially abundant in each patient cohort) correlated with IA genes in each module. Differentially
abundant microbes were correlated with dysregulated IA gene expression using the Kruskal-Wallis test. (D) Radar plots visualizing levels of immune cell infiltration,
measured using CIBERSORTx software, in subtype and gender cohorts.
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Fig. 7. Gene Set Enrichment Analysis (GSEA). (A) Heatmap of GSEA correlations associating microbe abundance to dysregulated pathways in the three subtype cohorts:
classical papillary thyroid carcinoma, follicular variant papillary thyroid carcinoma, tall cell papillary thyroid carcinoma (p < 0.05). Uncultured gammaproteobacteria
bacterium and Anabaena sp. K119 were both less abundant in tumor samples. Red corresponds to upregulated pathways, and blue corresponds to downregulated pathways.
(B) Heatmap of GSEA correlations associating microbe abundance to dysregulated pathways in both male and female patient cohorts (p < 0.05). The innermost ring
corresponds to enriched pathways in male tumor samples, and the middle ring corresponds to enriched pathways in female tumor samples. The outermost ring specifies the
microbe correlated to each dysregulated pathway. All microbes, except for Synechococcus sp. CC9311, were less abundant in tumor samples versus normal samples in both
cohorts. In male samples, Synechococcus sp. CC9311 was less abundant in tumor tissue than in normal tissue, while in females, Synechococcus sp. CC9311 was more
abundant in tumor tissue than in normal tissue. (C) Barplots visualizing most enriched pathways uniquely dysregulated (p < 0.05) in papillary thyroid cancer subtype cohorts.
(D) Barplots visualizing most enriched pathways uniquely dysregulated (p < 0.05) in gender cohorts. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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identified from our REVEALER analysis (p < 0.05). The most signif-
icantly methylated sites occurred on chromosomes 1 and 17 and
specifically at cell cycle related genes. For the majority of signifi-
cant correlations, including 55 in CPTC, 17 in FVPTC, and 5 in
TCPTC, lower microbe abundance was correlated with greater
extent of methylation at known tumor suppressor genes including
NEURL1B, POLE, and SRCIN1 [31–33] (Fig. 8C).

3.10. Validation with ENA dataset

All microbes identified from TCGA data and discussed in the
manuscript were also present in samples from the ENA dataset
(Fig. 9). Microbe abundance was comparable between the two
groups of tumor samples from each dataset. The ENA dataset did
1993
not contain normal samples, and further in vitro and in vivo studies
are necessary to validate our findings.
4. Discussion

While recent studies have shown the influence of the intratu-
mor microbiome on cancer development, the intratumor micro-
biome of papillary thyroid carcinoma has remained largely
unexplored. Our results indicate that distinct differences in
microbe abundance between tumor and normal samples can
explain differences in prognosis between patients of varied PTC
subtype and gender. PCA results revealed that Chroococcidiopsis
sp. and other cyanobacteria species abundant in female tumor



Fig. 8. (A) Associations between genomic alterations and microbe abundance of differentially abundant microbes in each subtype and gender cohort represented by mutation
heatmaps. Red on the left side of the heatmap indicates that the microbe is overabundant, while red on the right side of the heatmap indicates that the microbe is
underabundant. The following rows below the heatmap specify CNV type/genetic variants (alteration, deletion, mutation) across all samples. Each bar represents the presence
or absence of a CNV in one sample. Correlations were measured using the Repeated Evaluation of Variables conditionAL Entropy and Redundancy (REVEALER) algorithm
(CIC > 0.15, p < 0.05) (B) Boxplots correlating microbe abundance to BRAF V600E gene mutation, which is highly implicated in PTC. All boxplots were produced using the
Kruskal-Wallis statistical test, and mutation expression data was obtained from the Broad Firehose database. Mutation expression was converted to binary and categorical
variables of ‘‘HIGH” and ‘‘LOW” in order to conduct the Kruskal-Wallis statistical test. The median expression level for the BRAF_Mutation across all samples was calculated.
Values lower than the median value were assigned an expression level of ‘‘LOW,” and values above the median value were assigned an expression level of ‘‘HIGH.” The x-axis
refers to mutation type and level, and the y-axis refers to numerical abundance values of each microbe. The red plot indicates that differential Bradyrhizobium abundance in
TCPTC tissue is correlated with higher expression of the BRAF mutation. The blue plots indicate that lower microbe abundance in male tumor tissue is correlated with higher
expression of the BRAF mutation. (C) Boxplots correlating microbe abundance with extent of methylation at CpG sites. In this analysis, microbe abundance was converted to a
binary and categorical variable of ‘‘HIGH” and ‘‘LOW” in order to conduct the Kruskal-Wallis test. Microbe abundance was converted to binary and categorical variables of
‘‘HIGH” and ‘‘LOW” in order to conduct the Kruskal-Wallis statistical test. The median abundance level for each microbe across all samples was calculated. Values lower than
the median value were assigned an abundance level of ‘‘LOW,” and values above the median value were assigned an abundance level of ‘‘HIGH.” The x-axis refers to microbe
abundance level, and the y-axis refers to numerical extent of methylate at a particular CpG site. Overall, lower microbe abundance, as observed in PTC tissue, was correlated
with higher levels of methylation of cell-cycle related genes and tumor suppressors, including NEURL1B (cg07485775), POLE (cg27197524), and SRCIN1 (cg14122138). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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and normal samples produce great amounts of phycobiliproteins,
which possess high antioxidant capacity that prevents cancer cell
proliferation [34]. Overall, PCA showed major clustering, which
suggests that intratumor microbial populations across all patient
samples are fairly predictive. This highlights the potential of using
microbes as a diagnostic or treatment measure for PTC.Micrococcus
luteus, which is overabundant in TCPTC tissue, has been previously
shown to cause severe infection in immunocompromised patients
[35] as well as anaphylactoid reactions and early death in mice
[36]. Presence of M. luteus in TCPTC tissue can explain the aggres-
siveness of TCPTC. On the other hand, Frankia sp., which has exhib-
1994
ited antimicrobial activity against phytopathogens, may act
similarly against cancerous molecules in humans [37]. Among
the species differentially abundant in only CPTC and FVPTC, it
was recently found that presence of intratumor Trueperella pyoge-
nes was significantly correlated with lower PSA levels in prostate
cancer patients [38]. In addition, microbiota dysbiosis in CPTC
was correlated with the greatest number of IA genes, potentially
explaining why CPTC patients are low-risk, have superior progno-
sis, and respond better to immunotherapy compared to other PTC
subtypes that are less immune-associated [39]. Bradyrhizobium sp.
BTAi1, which we found to be uniquely dysregulated in TCPTC tissue



Fig. 9. Boxplots comparing microbe abundance between tumor samples from The Cancer Genome Atlas (TCGA) and a separate dataset with CPTC and FVPTC data obtained
from the European Nucleotide Archive (ENA) (Project ID: PRJEB11591). ‘‘Normal-TCGA” refers to adjacent normal thyroid tissue matched to cancer tissue for corresponding
patients.
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and positively correlated with MACIS score, has been shown to be
consistently overabundant in tumor tissue, especially in cervical
cancer [40]. Significant difference of Synechococcus sp. CC9311
abundance based on gender could explain differences in PTC pro-
gression between males and females.

Overall, the trend of overabundance of microbe species in nor-
mal samples strongly suggests that intratumor microbes in CPTC
and FVPTC are critical for stimulating tumor-suppressive activity.
Our analyses support the anti-tumor role of microbes by showing
that microbes may regulate CD4 and helper T-cells to defend
against tumor growth in FVPTC. However, the ubiquitous overex-
pression of immune cells may contribute to the aggressiveness of
PTC by causing systemic inflammation, thereby promoting tumor
growth, as seen in the male patient cohort and in the case of M.
luteus and Bradyrhizobium sp. BTAi1 abundance in TCPTC [41]. A
recently published study found that microbiome-derived ligands
and metabolites act directly on intestinal immune cells and travel
to remote tissues via the systemic circulatory system to modulate
immune cell expression. Some microbe species were found to pre-
vent disease-promoting activity and limit the expansion of iNKT
cells by producing sphingolipids. Other species were also found
to promote CD4+ T cell differentiation and to balance Th1 and
Th2 populations. On the other hand, dysbiosis of specific microbes
and the overexpression of TGF-b resulted in increased regulatory T-
cell expression and expansion of proinflammatory Th17 cells [42].
These results serve to validate our own findings that microbes can
regulate immune cell expression differently to mitigate or aggra-
vate disease.

In order to clarify microbes’ putative roles established by past
literature, we conducted pathway, mutation, and methylation cor-
relational analyses to elucidate mechanisms by which these
1995
microbes may regulate components of the immune landscape.
We found microbes abundant in CPTC and FVPTC to be negatively
correlated with oncogenic signatures, which is consistent with the
two subtypes being less deadly than TCPTC and poorly differenti-
ated thyroid cancer. We found microbe abundance in males to be
negatively correlated with tumor suppressive pathways, which
may explain worse prognosis in males, while microbe abundance
in females was positively correlated with DNA damage. We found
microbe abundance in males to correlate with a greater number of
chromosomal alterations compared to female patient samples.
Most significant methylation sites were found at cell-cycle and
tumor suppressor related genes, and lower microbe abundance
was correlated to higher levels of mutation, which suggests that
higher microbe abundance, as observed in normal samples, may
be necessary to properly regulate cell-cycle related genes.

To the best of our knowledge, we are the first to provide the lar-
gest comprehensive profiling of papillary thyroid carcinoma sam-
ples to date and show how the abundance of specific microbes
may contribute to pathogenesis in different subtypes of PTC. We
used numerous computational tools to rigorously collect and cor-
relate microbial abundance data to cancer stage and severity,
immune cell expression, cancer pathways, known cancer-related
copy number variations and mutations, andmethylation. Thorough
integration and interpretation of our data suggests how specific
microbes may work to mitigate tumor growth in CPTC and FVPTC
or aggravate tumor growth in TCPTC. While we cannot definitively
conclude if microbes directly cause differences in clinical outcome
of thyroid cancer or if microbe abundance is a result of the hypoxic
environment created by the tumor, previously published studies
on the intratumor microbiome strongly suggest that microbes
more likely contribute to pathogenesis than they are a mere result
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of it. One study found that differences in the gut microbiome com-
position directly related to p53’s tumor-suppressive effectiveness
[43]. Another study found that microbiota contributed to colorectal
cancer pathogenesis and genomic instability by secreting chemoki-
nes that recruit immunosuppressive myeloid-derived suppressor
cells, tumor-associated macrophages, and tumor-associated neu-
trophils and by inhibiting the activity of cytotoxic activity of natu-
ral killer cells. The study also found some microbe species,
including Clostridia, to play an anti-tumor role in colorectal cancer.
These publications provide support to our own findings that speci-
fic microbe species can play an anti-tumor or pro-tumor role in
thyroid cancer [44]. Nonetheless, since the results of our study
are limited to correlative data, controlled in vitro and in vivo exper-
iments are necessary to confirm our computational findings on the
mechanisms by which specific microbes contribute to tumor
growth or suppression in thyroid cancer subtypes.
5. Conclusion

In conclusion, our study significantly advances the understand-
ing of the papillary thyroid carcinoma microbiome composition, its
heterogeneity across samples of different PTC subtypes and patient
gender, and its relationship with clinical and immunologic vari-
ables. Microbiota abundant in CPTC (Frankia sp. and Trueperella
pyogenes) are highly correlated with immune-associated genes,
suggesting that metabolite-gene interaction may result in better
prognosis of CPTC compared to the more aggressive TCPTC pheno-
type. M. luteus and Bradyrhizobium sp. BTAi1, which are abundant
in TCPTC, are positively correlated with uncontrolled cell growth
pathways and oncogenic pathways (BIOCARTA_CTLA4_PATHWAY,
p53 instability). Our results suggest that the overabundance of M.
luteus and Bradyrhizobium sp. BTAi1 in TCPTC and male samples
causes dysregulation of these critical pathways, leading to high
levels of mutation and causing greater cancer severity (strong pos-
itive correlation to MACIS score). While validation analysis showed
similar levels of abundance of the same microbes that we identi-
fied from TCGA data, deeper sequencing, spatial examination of tis-
sue, and controlled experiments are necessary to confirm our
findings on the effects of PTC microbiota and microbial hetero-
geneity between samples. In vitro and in vivo experiments must
also be conducted to elucidate how varied physiological conditions
of the tumor microenvironment could possibly determine and reg-
ulate microbe abundance and activity and how microbes can be
utilized as therapeutic agents and prebiotic or probiotic treatment
options for PTC.
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