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Abstract

Transmission of infectious diseases between immobile hosts (e.g., plants, farms) is strongly

dependent on the spatial distribution of hosts and the distance-dependent probability of

transmission. As the interplay between these factors is poorly understood, we use spatial

process and transmission modelling to investigate how epidemic size is shaped by host

clustering and spatial range of transmission. We find that for a given degree of clustering

and individual-level infectivity, the probability that an epidemic occurs after an introduction is

generally higher if transmission is predominantly local. However, local transmission also

impedes transfer of the infection to new clusters. A consequence is that the total number of

infections is maximal if the range of transmission is intermediate. In highly clustered popula-

tions, the infection dynamics is strongly determined by the probability of transmission

between clusters of hosts, whereby local clusters act as multiplier of infection. We show that

in such populations, a metapopulation model sometimes provides a good approximation of

the total epidemic size, using probabilities of local extinction, the final size of infections in

local clusters, and probabilities of cluster-to-cluster transmission. As a real-world example

we analyse the case of avian influenza transmission between poultry farms in the

Netherlands.

Author summary

Transmission of infectious diseases between immobile hosts depends on the transmission

characteristics of the infection and on the spatial distribution of hosts. Examples include

infectious diseases of plants that are spread by wind or via vectors (e.g., Asiatic citrus can-

ker spread between citrus trees), diseases that are transmitted between local host popula-

tions (e.g., sylvatic plague transmitted between rodents living in burrows), diseases of

production animals that are spread between farms (e.g., avian influenza in poultry
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transmitted from farm to farm). We use spatial transmission modelling to investigate how

the total number of infections over the course of an epidemic is determined by host clus-

tering and spatial range of transmission. We find that for a given degree of clustering and

infectivity of hosts, the number of infections is maximal if the spatial range of transmis-

sion is intermediate. In highly clustered populations we show that epidemic size can be

approximated by a metapopulation model, illustrating that in such populations the trans-

mission dynamics is dominated by transmission between clusters of hosts.

Introduction

The process of transmission of an infection from one host to the next is central in the epidemi-

ology of infectious diseases. For an infectious disease of hosts that can move around the con-

tact process is a critical factor. For infections that are transmitted between sessile hosts, or

populations of hosts at a fixed location, the distance between hosts is often the main factor

affecting transmission. Examples include infectious diseases of plants that are spread by wind

or via vectors (e.g., Asiatic citrus canker, [1, 2]), diseases that are transmitted between local

host populations (e.g., sylvatic plague in feral dogs and gerbils [3, 4]), diseases of production

animals that are spread between farms (e.g., avian influenza in poultry;[5, 6]), and transmis-

sion of human pathogens between population centres (e.g., measles in the US; [7–10]).

Even though transmission dynamics in populations with immobile hosts is less complex

than in populations with mobile hosts, still only a partial understanding exists, and most theo-

retical analyses make simplifying assumptions from the outset. For instance, the distribution

of hosts in space is often not explicitly modelled; instead hosts are classified into one of several

subpopulations [11, 12]. In these models, the spatial component is implicitly modelled by

determining the connectivity of subpopulations. An alternative in which space is also implicit

are the so-called patch-occupancy models. Here, the population is made up of a number of

predefined suitable patches that may or may not be occupied by hosts or pathogens [13–17].

There are also models that evaluate the infection dynamics in an explicit spatial setting [5, 18–

21]. These models show how local density of hosts and spatial transmission range together

determine individual reproduction numbers and areas that are at risk of epidemic transmis-

sion. Ultimately, an improved understanding of the factors promoting epidemic transmission

can provide an improved basis for the design of effective intervention strategies. Examples

where such improvements have been suggested or have even been implemented include dis-

eases of humans, crop and livestock [20–25]. Further, it is now well-recognised that the evolu-

tionary trajectories of pathogens are also moulded by the spatial structure of host populations,

thereby, in turn shaping the epidemiological dynamics [26–30].

Inspired by the example of avian influenza transmitted between poultry farms in the Neth-

erlands, we analyse the interplay of host clustering and transmission range on the distribution

of outbreak size (i.e. number of hosts that are ultimately infected). For maximal transparency

of the arguments, we consider models that include only the essentials of host clustering and

that keep the total infection output per infected host constant across transmission range sce-

narios. Specifically, we study scenarios where the clustering of hosts is described by two

parameters, viz. the spatial variance of host density and the spatial range (or scale) over which

changes in host density occur. Even though such models do not capture the full complexity of

real-world systems, they have the advantage that parameters can be estimated from and com-

pared against real-world data [31], providing an invaluable link between data and model analy-

ses. With regard to the transmission range, we focus on scenarios in which the distance over
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which transmission occurs varies from highly localised to more dispersed, while keeping the

total infectious output per infected host constant. This enables us to study the influence of the

range of transmission per se, without complicating the interpretation by simultaneously

increasing or decreasing overall transmissibility. Such modelling assumptions are also biologi-

cally relevant when pathogen is released from the host in given amounts while being dispersed

across a transmission range that is controlled by factors external to the pathogen, e.g., in case

of the citrus canker pathogen being transmitted from tree to tree by vectors [32], or avian

influenza virus being transmitted from farm to farm by wind [33].

Our analyses uncover a trade-off between local pathogen propagation (which increases

with increased local transmission) and infection of novel clusters of hosts (which decreases

with increased local transmission) [19, 34]. In highly clustered populations, we show that the

size of an epidemic can be approximated using a metapopulation model [35] in which areas

with high density of hosts are the main centers of pathogens multiplication, and the surround-

ing areas with low density of hosts are epidemiologically inert, as they do not support contin-

ued pathogen transmission. Finally, we apply our computational approach to the real-world

example of avian influenza transmission between poultry farms in the Netherlands, in order to

elucidate how in this case transmission is shaped by the highly clustered nature of the Dutch

poultry farm population.

Modelling the spatial distribution of hosts

We use a framework that captures a range of possible spatial point patterns, from homogenous

to highly clustered, in a systematic way. Specifically, we generate 25 spatial patterns with iden-

tical numbers of hosts (n = 2,000) and differing only in the level of clustering (Fig 1). Each pat-

tern has been generated by a Log Gaussian Cox process, with an underlying isotropic spatial

stochastic process, a random field characterized by a mean log-intensity and a covariance func-

tion. Specifically, we generate realizations of random fields on a square grid of 201 km x 201

km by using a covariance model of the Whittle-Matern family. The spatial covariance of this

process is described by the function

C rð Þ ¼
s2

2ð1� nÞGðnÞ
ðskrkÞvKv skrkð Þ; ð1Þ

where ||r|| is the distance between two points, Γ and Kv are the Gamma and modified Bessel

function of second kind, ν is the smoothing parameter, s is the scale parameter, and σ2 is the

variance of the random field. Throughout, we take ν = 1 and vary the scale and variance

parameters. For the scale and variance parameters we take σ22{1,2,4,8,16} and s2 {0.1,2,4,8,16}

(Fig A in S1 Supporting Information). The mean intensity of the exponentiated random field

is fixed and is equal to
np
ng �ε

with the number of points np = 2,000, the number of grid cells ng =

40401 cells, and the smearing factor ε ¼ e1
2
s2

.

We generate different realisations of random field intensity grids with different levels of

clustering as a function of two parameters only (Fig B in S1 Supporting Information). Given

the intensity in each grid cell, we could sample from a Poisson distribution to generate a point

pattern with approximately 2,000 points. However, we exactly require 2,000 points. Therefore,

we sample from a Multinomial distribution with size 2,000 and with probabilities equal to the

scaled intensities that sum up to one.
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Fig 1. Spatial point patterns of 2,000 hosts in a square of 201 x 201 km. Different clusters patterns have been generated by varying the scale and the variance

parameters of the intensity of the random field. The scale parameters are: 0.1; 2; 4; 8; 16 and the variance parameters are 1; 2; 4; 8; 16. By varying the scale and variance of

the random field a wide variety of patterns are produced ranging from very homogenous patterns (bottom left hand side) to patterns characterized by huge isolated

clusters (top right hand side).

https://doi.org/10.1371/journal.pcbi.1008009.g001
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The spatial transmission model

We model the transmission between hosts using a spatially explicit SIR model. At any time t,
each host is classified in one of the three following states: susceptible (S), infected (I) or

removed (R). An uninfected host j (state S) will be infected by an infected host i (state I) with a

probability p(rij). The probability p(rij) depends on the (Euclidean) distance rij = |ri-rj| between

the two hosts and on the infectious period Ti of host i and is given by:

pðrijÞ ¼ 1 � e� hðrijÞTi : ð2Þ

The function h(rij) is called transmission kernel and it represents the hazard that infected

host i exerts on susceptible host j. Throughout we use a transmission kernel of the shape:

h rð Þ ¼
h0

1þ r
r0

� �a ; ð3Þ

where h0 is the hazard in the immediate vicinity of the infected host (r = 0), r0 is the distance at

which the hazard is half of the maximal hazard, and α is the decay parameter which determines

the shape of the kernel (Fig 2).

We simulate the model using a spatial Sellke construction [36–39]. Advantages of the Sellke

construction over the better known Gillespie algorithm are that the method i) enables exact

and efficient simulations of the epidemic [40], ii) is easily generalised, for instance by extension

to non-exponentially distributed sojourn times, and iii) enables coupling of the epidemics on

the same underlying probability space [41–43]. Such coupling of simulations facilitates the

comparison of scenarios, as we will show below.

The Sellke construction keeps track of the cumulative infection pressure experienced by

each susceptible host. Susceptible hosts are infected as soon as the cumulative infection pres-

sure exceeds a stochastic threshold to infection Qj. In the case where Qj ~ Exp(1) the resulting

epidemic corresponds to the SIR model, but the method can be generalized to other models

and sojourn distributions [44]. The cumulative force of infection (Λj(t)) exerted on an unin-

fected host j up to time t is given by

LjðtÞ ¼
R t

0
ljðt

0Þdt0 ð4Þ

where λj(t) is the force of infection on susceptible host j at time t exerted by all the infected

hosts at time t. Denoting the set of currently infected hosts by I, the force of infection on host j
is given by:

ljðtÞ ¼
P

i∊IhðrijÞ; ð5Þ

with h(r) the transmission kernel defined in Eq (3). The Sellke construction has proved valu-

able not only for efficient simulation of epidemics, but also for theoretical advances in a variety

of contexts [45–47].

Therefore, in the spatial transmission version of the Sellke construction, the probability of

infection depends on the host’s individual threshold and on its proximity to infected host(s).

Each infected host is characterized by an individual infectious period, which is drawn from a

gamma distribution with shape and scale parameters c and w (mean = cw; variance = cw2).

After the infectious period the host is not infectious anymore, it enters the removed state (R)

where it does not contribute to the cumulative force of infection.

For each host i (i = 1,. . .,N), we can derive the individual reproduction number Ri, which

represent the expected numbers of secondary infections caused by an infected host at the start

of the epidemic. When Ri>1, infection of the focal farm would cause on average more than
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Fig 2. Transmission kernels. The parameter h0 has been rescaled such that R0, for an homogenous configuration, is the same for all the three kernels. Specifically, R0 is

1.9 for all three kernels; α = 1.5 and h0 = 0.001 for the fat-tailed kernel; α = 2,1 and h0 = 0.005 for the default kernel; α = 4 and h0 = 0.026 for the default kernel. Parameter

values are based on estimates by Boender et al. [5] for the Dutch epidemic of avian influenza in 2003, but with rescaling to account for the decrease in number of farms

(from 5,360 to 2,157) and concomitant increase in size of farms since 2003.

https://doi.org/10.1371/journal.pcbi.1008009.g002

Fig 3. Temporal and spatial development of an epidemic in a clustered population and corresponding cumulative force of infection (Λ). A) Number of

infected hosts over time. B-D) Map of the cumulative force of infection (in logarithmic scale) at three points in time, respectively t = 35 days, t = 50 days; t = 75

days. For each point host, the force of infection cumulated until that time point is plotted. E-G) Map of the interpolated cumulative force of infection (in

logarithmic scale) at three time points. The pointwise cumulative force of infection (panels B-D) has been interpolated in a grid of 201 km by 201 km (grid

resolution 1x1 km) by using inverse distance interpolation [48].

https://doi.org/10.1371/journal.pcbi.1008009.g003
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one subsequent infection if all other farms in the vicinity were susceptible. When the infectious

periods are drawn from a parametric distribution, Ri can be derived explicitly. In our case, the

infectious periods T are drawn from a gamma distribution and Ri is given by [5]:

Ri ¼
P

j6¼i 1 �
1

1þ whðrijÞ

" #c( )

ð6Þ

Risk mapping for epidemic transmission

We use the cumulative force of infection at the end of epidemics as a tool to compare epidem-

ics. This is possible as the cumulative force of infection determines the probability that a host

is infected given that the surrounding host(s) are infected. Specifically, the probability of infec-

tion is given by the cumulative distribution function of the cumulative force of infection, i.e. p
(infection) = 1 − exp(-Λ).

As an illustration, we simulate an epidemic in a clustered population, and plot the spatial

and temporal unfolding of the cumulative force of infection (Fig 3). The number of infected

hosts slowly increases at the beginning of the epidemic (Fig 3A) in the vicinity of an initially

infected farm. As a consequence, the corresponding cumulative force of infection is high only

in the areas surrounding the cluster of infected hosts (purple red spot at the bottom of Fig 3B

and 3E). The sudden increases in the numbers of infected hosts at approximately t = 45 and

t = 65 mark the time points when the infection hits new densely populated clusters of hosts. In

this particular simulation, a significant fraction of hosts in dense clusters is ultimately infected,

and the cumulative force of infection (and hence probability of infection) is non-negligible

everywhere on the grid.

Spatial clustering and transmission range determine epidemic size

We use the parameters estimated earlier for the epidemic of avian influenza in the Netherlands

in 2003 to parameterize our default transmission kernel (blue line in Fig 2) [5]. We run this

model 2,000 times for each of the 25 spatial patterns (Supporting Information for details). For

each spatial pattern, every host is selected exactly once as the initial infective. To obtain a visu-

alisation of the impact of spatial structure we average the cumulative force of infection at the

end of epidemics over the 2,000 epidemics. From this we construct a risk map where the col-

ours represent the expected probability of infection at a given location if the epidemic would

start with a randomly selected host.

In Fig 4, we show risk maps across the 25 different spatial point patterns of Fig 1. The

cumulative force of infection shows little spatial variation in homogenous populations (Fig 4,

bottom left) and in populations with high degree of clustering (Fig 4, top right). In the former,

the probabilities of occurrence of a large epidemic are small (as indicated by low cumulative

force of infection) and infections mostly occur to the vicinity of the site of introduction of the

infection. In the latter, epidemics are large, and the probabilities of infection are high every-

where. Notice that this is true not only in the densely populated areas but also in areas with

low density of hosts. This is the result of very high levels of transmission in the densely popu-

lated areas once they are hit.

In populations with intermediate levels of clustering the cumulative force of infection is

variable, and is highest in larger areas with high density of hosts (Fig 4, middle panels). Overall,

higher values of cumulative force of infection are observed with an increase in variance (mov-

ing from left to right in Fig 4). This is because an increase in variance yields more clusters with

high density of hosts, facilitating epidemic transmission. For low values of the scale parame-

ters, however, these clusters are like isolated hot spots with very high density concentrated in a
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very small area, thereby impeding cluster-to-cluster transmission (bottom right hand side of

Fig 4).

Subsequently, we investigate how the sizes of epidemics depend on the dispersal character-

istic of the infection. To this purpose, we use a “local” and a “fat-tailed” kernel while keeping

overall transmissibility constant among scenarios (orange and green lines in Fig 2). For each

scenario, we run the model 2,000 times for the 25 spatial point patterns by starting each time

at a different location. The mean final size (i.e. the number of infected hosts) (Fig 5A–5C) is

generally higher in clustered than in homogenously populations, independently of the charac-

teristics of the transmission kernel.

Fig 4. Risk maps for the 25 patterns of points characterized by a different level of clustering. Colour codes indicate the interpolated cumulative force of

infection (Λ) at the end of the epidemic (logarithmic scale). The cumulative force of infection is averaged over 2,000 simulations.

https://doi.org/10.1371/journal.pcbi.1008009.g004
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Using fat-tailed kernels (Fig 5C) the probability of dispersion along long distances is rela-

tively high and it would allow, in aggregated populations, for transmission among clusters

(metapopulation dynamics). However, in such cases the individual reproduction numbers

inside the cluster are often lower than 1 and the epidemic cannot take off within the cluster. In

contrast, when dispersal is highly localized (Fig 5A), the final size is high inside the clusters but

metapopulation dynamics seldom occur. This also explains why the mean final size of an epi-

demic is relatively low in case of a local kernel (Fig 5A). For most levels of clustering the default

kernel (Fig 5B) appears to provide an optimal compromise between these opposing demands:

on the one hand there is substantial within-cluster epidemic transmission, while on the other

hand the probabilities of cluster-to-cluster transmission are still substantial, yielding higher

mean final size than in the two extreme scenarios (Fig 5B versus Fig 5A and 5C). The exception

to this rule is when the variance parameter is low and the scale parameter is high. In this case,

the mean final size is highest for the local kernel.

Fig 5. Means of the final size (expressed as percentage) plotted as a function of the scale (horizontal axis) and the variance of the random field (different

curves) that generated the different patterns. The line plots are obtained by applying the model with: A) α = 4, h0 = 0.026 (local kernel); B) α = 2.1, h0 = 0.005

(default kernel); C) α = 1.5, h0 = 0.001 (fat tailed kernel) on the point patterns with 2000 hosts shown in Fig 1. Panels D-F show results of simulations for the

three different kernels described above, performed on 25 new point patterns with 3000 hosts (high density). Panels G-I show results of simulations for the three

different kernels described above, performed on 25 new point patterns with 1000 hosts (low density).

https://doi.org/10.1371/journal.pcbi.1008009.g005
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We also investigate to what extent the aforementioned trade-off between localization and

dispersion depends on the density of hosts. To this purpose, we generate 25 new point patterns

with 3,000 hosts (high density) and 25 with 1,000 hosts (low density). For high density of

hosts, the mean final size (Fig 5D–5F), is highest in the case of the default kernel especially for

high values of the scale and variance. However, for low density of hosts (Fig 5G–5I) the mean

final size of the epidemic is highest for the local kernel. This result shows that the trade-off

between local transmission and long-range transmission also depends on the density of the

hosts.

The outbreak size in populations with strong clustering

In populations with strong clustering the epidemic size is determined by the clusters of hosts

where epidemic transmission is possible, and by the locations of these clusters. Fig 6A gives an

example, using the default kernel. In the example there are four high-density clusters. In each

of these, the individual reproduction numbers exceed the threshold value 1, while hosts in the

surrounding area all have reproduction number below 1 (see Supporting Information for

details). As in the previous examples, we run 2,000 simulations each time seeding the outbreak

in a different host. We then computed the outbreak size of each simulation, stratified by cluster

of origin (Fig 6).

For each of the high-density clusters the outbreak size is often much larger than the cluster

size, while epidemics that are seeded in the low-density areas often remain small, indicating

metapopulation-like dynamics where cluster-to-cluster transmission occurs frequently. Notice

furthermore that the probability of a small outbreak in a cluster is inversely related to the clus-

ter means of the individual reproduction numbers, and that even in major outbreaks that affect

all clusters the outbreaks size is always smaller than the number of hosts in the cluster (range

of outbreak sizes: 1,050–1,200; total number of hosts in clusters: 1,276) (Fig 6B; Table 1,

Table A in S1 Supporting Information). Table 1 shows the total epidemic size for each cluster

of origin, and Table A in S1 Supporting Information provides summary statistics of the high-

density clusters, in particular the probabilities of a major outbreak, and the probabilities that

an introduction in a given cluster results in a major outbreak in each of the other clusters.

Together, Fig 6 and Table 1 and A in S1 Supporting Information illustrate that the transmis-

sion dynamics is characterised by epidemic transmission in areas with high density of hosts,

hardly any onward transmission in areas with low density of hosts, and stochastic transmission

from highly infected areas to densely populated areas that are as yet uninfected.

In the following we provide a numerical approximation to the final size in populations

characterized by metapopulation-like dynamics, i.e. with high intensity of transmission within

clusters and hardly any transmission to and from hosts in areas outside the main clusters. To

do so we make a number of simplifying assumptions, mainly on independence between hosts,

and use readily available theory on the probability of a major outbreak and size of a major out-

break. In the approximation, subpopulations are defined by local clusters of hosts with individ-

ual reproduction numbers exceeding the threshold value 1. The approximation contains the

following steps:

1) The probability of local extinction. Upon introduction of the infection in a cluster

where epidemic transmission can occur, it is possible that the transmission chain gets stuck in

the first few infection generations. The probability that this occurs can be calculated using

branching process theory, and in our case is given by P(outbreak) = 1−q, where q is the solu-

tion in (0,1) of the equation q = g(f) and g(f) is the probability generating function (pgf) of the

offspring distribution [38, 49]. In our case, no explicit formula exists for the pgf of the offspring

distribution, but approximations are available. We use an approximation based on a gamma
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Fig 6. Distributions of outbreak sizes in clustered populations. A) Point pattern characterized by four high density clusters. The point pattern is generated by a

random field with variance = 8 and scale = 8 (Supporting Information). B) Distributions of outbreaks sizes stratified by origin of the epidemic obtained by running the

model in the point pattern shown in panel A. C) Map of Dutch poultry farms with more than 100 chickens. The point pattern is characterized by two clusters D)

Distributions of outbreaks sizes stratified by origin of the epidemic obtained by running the model among the Dutch farms. Hosts in the clusters have individual

reproduction number Ri>1, while hosts outside the clusters have individual reproduction number Ri� 1 (Supporting Information). The spatial SIR model with default

kernel has been run as many times as the number of hosts (2000 for panels A and B; 2175 for panels C and D, starting each time in a different host.

https://doi.org/10.1371/journal.pcbi.1008009.g006
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distributed individual reproduction numbers. In this case, the offspring distribution is negative

binomial, and we have

g fð Þ ¼ 1þ
R0

k
ð1 � f Þ

� �� k

; ð7Þ

where R0 = E(Ri) is the mean of the individual reproduction numbers in clusters, and k ¼ R2
0

VarðRiÞ

is the corresponding dispersion parameter. Table A in S1 Supporting Information shows the

results for the example of Fig 6A. We here used the methods of moments matching the means

and variances of the gamma distributions with the means and variances of the individual

reproduction numbers (see S1 Text and github repository available at https://github.com/

elisabeninca/spatial_modelling)

2) The expected outbreak size in clusters. With the individual reproduction numbers at

hand, we obtain an approximate final size relation as follows. We assume that the probability zi
that host i is infected by transmission within the cluster can be approximated by zi ¼ 1 � e� Ri�z

[50]. In essence this amounts to assuming that the hosts are independent (which they are not).

Summing the final size equation over all hosts i in a cluster I (i2I) and dividing by nI, the total

number of hosts in cluster I, yields a final size equation for the expected fraction of hosts that

is infected [50, 51]

�z ¼ 1 �
1

nI

PnI
i¼1
e� Ri �z : ð8Þ

For given Ri’s this equation is readily solved for the epidemic size �z , and subsequently by

insertion also for the individual zi. These calculations form the basis of the results presented in

Table 1, Tables A and B in S1 Supporting Information. An alternative approximation based on

the assumption that individual reproduction numbers are independently gamma distributed

yields quantitatively very similar results (S1 Text).

3) The probability of direct cluster-to-cluster transmission. Assuming that areas between

clusters are sparsely populated, we approximate the probability that an introduction in cluster

I gives rise to a large outbreak in cluster J by direct transmission using the probabilities of local

extinction (Eq (7)), the expected outbreak size in the cluster of origin (nJ �zJ) (Eq (8)), the dis-

tance between the centres of gravity of the clusters (rIJ), and the expected number of infections

in cluster J caused by an infection in cluster I (RIJ(rIJ); Eq (6)). The total hazard presented by

an introduction in cluster I to cluster J is then given by

HIJ ¼ ð1 � qJÞRIJðrIJÞnI �zI ð1 � qIÞ; ð9Þ

and the probability that an introduction in cluster I gives rise to a large outbreak in cluster J is

Table 1. Total epidemic size of the simulations and metapopulation approximation in a highly clustered population (Fig 6A). The total epidemic size for each cluster

of origin is calculated by summing upon all clusters the product of the mean outbreak size and the probability of a major outbreak in each cluster (see values in Table A in

S1 Supporting Information). Notice the fair correspondence between simulations and metapopulation approximation.

Simulation Metapopulation approximation
Seeding cluster n Total epidemic size Total epidemic size

1 358 614 689
2 283 533 608
3 418 457 558
4 217 344 450

https://doi.org/10.1371/journal.pcbi.1008009.t001
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then given by:

pIJ ¼ 1 � e� HIJ : ð10Þ

Hence, the probability of direct cluster to cluster transmission can, under certain assump-

tions, be approximated using standard epidemiological theory.

4) The overall probability of cluster to cluster transmission. Ultimately, what matters is

the probability that a cluster J is infected either directly or indirectly and that a major outbreak

ensues. In case of the four clusters in the example, the overall probabilities of transmission are

readily calculated using all direct, one-step, and two-step cluster-to-cluster transmission

routes. By comparing the observed simulated probabilities that an introduction in a cluster I
yields a major outbreak in cluster J with the corresponding calculated probabilities we find

that in the example of Fig 6A and 6B, the above calculations usually give a reasonable approxi-

mation. In fact, the mean absolute and relative errors are 0.035 and 0.073, respectively (Sup-

porting Information).

Metapopulation dynamics among poultry farms in The Netherlands

We apply the approach in the above example (Fig 6A and 6B) to the real-world example of

avian influenza transmission between poultry farms in The Netherlands (Supporting Informa-

tion for details). We define the clusters by applying the same criterion as before (Fig 6C) to

define the clusters where epidemic transmission is possible. Two main clusters are identified:

one in the centre of the country, the intensively farmed area called Gelderse Vallei and one in

the south-east of the country (Fig 6C). The final size of epidemics is for both clusters almost

always smaller than the cluster size (Fig 6D), indicating that cluster-to-cluster transmission is

rare (Table B in S1 Supporting Information). However, in the rare cases that cluster-to-cluster

transmission does occur, it can have major impact, as shown by the (infrequent) transmission

events from the smaller cluster 2 to the larger cluster 1 (Fig 6D). In contrast with the example

of Fig 6A (Table 1, Table A in S1 Supporting Information), the metapopulation model does

not provide a good approximation of the total epidemic size in case of avian influenza trans-

mitted between poultry farms in the Netherlands, indicating that non-negligible transmission

occurs outside the two clusters.

Discussion

In this study, we systematically analysed how the transmission of infectious diseases between

immobile hosts is determined by the interplay between host clustering and the spatial range of

the transmission kernel. Our analysis combined spatial process and transmission modelling,

using epidemic size as overall measure of transmission and using the local reproduction num-

ber and probability of infection as measures to characterize the spatial variation in transmis-

sion. We find that for a given degree of clustering and individual-level infectivity, the total

number of infections is maximal if the range of transmission is intermediate. Our results thus

complement and extend the findings of Brown and Bolker (19) that the epidemic threshold

can be maximal at intermediate transmission range and which is due to a trade-off between

local and distant transmission. In addition, we show that this trade-off also depends on the

density of hosts, being absent at low densities and being strong at high densities. This has prac-

tical implications, for instance for epidemics in crops or between farms in densely populated

areas. Furthermore we find that in highly clustered populations, the infection dynamics is

strongly determined by the probability of transmission between clusters of hosts, whereby

local clusters act as multiplier of infection. We show that in this regime, a metapopulation

model of the clusters can sometimes provide a good approximation of the total epidemic size.
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This metapopulation approximation is reminiscent of an earlier approach [52] and uses as

building blocks the probabilities of local extinction, the final size in clusters, and probabilities

of cluster-to-cluster transmission. The implication is that in the highly clustered regime, the

transmission dynamics between hosts can be viewed as in essence being determined by trans-

missions between clusters. The real-world example of avian influenza transmission between

poultry farms in the Netherlands shows that the highly clustered regime is relevant in practice

and that the metapopulation approximation provides additional insight into how the within-

cluster and between-cluster transmission risks together shape the final size distribution.

Regarding the overall probability of sustained transmission upon an introduction, we find

that it is low in homogenous populations and high in clustered populations. This is in agree-

ment with earlier results [19], in which the effect of spatial clustering on the epidemic thresh-

old was analysed. In addition, we observe that the probability of continued transmission is

generally higher for higher values of the variance parameter generating the distribution of

hosts. Our interpretation is that this is because in fields with high variance the probability of

early extinction is low, as most introductions are in dense (albeit possibly small) clusters.

The analysis presented here focuses mainly on one aspect of the transmission dynamics,

namely the final size of the epidemics. However, previous studies have shown that the rate of

dispersal of the infection might also affect the duration of the epidemics, i.e. high dispersal can

lead to shorter epidemics in the context of non-sessile hosts [53]. Other studies have shown

that the duration of epidemics might be influenced by the spatial distribution of hosts [54],

although the relationship is still poorly understood. Studies with experimental plant popula-

tion of hosts [55] showed that in clustered host populations, epidemics unfolded more quickly

at first, then later more slowly, than in hosts with uniform host distributions. It is therefore

plausible that the interplay between the rate of dispersal (e.g. the shape of the dispersal kernel)

and the spatial distribution of hosts also affects the duration of epidemics. This is at the present

still an open question.

In the analysis, we assumed for simplicity that the transmission kernel depends only on the

Euclidean distance between hosts. In fact, the development of models with realistic non-isotro-

pic distance-based kernels remains a big challenge [56]. This is perhaps even truer in cases

where transmission cannot be described with a distance-based function. For instance, our

results do not provide insight when transmission is determined by a trade network, and

instead trade network models would need to be employed [57–59].

Our initial aim was to develop a method that could a priori identify patterns of hosts that

would present a risk for sustained transmission after an introduction. This would be of great

practical relevance, for instance, in cases where an estimate (or guess) of the spatial range and

intensity of transmission would be available, but outbreaks would not (yet) have been

observed. A prominent example is the evaluation of the risk posed by introductions of avian

influenza in poultry, which in practice is based on just a handful of actual outbreaks [5, 60].

Fortunately, methods are available to estimate characteristics of spatial point patterns [31],

which could enable an a priori assessment of risk of epidemic transmission if estimates of the

scale and variance parameters would be available.

In addition, we believe that such approaches could aid determining the critical vaccination

coverage in populations with strong clustering of susceptible hosts [61].

Supporting information

S1 Supporting Information. Supplementary methods, tables and figures.

(PDF)

PLOS COMPUTATIONAL BIOLOGY Infectious disease dynamics in spatially structured populations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008009 July 6, 2020 14 / 18

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008009.s001
https://doi.org/10.1371/journal.pcbi.1008009


S1 Text. R code and Mathematica code.

(PDF)

Acknowledgments

The authors would like to thank Arno Swart and Axel Bonačić Marinović for useful comments

on the manuscript.

Author Contributions

Conceptualization: Elisa Benincà, Thomas Hagenaars, Jan van de Kassteele, Michiel van

Boven.

Formal analysis: Elisa Benincà, Thomas Hagenaars, Gert Jan Boender, Jan van de Kassteele,

Michiel van Boven.

Funding acquisition: Thomas Hagenaars, Michiel van Boven.

Investigation: Elisa Benincà.

Methodology: Elisa Benincà, Thomas Hagenaars, Gert Jan Boender, Jan van de Kassteele,

Michiel van Boven.

Software: Elisa Benincà, Michiel van Boven.

Supervision: Thomas Hagenaars, Jan van de Kassteele, Michiel van Boven.

Visualization: Elisa Benincà.

Writing – original draft: Elisa Benincà, Michiel van Boven.

Writing – review & editing: Thomas Hagenaars, Gert Jan Boender, Jan van de Kassteele.

References
1. Adrakey HK, Streftaris G, Cunniffe NJ, Gottwald TR, Gilligan CA, Gibson GJ. Evidence-based controls

for epidemics using spatio-temporal stochastic models in a Bayesian framework. Journal of the Royal

Society, Interface / the Royal Society. 2017; 14(136). Epub 2017/12/01. https://doi.org/10.1098/rsif.

2017.0386 PMID: 29187634; PubMed Central PMCID: PMC5721149.

2. Neri FM, Cook AR, Gibson GJ, Gottwald TR, Gilligan CA. Bayesian analysis for inference of an emerg-

ing epidemic: citrus canker in urban landscapes. PLoS Comput Biol. 2014; 10(4):e1003587. Epub

2014/04/26. https://doi.org/10.1371/journal.pcbi.1003587 PMID: 24762851; PubMed Central PMCID:

PMC3998883.

3. Davis S, Trapman P, Leirs H, Begon M, Heesterbeek JA. The abundance threshold for plague as a criti-

cal percolation phenomenon. Nature. 2008; 454(7204):634–7. Epub 2008/08/01. https://doi.org/10.

1038/nature07053 PMID: 18668107.

4. Heier L, Storvik GO, Davis SA, Viljugrein H, Ageyev VS, Klassovskaya E, et al. Emergence, spread,

persistence and fade-out of sylvatic plague in Kazakhstan. Proceedings Biological sciences. 2011; 278

(1720):2915–23. Epub 2011/02/25. https://doi.org/10.1098/rspb.2010.2614 PMID: 21345866; PubMed

Central PMCID: PMC3151704.

5. Boender GJ, Hagenaars TJ, Bouma A, Nodelijk G, Elbers AR, de Jong MC, et al. Risk maps for the

spread of highly pathogenic avian influenza in poultry. PLoS Comput Biol. 2007; 3(4):e71. Epub 2007/

04/24. https://doi.org/10.1371/journal.pcbi.0030071 PMID: 17447838; PubMed Central PMCID:

PMC1853123.

6. Hill EM, House T, Dhingra MS, Kalpravidh W, Morzaria S, Osmani MG, et al. Modelling H5N1 in Bangla-

desh across spatial scales: Model complexity and zoonotic transmission risk. Epidemics. 2017; 20:37–

55. Epub 2017/03/23. https://doi.org/10.1016/j.epidem.2017.02.007 PMID: 28325494.

7. Grenfell BT, Bjornstad ON, Kappey J. Travelling waves and spatial hierarchies in measles epidemics.

Nature. 2001; 414(6865):716–23. Epub 2001/12/14. https://doi.org/10.1038/414716a PMID: 11742391.

PLOS COMPUTATIONAL BIOLOGY Infectious disease dynamics in spatially structured populations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008009 July 6, 2020 15 / 18

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008009.s002
https://doi.org/10.1098/rsif.2017.0386
https://doi.org/10.1098/rsif.2017.0386
http://www.ncbi.nlm.nih.gov/pubmed/29187634
https://doi.org/10.1371/journal.pcbi.1003587
http://www.ncbi.nlm.nih.gov/pubmed/24762851
https://doi.org/10.1038/nature07053
https://doi.org/10.1038/nature07053
http://www.ncbi.nlm.nih.gov/pubmed/18668107
https://doi.org/10.1098/rspb.2010.2614
http://www.ncbi.nlm.nih.gov/pubmed/21345866
https://doi.org/10.1371/journal.pcbi.0030071
http://www.ncbi.nlm.nih.gov/pubmed/17447838
https://doi.org/10.1016/j.epidem.2017.02.007
http://www.ncbi.nlm.nih.gov/pubmed/28325494
https://doi.org/10.1038/414716a
http://www.ncbi.nlm.nih.gov/pubmed/11742391
https://doi.org/10.1371/journal.pcbi.1008009


8. Ellner SP, Bailey BA, Bobashev GV, Gallant AR, Grenfell BT, Nychka DW. Noise and nonlinearity in

measles epidemics: combining mechanistic and statistical approaches to population modeling. Am Nat.

1998; 151(5):425–40. Epub 2008/09/25. https://doi.org/10.1086/286130 PMID: 18811317.

9. Xia Y, Bjornstad ON, Grenfell BT. Measles metapopulation dynamics: a gravity model for epidemiologi-

cal coupling and dynamics. Am Nat. 2004; 164(2):267–81. Epub 2004/07/28. https://doi.org/10.1086/

422341 PMID: 15278849.

10. Becker AD, Birger RB, Teillant A, Gastanaduy PA, Wallace GS, Grenfell BT. Estimating enhanced pre-

vaccination measles transmission hotspots in the context of cross-scale dynamics. Proceedings of the

National Academy of Sciences of the United States of America. 2016; 113(51):14595–600. Epub 2016/

11/23. https://doi.org/10.1073/pnas.1604976113 PMID: 27872300; PubMed Central PMCID:

PMC5187737.

11. Keeling MJ, Bjørnstad ON, Grenfell BT. 17—Metapopulation Dynamics of Infectious Diseases. In:

Hanski I, Gaggiotti OE, editors. Ecology, Genetics and Evolution of Metapopulations. Burlington: Aca-

demic Press; 2004. p. 415–45.

12. May RM, Anderson RM. Spatial heterogeneity and the design of immunization programs. Mathematical

Biosciences. 1984; 72(1):83–111.

13. Tilman D. Competition and biodiversity in spatially structured habitats. Ecology. 1994; 75(1):2–16.

14. Hastings A. Disturbance, coexistence, history, and competition for space. Theoretical population biol-

ogy. 1980; 18(3):363–73.

15. Hanski I. Patch-occupancy dynamics in fragmented landscapes. Trends in Ecology & Evolution. 1994;

9(4):131–5.

16. Etienne RS, ter Braak CJ, Vos CC. Application of stochastic patch occupancy models to real metapopu-

lations. Ecology, genetics and evolution of metapopulations: Elsevier; 2004. p. 105–32.

17. Alcalay Y, Tsurim I, Ovadia O. Modelling the effects of spatial heterogeneity and temporal variation in

extinction probability on mosquito populations. Ecological Applications. 2017; 27(8):2342–58. https://

doi.org/10.1002/eap.1612 PMID: 28851019

18. Tildesley MJ, House TA, Bruhn MC, Curry RJ, O’Neil M, Allpress JL, et al. Impact of spatial clustering

on disease transmission and optimal control. Proceedings of the National Academy of Sciences. 2010;

107(3):1041–6.

19. Brown DH, Bolker BM. The effects of disease dispersal and host clustering on the epidemic threshold in

plants. Bulletin of mathematical biology. 2004; 66(2):341–71. https://doi.org/10.1016/j.bulm.2003.08.

006 PMID: 14871569

20. Ferguson NM, Donnelly CA, Anderson RM. Transmission intensity and impact of control policies on the

foot and mouth epidemic in Great Britain. Nature. 2001; 413(6855):542. https://doi.org/10.1038/

35097116 PMID: 11586365

21. Keeling MJ, Woolhouse ME, Shaw DJ, Matthews L, Chase-Topping M, Haydon DT, et al. Dynamics of

the 2001 UK foot and mouth epidemic: stochastic dispersal in a heterogeneous landscape. Science.

2001; 294(5543):813–7. https://doi.org/10.1126/science.1065973 PMID: 11679661

22. Hufnagel L, Brockmann D, Geisel T. Forecast and control of epidemics in a globalized world. Proceed-

ings of the National Academy of Sciences. 2004; 101(42):15124–9.

23. McQuaid CF, van den Bosch F, Szyniszewska A, Alicai T, Pariyo A, Chikoti PC, et al. Spatial dynamics

and control of a crop pathogen with mixed-mode transmission. PLoS computational biology. 2017; 13

(7):e1005654. https://doi.org/10.1371/journal.pcbi.1005654 PMID: 28746374

24. te Beest DE, Hagenaars TJ, Stegeman JA, Koopmans MP, van Boven M. Risk based culling for highly

infectious diseases of livestock. Veterinary research. 2011; 42(1):81.

25. Cook A, Gibson G, Gottwald T, Gilligan C. Constructing the effect of alternative intervention strategies

on historic epidemics. Journal of the Royal Society Interface. 2008; 5(27):1203–13.

26. Berngruber TW, Lion S, Gandon S. Spatial structure, transmission modes and the evolution of viral

exploitation strategies. PLoS pathogens. 2015; 11(4):e1004810. https://doi.org/10.1371/journal.ppat.

1004810 PMID: 25898324

27. Irvine MA, Bull JC, Keeling MJ. Disease transmission promotes evolution of host spatial patterns. Jour-

nal of The Royal Society Interface. 2016; 13(122):20160463.

28. Thrall PH, Burdon JJ. Host-pathogen dynamics in a metapopulation context: the ecological and evolu-

tionary consequences of being spatial. Journal of Ecology. 1997:743–53.

29. Kerr B, Neuhauser C, Bohannan BJ, Dean AM. Local migration promotes competitive restraint in a

host–pathogen’tragedy of the commons’. Nature. 2006; 442(7098):75. https://doi.org/10.1038/

nature04864 PMID: 16823452

PLOS COMPUTATIONAL BIOLOGY Infectious disease dynamics in spatially structured populations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008009 July 6, 2020 16 / 18

https://doi.org/10.1086/286130
http://www.ncbi.nlm.nih.gov/pubmed/18811317
https://doi.org/10.1086/422341
https://doi.org/10.1086/422341
http://www.ncbi.nlm.nih.gov/pubmed/15278849
https://doi.org/10.1073/pnas.1604976113
http://www.ncbi.nlm.nih.gov/pubmed/27872300
https://doi.org/10.1002/eap.1612
https://doi.org/10.1002/eap.1612
http://www.ncbi.nlm.nih.gov/pubmed/28851019
https://doi.org/10.1016/j.bulm.2003.08.006
https://doi.org/10.1016/j.bulm.2003.08.006
http://www.ncbi.nlm.nih.gov/pubmed/14871569
https://doi.org/10.1038/35097116
https://doi.org/10.1038/35097116
http://www.ncbi.nlm.nih.gov/pubmed/11586365
https://doi.org/10.1126/science.1065973
http://www.ncbi.nlm.nih.gov/pubmed/11679661
https://doi.org/10.1371/journal.pcbi.1005654
http://www.ncbi.nlm.nih.gov/pubmed/28746374
https://doi.org/10.1371/journal.ppat.1004810
https://doi.org/10.1371/journal.ppat.1004810
http://www.ncbi.nlm.nih.gov/pubmed/25898324
https://doi.org/10.1038/nature04864
https://doi.org/10.1038/nature04864
http://www.ncbi.nlm.nih.gov/pubmed/16823452
https://doi.org/10.1371/journal.pcbi.1008009


30. Burdon J, Thrall P. Spatial and temporal patterns in coevolving plant and pathogen associations. The

American Naturalist. 1999; 153(S5):S15–S33. https://doi.org/10.1086/303209 PMID: 29578777

31. Simpson D, Illian JB, Lindgren F, Sørbye SH, Rue H. Going off grid: Computationally efficient inference

for log-Gaussian Cox processes. Biometrika. 2016; 103(1):49–70.

32. Parry M, Gibson GJ, Parnell S, Gottwald TR, Irey MS, Gast TC, et al. Bayesian inference for an emerg-

ing arboreal epidemic in the presence of control. Proceedings of the National Academy of Sciences.

2014:201310997.

33. Ypma RJ, Jonges M, Bataille A, Stegeman A, Koch G, Van Boven M, et al. Genetic data provide evi-

dence for wind-mediated transmission of highly pathogenic avian influenza. The Journal of infectious

diseases. 2012; 207(5):730–5. https://doi.org/10.1093/infdis/jis757 PMID: 23230058

34. North AR, Godfray HCJ. The dynamics of disease in a metapopulation: The role of dispersal range.

Journal of theoretical biology. 2017; 418:57–65. https://doi.org/10.1016/j.jtbi.2017.01.037 PMID:

28130098

35. Hess G. Disease in metapopulation models: implications for conservation. Ecology. 1996; 77(5):1617–

32.

36. Sellke T. On the asymptotic distribution of the size of a stochastic epidemic. Journal of Applied Probabil-

ity. 1983; 20(2):390–4.

37. Andersson H, Britton T. Stochastic epidemic models and their statistical analysis: Springer Science &

Business Media; 2012.

38. Diekmann O, Heesterbeek H, Britton T. Mathematical tools for understanding infectious disease

dynamics: Princeton University Press; 2012.

39. Brand SP, Tildesley MJ, Keeling MJ. Rapid simulation of spatial epidemics: A spectral method. Journal

of theoretical biology. 2015; 370:121–34. https://doi.org/10.1016/j.jtbi.2015.01.027 PMID: 25659478

40. House T, Ross JV, Sirl D. How big is an outbreak likely to be? Methods for epidemic final-size calcula-

tion. Proc R Soc A. 2013; 469(2150):20120436.

41. Ball F. Coupling methods in epidemic theory. In: Mollison D, editor. Epidemic Models: Their Structure

and Relation to Data: Cambridge University Press; 1995. p. 34–52.

42. Gibson GJ, Streftaris G, Thong D. Comparison and assessment of epidemic models. Statistical Sci-

ence. 2018; 33(1):19–33.
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