
cancers

Article

Pre-Treatment T2-WI Based Radiomics Features for
Prediction of Locally Advanced Rectal Cancer
Non-Response to Neoadjuvant Chemoradiotherapy:
A Preliminary Study

Bianca Petresc 1,2 , Andrei Lebovici 2,3,*, Cosmin Caraiani 4,5,*, Diana Sorina Feier 2,3,
Florin Graur 6,7 and Mircea Marian Buruian 1,8

1 Department of Radiology, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology
of Târgu Mures, , 540139 Târgu Mures, , Romania; petresc.bianca@stud19.umfst.ro (B.P.);
mircea.buruian@umfst.ro (M.M.B.)

2 Department of Radiology, Emergency Clinical County Hospital Cluj-Napoca, 400006 Cluj-Napoca, Romania;
diana.feier@umfcluj.ro

3 Department of Radiology, “Iuliu Hat, ieganu” University of Medicine and Pharmacy Cluj-Napoca,
400012 Cluj-Napoca, Romania

4 Department of Medical Imaging, “Iuliu Hat, ieganu” University of Medicine and Pharmacy Cluj-Napoca,
400012 Cluj-Napoca, Romania

5 Department of Radiology, Regional Institute of Gastroenterology and Hepatology “Prof. Dr. Octavian
Fodor”, 400158 Cluj-Napoca, Romania

6 Department of Surgery, “Iuliu Hat, ieganu” University of Medicine and Pharmacy Cluj-Napoca,
400012 Cluj-Napoca, Romania; florin.graur@umfcluj.ro

7 Department of Surgery, Regional Institute of Gastroenterology and Hepatology “Prof. Dr. Octavian Fodor”,
400158 Cluj-Napoca, Romania

8 Department of Radiology, Emergency Clinical County Hospital Târgu Mures, , 540136 Târgu Mures, , Romania
* Correspondence: andrei.lebovici@umfcluj.ro (A.L.); cosmin.caraiani@umfcluj.ro (C.C.)

Received: 14 May 2020; Accepted: 9 July 2020; Published: 14 July 2020
����������
�������

Abstract: Locally advanced rectal cancer (LARC) response to neoadjuvant chemoradiotherapy (nCRT)
is very heterogeneous and up to 30% of patients are considered non-responders, presenting no tumor
regression after nCRT. This study aimed to determine the ability of pre-treatment T2-weighted based
radiomics features to predict LARC non-responders. A total of 67 LARC patients who underwent
a pre-treatment MRI followed by nCRT and total mesorectal excision were assigned into training
(n = 44) and validation (n = 23) groups. In both datasets, the patients were categorized according
to the Ryan tumor regression grade (TRG) system into non-responders (TRG = 3) and responders
(TRG 1 and 2). We extracted 960 radiomic features/patient from pre-treatment T2-weighted images.
After a three-step feature selection process, including LASSO regression analysis, we built a radiomics
score with seven radiomics features. This score was significantly higher among non-responders in
both training and validation sets (p < 0.001 and p = 0.03) and it showed good predictive performance
for LARC non-response, achieving an area under the curve (AUC) = 0.94 (95% CI: 0.82–0.99) in the
training set and AUC = 0.80 (95% CI: 0.58–0.94) in the validation group. The multivariate analysis
identified the radiomics score as an independent predictor for the tumor non-response (OR = 6.52,
95% CI: 1.87–22.72). Our results indicate that MRI radiomics features could be considered as potential
imaging biomarkers for early prediction of LARC non-response to neoadjuvant treatment.
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1. Introduction

Colorectal cancer is the third most common cancer worldwide and the second leading cause of
oncologic-related mortality around the globe [1]. Rectal cancers account for approximately 30% of
the total cases of colorectal malignancies [2]. Currently, the standard-of-care treatment for patients
with locally advanced rectal cancer (LARC) is neoadjuvant chemotherapy (nCRT) followed by total
mesorectal excision (TME) [3–5]. However, the individual response to nCRT is very heterogeneous,
ranging from a pathological complete response to no tumor regression or even disease progression [6–10].
The percentage of patients who do not achieve tumor regression after nCRT, defined as non-responders
(NR), is reported to be between 7 and 30% [11–15]. Additionally, the potential side effects of nCRT can
be very serious such as hematologic, gastrointestinal or dermatologic effects, incontinence or sexual
dysfunction [15–19] and 14–27% of patients with LARC who received this regimen developed acute
or long-term grade 3–4 toxic effects as reported by Sauer et al. [20]. It is therefore argued that for
non-responders the side effects of nCRT may outweigh its benefits, while nCRT does not improve the
clinical outcome of these patients [21–23]. Early prediction of NR before the beginning of neoadjuvant
therapy could be of great value in order to avoid ineffective treatment and to develop a more tailored
strategy of care such as a primary surgical intervention or an intensified treatment regimen.

The rectal cancer response to nCRT can be assessed by means of endorectal ultrasound or MRI
examination performed at the end of the neoadjuvant treatment [24,25]. However, the final confirmation
of the tumor response can only be made by histopathologic examination of the surgical specimens and
identifying non-responders before surgery still remains a great challenge. Extensive efforts have been
made in various fields, focusing on gene expression, mutations and molecular metabolites as potential
noninvasive biomarkers for predicting the response to nCRT in LARC patients [26–30].

In the radiology field, a new method, radiomics, has been developed based on the idea that
medical images contain more information than what the human eye can perceive [31]. Radiomics
represents a non-invasive, high-throughput post-processing technique, which extracts large amounts
of quantitative features from routinely acquired medical images [32,33]. By measuring the distribution
and relationships of gray levels within a lesion, radiomics texture features can reveal nonvisual
information associated with tumor heterogeneity and the microenvironment; thus providing a
detailed and comprehensive characterization of the tumor phenotype [34–36]. The heterogeneity of a
tumor can be potentially related with its response to treatment and prognosis since heterogeneous
tumors are prone to have a more aggressive behavior and increased resistance to treatment [37–39].
Since they are high dimensional inputs, radiomics features have been employed in multiple machine
learning and deep learning algorithms for developing radiomics signatures useful in the oncology
field [40–43]. Recent studies have demonstrated the efficacy of radiomics features as biomarkers
for lesion characterization, therapy guidance and tumor prognosis among various types of cancers,
including rectal cancer [44–48].

Based on these previous promising results, we hypothesize that magnetic resonance (MR)-based
radiomics features may have a potential role in predicting locally advanced rectal cancer resistance
to nCRT. The aim of the present study was to investigate the value of T2 weighted-based radiomics
features extracted from baseline MRI for the prediction of non-responding rectal tumors and to develop
a radiomics score based on these parameters.

2. Results

2.1. Patients Characteristics

A total of 67 patients (mean age: 60.36 ± 10.89) were included in this study. The 67 patients were
split into two groups: training group (44 patients) and validation group (23 patients). In the training
group, 17 patients were classified according to the tumor regression grade (TRG) as non-responders
(NR) having TRG = 3, while the remaining 27 were classified as responders (R), 5 of them having
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TRG = 1 and 22 with TRG = 2. In the validation group, 8 patients were identified as non-responders,
while 15 subjects were added to the responders group (5 with TRG 1 and 10 with TRG 2).

Patients and tumor characteristics are summarized in Table 1. No significant differences were
observed in terms of age, gender, T stage and N stage between responders and non-responders in
both training and validation groups. In the training group, tumor length, tumor differentiation grade
and mesorectal fascia involvement (MRF) were significantly different among non-responders versus
responders, however, this was not confirmed in the validation dataset.

Table 1. Baseline characteristics of the study population.

Variable
Training

p Value
Validation

p ValueResponders
(n = 27)

Non-Responders
(n = 17)

Responders
(n = 15)

Non-Responders
(n = 8)

Age (years) 58.33 ± 1.38 56.47 ± 2.94 0.572 66.40 ± 9.60 64.12 ± 16.10 0.722
Gender 0.185 0.057

Male 22 (66.7%) 11 (33.3%) 5 (45.5%) 6 (54.5%)
Female 5 (45.5%) 6 (54.5%) 10 (83.3%) 2 (16.7%)

Tumor length (cm) 58.81 ± 17.99 68.88 ± 11.60 0.04 * 62.06 ± 15.01 61.50 ± 13.89 0.929
Tumor differentiation grade 0.01 * 0.149

Well differentiated 15 (83.3%) 3 (16.7%) 5 (83.3%) 1 (16.7%)
Moderately differentiated 11 (55.0%) 9 (45.0%) 9 (69.2%) 4 (30.8%)

Poor differentiated 1 (16.7%) 5 (83.3%) 1 (25.0%) 3 (75.0%)
Clinical tumor stage (cT) 0.907 0.779

T2 4 (66.7%) 2 (33.3%) 2 (50%) 2 (50%)
T3 19 (59.4%) 13 (40.6%) 11 (68.8%) 5 (31.2%)
T4 4 (66.7%) 2 (33.3%) 2 (66.7%) 1 (33.3%)

Clinical nodal stage (cN) 0.3 0.757
N1 8 (72.7%) 3 (27.3%) 8 (66.7%) 4 (33.3%)
N2 19 (57.6%) 14 (42.4%) 7 (63.6%) 4 (36.4%)

MRF 0.024 * 0.679
Positive 4 (33.3%) 8 (66.7%) 10 (62.5%) 6 (37.5%)

Negative 23 (71.9%) 9 (28.1%) 5 (71.4%) 2 (28.6%)

* Statistically significant p < 0.05; results are presented as the mean ± standard deviation or number (%).

2.2. Feature Selection and Radiomics Score Construction—Training Set

A total of 960 radiomics features were extracted from T2W images for each patient. After the
inter-reader agreement evaluation, only features with an intraclass coefficient ≥ 0.75 were included in
the further steps (874 features). To develop the radiomics signature, we first performed a univariate
analysis of radiomics features between the responders and non-responders groups. 74 features with an
adjusted p value < 0.05 were included in the next step (Appendix A Table A1).

These features were secondly reduced to 12 potential predictors by applying a Spearman correlation
analysis, excluding redundant features with correlation coefficients >0.9/<−0.9. The correlation matrix
is shown in Appendix A Figure A1. Finally, through a least absolute shrinkage and selection operator
(LASSO) binary logistic regression method using 10-fold cross-validation, seven radiomics features
with non-zero coefficients were selected to construct the radiomics score (Rad-Score). The feature
selection process using the LASSO algorithm is shown in Figure 1a,b.

The radiomics score was a linear combination of these 7 features, weighted according to their
respective LASSO coefficients (presented in Table 2). The equation for calculating the Rad-Score is
the following:

Rad− Score =
7∑

i = 0

Ci ∗Xi + b

where Ci is the coefficient of the ith feature, Xi the ith feature and b the intercept.
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Figure 1. (a) Selection of the tuning parameter lambda (λ) using 10-fold cross validation. Binomial 
deviances from the least absolute shrinkage and selection operator (LASSO) regression cross-
validation model were plotted as a function of log (λ). The dotted vertical lines were drawn at the 
optimal λ value based on the minimum criteria and 1 standard error of the minimum criteria. The 
optimal λ value of 0.028 and log (λ) = −3.57 was selected. (b). LASSO coefficient profiles of the 12 
radiomics features. The vertical dotted line was plotted at the optimal λ value, resulting in seven 
radiomics feature with non-zero coefficients. 

The radiomics score was a linear combination of these 7 features, weighted according to their 
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Table 2. List of selected radiomics features and their coefficients for calculation of the radiomics score. 

Variable Coefficient 
95% CI 

Upper Lower 
Intercept −0.875   

log-sigma-5-0-mm-3D_glszm_SmallAreaEmphasis 1.621 −0.460 4.428 
wavelet-LHL_glcm_Correlation −0.581 −3.954 3.322 

wavelet-LHL_firstorder_10Percentile 0.660 −1.536 16.268 
wavelet-HHL_glcm_MCC −0.074 −4.724 20.345 
wavelet-HHL_glcm_Imc1 0.984 −0.232 8.356 

wavelet-HHL_firstorder_Kurtosis −0.144 −7.629 7.938 
wavelet-HHL_glszm_SmallAreaHighGrayLevelEmphasis −0.070 −4.027 24.241 

Figure 1. (a) Selection of the tuning parameter lambda (λ) using 10-fold cross validation. Binomial
deviances from the least absolute shrinkage and selection operator (LASSO) regression cross-validation
model were plotted as a function of log (λ). The dotted vertical lines were drawn at the optimal λ value
based on the minimum criteria and 1 standard error of the minimum criteria. The optimal λ value of
0.028 and log (λ) = −3.57 was selected. (b). LASSO coefficient profiles of the 12 radiomics features.
The vertical dotted line was plotted at the optimal λ value, resulting in seven radiomics feature with
non-zero coefficients.

Table 2. List of selected radiomics features and their coefficients for calculation of the radiomics score.

Variable Coefficient
95% CI

Upper Lower

Intercept −0.875
log-sigma-5-0-mm-3D_glszm_SmallAreaEmphasis 1.621 −0.460 4.428

wavelet-LHL_glcm_Correlation −0.581 −3.954 3.322
wavelet-LHL_firstorder_10Percentile 0.660 −1.536 16.268

wavelet-HHL_glcm_MCC −0.074 −4.724 20.345
wavelet-HHL_glcm_Imc1 0.984 −0.232 8.356

wavelet-HHL_firstorder_Kurtosis −0.144 −7.629 7.938
wavelet-HHL_glszm_SmallAreaHighGrayLevelEmphasis −0.070 −4.027 24.241

The radiomic score was calculated for each patient (Figure 2a). There was a significant difference
of the Rad-Score between non-responders and responders, patients from the first group having higher
values (0.92 ± 0.87 vs. −2.00 ± 1.55, p < 0.001).
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Figure 2. (a). Bar charts of the radiomics signature for each patient in the training set. (b). Bar charts of
the radiomics signature for each patient in the validation set. The orange bars indicate the patients in
the non-responders group, while the blue bars represent patients in the responders group.

2.3. Performance of the Radiomics Score—Training Set

Figure 3a shows the receiver operating characteristic (ROC) curve for the radiomics score in the
training set. The radiomics score predicted a rectal cancer non-response to nCRT with an area under the
curve (AUC) of 0.94 (95% CI, 0.82–0.99) and accuracy of 91%, resulting in a sensitivity of 100% (95% CI,
80.5–100%) and a specificity of 85.2% (95% CI, 66.3–95.8%) for the cut-off value of −0.42. Additionally,
the radiomics signature achieved a positive predictive value (PPV) of 81% (95% CI, 58.1–94.6%) and a
negative predictive value (NPV) of 100% (95% CI, 85.2–100%).

ROC analysis was also performed for each of the seven radiomics features to evaluate their
individual diagnostic performance. Table 3 shows the AUC, sensitivity, sensibility, PPV and NPV
for the determined cut-off values. However, the performance of the Rad-Score was higher than the
performance of each separate feature for distinguishing non-responders.

Using the variables with significant difference among responders and non-responders in the
training group: tumor length, tumor differentiation grade and MRF status, we conducted a multivariate
logistic regression analysis to develop a semantical-pathological model for the prediction of LARC
non-response (Table 4). Afterwards, we constructed a complex model, adding the radiomics score
to the semantical-pathological model (Table 5). In the complex model, the Rad-Score was identified
as an independent predictor of the LARC lack of response to neoadjuvant treatment (OR = 6.52,
CI: 1.87–22.72). The ROC curves of the semantic-pathological model and the complex model are
shown in Figure 4. Adding the radiomics score to the first model improved its performance for the
differentiation of non-responders (AUC = 0.97 (95% CI, 0.66–0.91) vs. AUC = 0.80 (95% CI, 0.87–0.99),
p = 0.007).
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Figure 3. (a). Receiver operating characteristic (ROC) curve of the radiomics score for predicting locally
advanced rectal cancer (LARC) non-responders—training set. (b). ROC curve of the radiomics score
for predicting LARC non-responders—validation set.

Table 3. Individual diagnostic performance of the selected radiomics features.

Variable Cut-Off
Value AUC Accuracy

(%)
Se
(%)

Sp
(%)

PPV
(%)

NPV
(%)

logsigma5_0mm_3D_glszm_SmallAreaEmphasis −0.24 0.80 72.7 94.1 59.3 59.3 94.1
wavelet-LHL_glcm_Correlation −0.58 0.74 65.6 100 44.4 53.1 100.0

wavelet_LHL_firstorder_10Percentile −0.28 0.71 75.0 94.1 62.9 61.5 94.4
wavelet-HHL_glcm_MCC 0.34 0.69 63.6 88.2 48.1 51.7 86.7
wavelet_HHL_glcm_Imc1 0.01 0.75 75.0 88.2 66.7 62.5 90.0

wavelet_HHL_firstorder_Kurtosis 0.33 0.69 68.2 70.6 66.7 57.1 78.3
wavelet_HHL_glszm_SmallAreaHighGrayLevel Emphasis 0.13 0.71 68.2 82.3 59.3 56.0 84.2

Table 4. Multivariate logistic regression analysis for the prediction of the non-responders—semantical-
pathological model.

Variable Coefficient Std. Error p Value Odds Ratio (OR)
95% CI

Upper Lower

Tumor length 0.03 0.02 0.23 1.03 0.98 1.08
Tumor differentiation

grade—poorly differentiated −2.67 1.23 0.10 0.07 0.05 1.30

MRF status—positive −1.38 0.84 0.30 0.25 0.06 0.77
Constant 0.906 2.14 0.67 2.47

Table 5. Multivariate logistic regression analysis for the prediction of non-responders—complex model.

Variable Coefficient Std. Error p Value Odds Ratio (OR)
95% CI

Upper Lower

Tumor length 0.008 0.06 0.889 1.0008 0.90 1.13
Tumor differentiation

grade—poorly differentiated −4.561 3.30 0.167 0.10 0.00 7.92

MRF status—positive −0.904 1.52 0.551 0.40 0.02 7.92
Rad-Score 1.876 0.64 0.003 * 6.52 1.87 22.72
Constant 4.11 5.14 0.42 61.17

* Statistically significant p < 0.05.
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Figure 4. ROC curves of the semantical-pathological and complex models score for predicting
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2.4. Validation of the Radiomics Score

In the validation set, the Rad-Scores of non-responders patients were significantly higher than
the scores of responders (0.52 ± 1.74 vs. −1.62 ± 2.36, p = 0.03; Figure 2b). The performance of the
Rad-Score for discrimination of non-responders was confirmed in the validation set, yielding an
AUC = 0.80 (95% CI, 0.58–0.94) (Figure 3b). For the previous cut-off value of −0.42 (established in the
training group), in the validation group there were recorded sensitivity = 75% (95% CI, 34.9–96.8%),
specificity = 60% (95% CI, 32.3–83.7%), PPV = 50% (95% CI, 21.1–78.9%), NPV = 81.8% (95% CI,
48.2–97.7%) and accuracy of 65%.

3. Discussion

Our study evaluated the ability of radiomic features extracted from T2-weighted images to help
differentiate non-responders (NR) from responders. In recent years, there was an increased interest
in the field of radiomics for predicting the rectal cancer response to nCRT, with numerous research
being conducted in this respect. The majority of studies focused on predicting the pathological
complete response, using a single MRI sequence (T2-WI or apparent diffusion coefficient (ADC)
maps) or a multiparametric approach [49–55]. Additionally, there are several studies that investigated
the performance of radiomic features to discriminate good responders [56–60]. In contrast to our
research, these investigations either used other pathologic classifications for the quantification of tumor
regression grade such as Dworak [57] or Mandard [59] or the authors divided their study population
different from our approach, including in the non-responders’ group both patients with a TRG score of 2
and 3 [56,58,60]. In our research, we used the Ryan TRG classification and we considered patients with
a TRG score of 3 as non-responders, while patients with TRG 2 were included in the responders’ group.
We chose this split method since TRG 3 is equivalent to significant fibrosis outgrown by cancer/no
fibrosis with extensive residual cancer, meaning that the neoadjuvant treatment had little to no effect on
the rectal tumor, while TRG 2 represents residual cancer outgrown by fibrosis, indicating that the rectal
tumor tissue achieved a moderate degree of regression after nCRT [61]. To the best of our knowledge,
there are only a few published papers that studied the performance of radiomics features to predict
the resistance of rectal cancer to nCRT [62–64] and all of them applied the same criteria of defining
the rectal cancer non-response as in this present paper. However, two of them used only parameters
extracted from the ADC maps for the development of the prediction model [62,63]. In the study by
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Zhou et al., the authors built a multiparametric prediction model, including features from T2 weighted
images, diffusion weighted images and contrast-enhanced T1-weighted images [64].

As well as these previous studies, we analyzed only the pre-treatment, baseline MRI scans. For the
prediction of non-responders, it is important to identify these patients in an early phase, before or
shortly after the beginning of nCRT in order to be able to adjust their regimen or to offer them alternative
treatment options. However, contrary to the above-mentioned investigations, we selected only T2-WI
images for our radiomic analysis and model construction. High-resolution T2-weighted sequence
is the most important one for the assessment and local staging of rectal cancer since it offers a good
visualization of rectal wall layers and it provides good contrast between tumor, surrounding fat and
mesorectal fascia [65]. Therefore, it is an essential sequence included in the standard rectal MR protocol
and it is always performed when evaluating rectal tumors [66]. Moreover, when compared to images
obtained by another sequence, T2-WI images have better stability in appearance. With respect to
diffusion weighted images, these can be affected by distortion or by susceptibility artifacts, which may
alter tumor segmentation and feature extraction [67,68]. The contrast-enhanced T1-WI sequence is not
routinely included in the MRI protocol for rectal cancer staging. The potential of radiomics features
extracted from MRI T2-weighted images for predicting a pathological complete response of rectal
cancer was demonstrated in several recent studies, which reported promising results of their radiomics
models with AUCs ranging from 0.69 to 0.93 [51,52,57,69–71]. In contrast to MRI, a recent study
had demonstrated that radiomics features extracted from CT images showed no predictive power
for complete pathological response in LARC [72], while another research showed that MRI T2-WI
radiomics model performed better than CT radiomics model for predicting the LARC response to
nCRT [73].

In addition to the previous papers that investigated the performance of radiomics for the prediction
of non-response in LARC, our radiomics analysis was performed using the whole tumor volume rather
than using only a single section. Although segmenting a volume of interest (VOI) is a time-consuming
process, we believe that selection of a single slice might not be very representative, and the information
obtained from a 3D lesion might be more reliable for the characterization of the entire tumor.

Regarding the image preprocessing and feature extraction, we extracted radiomics features
acquired from both unfiltered and filtered images, applying Laplacian of Gaussian (LoG) filters and
Wavelet filters. The majority of the features included in our final radiomic score were obtained from
filtered images using the wavelet filters. Wavelet filters are useful for signal denoising and there
are several radiomics studies that applied them for different purposes [74–76], including in the field
of rectal cancer [72,77,78]. In a recent research of He et al., which aimed to develop an MRI-based
radiomics signature for tumor grading of rectal carcinoma, the most relevant features included in
their classifier were derived from wavelet-filtered images [77]. Additionally, in the predictive model
constructed by Liang et al. for the prediction of metachronous liver metastasis in patients with
rectal cancer, their optimal selected feature model based on T2-WI consisted only of parameters
extracted from filtered images using wavelet filters [78]. Additionally, wavelet filters have proved to
be useful even for preprocessing CT images, a significant proportion of the selected features from the
recent study of Hamerla et al. for the differentiation of complete LARC responders being obtained
from wavelet-filtered images [72].

Our radiomics model mainly consisted of first-order features derived from histogram and second
order features derived from the grey-level co-occurrence matrix (GLCM). First-order features describe
the distribution of voxel intensities within a region/volume of interest, without considering spatial
interactions [34]. Second order or textural features that characterize the spatial relationship between
voxels are calculated from different matrices. GLCM quantifies the frequency of specific gray values
along a distance or direction [79].

As for the predictive performance of our constructed radiomics model, it achieved AUCs of
0.94 and 0.80 in the training and validation datasets, both indicators showing a good performance.
Our results are in concordance with Zhou et al., their radiomics score yielding an AUC of 0.822 [64].
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However, their model was a multiparametric one and it included only one feature from T2-WI [64].
In their research, Zhou et al. also developed a single-modality, T2-WI based radiomics signature,
which achieved an AUC of 0.602 and 0.630 in the training and validation cohorts, both values being
lower than the AUC obtained in the present paper. One possible explanation for these discrepant
results can be the different pre-processing and feature extraction algorithm, our study applying
in addition wavelet filters, while Zhou et al. extracted the radiomics features only from original
and LoG-filtered images. Moreover, our observations are similar with the findings of Liu et al.
and Yang et al., which reported AUCs of 0.908 and 0.83 respectively for predicting resistant rectal
adenocarcinoma using ADC maps as a basis for feature extraction [62,63]. Additionally, our study
was relatively in line with the prior investigations of Yi et al. and Shi et al., whose radiomics models
achieved AUCs of 0.90 and 0.91 respectively for distinguishing good responders from non-good
responders, although their classification of non-responders was slightly different than ours [57,58].
In our research, the multivariate analysis indicated that the radiomics score was the only independent
predictor for the differentiation of LARC non-responders, having an odds ratio of 6.52.

Although our results were significant, this study had some limitations. First, this was a
single-institution, retrospective study with a small sample size of patients. Our statistical approach
included only one classification method: the binary logistic regression method and more advanced
classifiers may provide better prediction performance. Therefore, further larger studies, preferably
prospective and multicentric, are needed to overcome these limitations and to validate the reported
data in order to provide a better generalization and to assess the potential for clinical translation of our
proposed radiomics signature.

4. Materials and Methods

4.1. Study Population

The Institutional Review Board of Regional Institute of Gastroenterology and Hepatology “Prof. Dr
Octavian Fodor” Cluj-Napoca approved this retrospective, HIPAA (Health Insurance Portability and
Accountability Act)-compliant study and waived the requirement for written informed consent
(IRB 5337/22.04.2020). We performed a retrospective analysis in our electronic medical database for
patients diagnosed with rectal cancer who underwent an MR examination for initial tumor staging
between January 2017 and May 2019. The inclusion criteria were patients diagnosed with locally
advanced rectal cancer on pre-treatment (baseline) MR examination who underwent long-course
neoadjuvant CRT followed by total mesorectal excision. The exclusion criteria were as follows: patients
who did not complete the standard nCRT (12 patients), patients who did not undergo surgical resection
(5 patients), patients without available tumor regression grading information on the pathological
record (6 patients) and MR examinations with insufficient quality for proper analysis (9 patients).
Our final study population consisted of 67 eligible patients, who were divided into a training group
(44 patients) and into a validation group (23 patients).

4.2. Image Acquisition

All patients underwent rectum MRI scans 1 or 2 weeks before the start of chemoradiation.
The examinations were performed in a single institution, using a 1.5 Tesla MRI scanner
(Symphony TIM upgrade, Siemens AG, Erlangen, Germany) with an 8-channel phased array body coil.
The protocol included three T2 weighted turbo spin-echo (TSE) sequences in the sagittal, oblique-axial
high-resolution and oblique-coronal high-resolution planes. DWI images were obtained in axial planes
using EPI sequences at three b-values (b50, b400 and b 800 s/mm2) and restriction of diffusion was
quantified by the ADC value. The parameters of the MRI sequences are provided in Table 6. No bowel
preparation was received prior to the MRI examination.
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Table 6. MRI parameters.

MRI Parameter
TSE T2-Weighted Image

DWI
Sagittal HR Coronal Oblique HR Axial Oblique

TR (ms) 3500 3500 4000 5800
TE (ms) 91 91 80 96
Slice no 28 25 25 30

Bandwidth (Hz/pixel) 391 391 391 1132
FOV (mm) 220 220 200 250

Slice thickness (mm) 3 4 3 4
Matrix 256 × 256 256 × 256 256 × 256 136 × 160

Acquisition time (min) 4 5.5 6 4.5

4.3. Reference Standard

Surgically resected specimens were histopathologically examined and tumor regression grading
(TRG) was established according to the criteria proposed by Ryan et al. [80]: TRG 1 = no viable
cancer cells, or single cells, or small groups of cancer cells; TRG 2 = residual cancer outgrown by fibrosis
and TRG 3 = significant fibrosis outgrown by cancer, or no fibrosis with extensive residual cancer.

4.4. Preprocessing, Segmentation and Feature Extraction

All oblique-axial high-resolution T2-WI TSE image were retrieved from a picture archiving and
communication system (PACS, Carestream, Canada) for image segmentation. Three radiologists:
one radiology resident (Bianca Petresc) and two senior radiologists with 10 and 8 years of experience
(Cosmin Caraiani and Andrei Lebovici) in gastrointestinal MRI reviewed all images and reached a
consensus about the tumor location. Afterwards, the radiology resident and one senior radiologist (C.C.)
have independently segmented the whole tumor volume, by manually delineating the lesion on each
consecutive slide, excluding the uninvaded rectal wall and the intestinal lumen. The segmentations were
then independently reviewed by the other senior radiologist (Andrei Lebovici) and adjustments were
made by agreement when necessary. All the three radiologists were blinded to the pathological results.
The 3D segmentation of the tumors was performed using a designated, open source software 3D Slicer,
version 4.10.2 (available at: https://www.slicer.org/). Figure 5 shows an example of tumor segmentation.

Prior to radiomic feature extraction, all MR images were pre-processed by the method proposed by
van Griethuysen et al. [81] for noise reduction, intensity normalization and discretization. Six categories
of radiomics features were extracted: 14 shape features, 18 first-order features, 22 gray level
co-occurrence matrix (GLCM) features, 16 gray-level size zone matrix (GLSZM) features, 16 gray-level
run length matrix (GLRLM) features and 14 gray-level dependence matrix (GLDM) features. Features
were automatically extracted from images with and without preprocessing filters. The filters included
Laplacian of the Gaussian (LoG) filter with sigma values of 3.0 and 5.0 mm and wavelet filter,
using either a low band-pass filter or a high-band pass filter in x, y, z directions. Finally, a total of
934 radiomic features were obtained. PyRadiomics version 2.1.2. [82] was used for pre-processing
and feature extraction and detailed information about the PyRadiomics configuration is provided in
Supplementary File S1.

https://www.slicer.org/
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4.5. Feature Selection and Statistical Analysis

The inter-reader agreement was evaluated using the intraclass coefficient (ICC) between the
features extracted from the radiology resident’s segmentation and the senior radiologist’s segmentation.
Only features with an ICC ≥ 0.75 were selected for further feature selection process, resulting in a
total of 874 features. All radiomics extracted features were normalized by transforming the data into
standardized ranges across all subjects with a mean of 0 and an SD of 1 (z-score transformation).
To control overfitting in our radiomics model, we used three feature selection steps. First, we performed
a univariate analysis using the Mann–Whitney U-test to identify the features with significant difference
between the responders and non-responders groups. The Benjamini–Hochberg (BH) method was
used to adjust for multiple testing. BH-adjusted p values less than 0.05 were considered significant.
Secondly, the Spearman correlation analysis was used to reduce redundancy. This was conducted
between any 2 features and when the Spearman coefficient was >0.9/< − 0.9 the feature with the higher
p-value in the univariate analysis was eliminated. Finally, regularized multivariate logistic regression
analysis with the least absolute shrinkage and selection operator (LASSO) conducted by a 10 cross-fold
cross-validation was applied to the previously selected features. The final selected features were
combined into a radiomics score, which was calculated by a linear combination of the selected features
weighted by their respective LASSO coefficients. Receiver operating characteristic (ROC) curve analysis
was conducted and area under the curve (AUC), sensitivity, specificity and accuracy were calculated
to evaluate the performance of the radiomics score for the prediction of non-responders in both
training and validation sets. Multivariate analysis using binary logistic regression (enter method) was
performed to identify independent predictors of non-responders, including as independent variables
the patients’ and tumors’ characteristics and the radiomics score. p values < 0.05 were considered
statistically significant. All statistical analysis was performed using commercially available software
SPSS Statistics for Windows, version 18.0 (SPSS Inc., Chicago, IL, USA) and free available R software
version 3.6.3 using the “glmnet”, “selectiveinference” and “corrplot” packages.

5. Conclusions

Our study has shown that radiomics features extracted from pre-treatment T2-weighted images
may play a role as a potential imaging biomarker to predict rectal cancer resistance to neoadjuvant
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CRT. However, to confirm its ability for the prediction of LARC non-response, our proposed radiomics
model needs to be externally validated in larger, multicentric studies.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/7/1894/s1,
Supplementary File S1: PyRadiomics Configuration.
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Appendix A

Table A1. List of selected radiomics features by univariate analysis for classification of non-responders
vs. responders.

Feature p Value *

log-sigma-5-0-mm-3DglszmSizeZoneNonUniformityNormalized 0.001
log-sigma-5-0-mm-3Dglszm_SizeZoneNonUniformity 0.013
log-sigma-5-0-mm-3DglszmGrayLevelNonUniformity 0.044

log-sigma-5-0-mm-3Dglszm_SmallAreaEmphasis 0.001
wavelet-LHL_glcm_Contrast 0.035

wavelet-LHLglcmDifferenceEntropy 0.033
wavelet-LHLglcmInverseVariance 0.044

wavelet-LHLglcmIdm 0.044
wavelet-LHLglcmCorrelation 0.009

wavelet-LHLglcmSumEntropy 0.049
wavelet-LHLglcmImc2 0.033
wavelet-LHLglcmImc1 0.020

wavelet-LHLglcmDifferenceAverage 0.031
wavelet-LHLglcmId 0.042

wavelet-LHLgldmDependenceEntropy 0.033
wavelet-LHLgldmSmallDependenceEmphasis 0.042

wavelet-LHLgldmDependenceNonUniformityNormalized 0.044
wavelet-LHLfirstorderInterquartileRange 0.037

wavelet-LHLfirstorderUniformity 0.037
wavelet-LHLfirstorderRobustMeanAbsoluteDeviation 0.042

wavelet-LHLfirstorderEntropy 0.047
wavelet-LHLfirstorder10Percentile 0.020

wavelet-LHLglrlmGrayLevelNonUniformityNormalized 0.042
wavelet-LHLglrlmRunVariance 0.044
wavelet-LHLglrlmRunEntropy 0.047

wavelet-LHLglszmGrayLevelVariance 0.047
wavelet-LHLglszmGrayLevelNonUniformityNormalized 0.031

wavelet-LHLglszmZonePercentage 0.047
wavelet-LLHgldmDependenceEntropy 0.014

wavelet-LLHglszmGrayLevelNonUniformityNormalized 0.031
wavelet-LLHglszmSizeZoneNonUniformity 0.049

wavelet-HHLglcmJointAverage 0.039
wavelet-HHLglcmSumAverage 0.039

wavelet-HHLglcmContrast 0.042
wavelet-HHLglcmDifferenceEntropy 0.047
wavelet-HHLglcmDifferenceVariance 0.037

wavelet-HHLglcmAutocorrelation 0.037
wavelet-HHLglcmSumEntropy 0.049

wavelet-HHLglcmMCC 0.037
wavelet-HHLglcmSumSquares 0.039

wavelet-HHLglcmClusterProminence 0.021
wavelet-HHLglcmImc2 0.010
wavelet-HHLglcmImc1 0.005

http://www.mdpi.com/2072-6694/12/7/1894/s1
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Table A1. Cont.

Feature p Value *

wavelet-HHLglcmDifferenceAverage 0.047
wavelet-HHLglcmClusterTendency 0.033

wavelet-HHLgldmGrayLevelVariance 0.031
wavelet-HHLgldmHighGrayLevelEmphasis 0.023

wavelet-HHLgldmSmallDependenceHighGrayLevelEmphasis 0.029
wavelet-HHLgldmDependenceNonUniformityNormalized 0.047

wavelet-HHLgldmLargeDependenceEmphasis 0.042
wavelet-HHLgldmLargeDependenceLowGrayLevelEmphasis 0.039

wavelet-HHLgldmDependenceVariance 0.039
wavelet-HHLfirstorderMeanAbsoluteDeviation 0.049

wavelet-HHLfirstorderMaximum 0.049
wavelet-HHLfirstorderRootMeanSquared 0.035

wavelet-HHLfirstorderMinimum 0.029
wavelet-HHLfirstorderRange 0.033

wavelet-HHLfirstorderVariance 0.031
wavelet-HHLfirstorderKurtosis 0.039

wavelet-HHLglrlmGrayLevelVariance 0.031
wavelet-HHLglrlmGrayLevelNonUniformityNormalized 0.044

wavelet-HHLglrlmRunVariance 0.047
wavelet-HHLglrlmLongRunEmphasis 0.047

wavelet-HHLglrlmShortRunHighGrayLevelEmphasis 0.027
wavelet-HHLglrlmShortRunEmphasis 0.047

wavelet-HHLglrlmLongRunHighGrayLevelEmphasis 0.031
wavelet-HHLglrlmRunPercentage 0.047

wavelet-HHLglrlmRunEntropy 0.042
wavelet-HHLglrlmHighGrayLevelRunEmphasis 0.021

wavelet-HHLglrlmRunLengthNonUniformityNormalized 0.047
wavelet-HHLglszmGrayLevelVariance 0.026

wavelet-HHLglszmSmallAreaHighGrayLevelEmphasis 0.019
wavelet-HHLglszmZonePercentage 0.049

wavelet-HHLglszmHighGrayLevelZoneEmphasis 0.023

* Adjusted p-values for multiple tests (Benjamini–Hochberg method).
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