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Abstract

Background: Root hair, a special type of tubular-shaped cell, outgrows from root epidermal cell and plays
important roles in the acquisition of nutrients and water, as well as interactions with biotic and abiotic stress.
Although many genes involved in root hair development have been identified, genetic basis of natural variation in
root hair growth has never been explored.

Results: Here, we utilized a maize association panel including 281 inbred lines with tropical, subtropical, and
temperate origins to decipher the phenotypic diversity and genetic basis of root hair length. We demonstrated
significant associations of root hair length with many metabolic pathways and other agronomic traits. Combining
root hair phenotypes with 1.25 million single nucleotide polymorphisms (SNPs) via genome-wide association study
(GWAS) revealed several candidate genes implicated in cellular signaling, polar growth, disease resistance and
various metabolic pathways.

Conclusions: These results illustrate the genetic basis of root hair length in maize, offering a list of candidate genes
predictably contributing to root hair growth, which are invaluable resource for the future functional investigation.
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Background
Root hairs are special tubular-shaped outgrowth from
root epidermal cells, which vastly enlarge the root sur-
face area and assist in water and nutrient absorption
such as NO3−, Cl−, Ca2+, K+, Zn2+, and Mn2+, as well as
the interactions with biotic and abiotic stresses [1, 2].
On the other hand, the length, density and morphology
of root hair are influenced by various endogenous and
environmental factors, including phytohormones and
mineral nutrients, especially under phosphate (Pi) limit-
ing condition [3–7]. The development of root hair can

be separated into three basic stages: specification of the
epidermal cell fate, initiation of the root hair outgrowth,
and elongation of the hair via tip growth [2, 8].
As a unique single cell type in plant biology, the devel-

opment, physiology, and cell biology of root hair have
been intensively studied in Arabidopsis [2, 6, 9–11]. In
contrast, only a few of genes functional in root hair de-
velopment have been known in monocot crop species
[12]. In rice, some RSL class I and RSL Class II genes
have been reported to positively regulate the develop-
ment of root hairs, suggesting that the mechanism of
RSL-regulated root hair development is at least partly
conserved among grasses and eudicots [13, 14]. In
addition, several genes involved in the elongation of root
hairs also have been identified in rice, including
OsEXPA8 [15], OsEXPA17 [16], OsCSLD1 [17], OsFH1
[18], OsSNDP1 [19] and OsPHR [20]. So far, a total of
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six genes involved in root hair development have been
identified in maize. Roothairless 1 (rth1), rth3, rth5 and
rth6 mutants are deficient in root hair formation in all
root types, and exhibit defect in different stages of root
hair development [21–24]. The ZmLRL5 gene, encoding
a basic helix–loop–helix (bHLH) transcription factor,
was demonstrated to play a positive role in orchestrating
the translational process by directly regulating the ex-
pression of translational processes/ribosomal genes dur-
ing maize root hair growth. The loss-of-function of
ZmLRL5 resulted in a dramatic reduction in the elong-
ation of root hair [25]. Recently, ZmTIP1, encoding a
functional S-acyltransferase, was identified to participate
in drought tolerance by regulating root hair growth [26].
Although these reports have made great contribution to
understand molecular regulation of root hair develop-
ment in maize, it remains unclear how the root hair
growth is controlled in a natural population.
In recent years, genome-wide association studies

(GWAS), which is based on linkage disequilibrium (LD) in
a panel, has offered high mapping resolution and could ef-
fectively benefit the exploration of the genetic basis associ-
ated with complex quantitative traits [27–30]. In maize,
LD decay is rapid due to its extensive genetic diversity.
Therefore, maize is recognized as an ideal model plant for
conducting association studies [31–34]. To date, GWAS
has successfully used to identify numerous candidate loci/
genes controlling sever-al morphological or metabolic
traits in maize, such as shoot apical meristem size, husk
trait, plant height, kernel weight, drought tolerance, grain
drying rate and grain moisture [35–41]. In this study, we
used a maize association panel including 281 inbred lines
with tropical, subtropical, and temperate backgrounds to
interpret the phenotypic diversity and the genetic basis of
root hair development. Several candidate genes putatively
involved in root hair development were identified, provid-
ing a useful resource for further functional studies to elu-
cidate molecular pathways involved in maize root hair
growth and development.

Results
Phenotypic variation among root hair length
The association population in this study consists of a
global collection of 281 diverse maize inbred lines
[42, 43]. The root hair length of primary roots was
measured from 3-day-old plants (Table S1). The no-
ticeable variation in root hair length was represented
by B73 and Mo17, two inbred lines commonly used
in maize biology (Fig. 1a). The measured root hair
trait followed a normal distribution with a slight right
skew (Fig. 1b). The trait maximum, minimum, mean,
standard deviation and coefficient of variation were
listed in Table 1. The ratio of root hair length of in-
bred lines to B73 control ranged from 0.2 to 1.42

with the mean of 0.95, indicating that the root hair
length exhibits broad variations in the association
population.
All 281 lines used in this study include three sub-

populations and one mixed group, which are referred
to TST, SS, NSS, and MIXED [42]. TST subpopula-
tion is of tropical or subtropical origin, consisting of
112 lines. SS and NSS subpopulations are of temper-
ate origin, consisting of 22 and 30 lines, respectively.
MIXED subpopulation is inbred lines which were not
accurately assigned into the above three subpopula-
tions based on the phylogenic analysis [42, 43]. To in-
vestigate the effect of population structure on root
hair phenotypes, the root hair length was compared
between different subpopulations. Compared with SS,
NSS and MIXED subpopulations, the mean value of
TST subpopulation was significantly less, suggesting
that maize inbred lines from tropical/subtropical
origin tend to have shorter root hairs (Fig. 1c).

Associations of root hair phenotype with agronomic traits
and metabolic pathways
As root hairs play a crucial role in the plant acquisi-
tion of nutrients and water, we postulated that root
hair morphology is likely coordinated with other
agronomic traits and amino acid metabolism. To
verify our hypothesis, the Pearson-correlations were
calculated after comparing root hair length with 17
agronomic traits and 18 amino acid contents in
maize kernel, which were previously measured in the
same association panel [44, 45]. The 17 agronomic
traits include seven morphological traits, i.e. plant
height (PH), ear height (EH), ear leaf width (ELW),
ear leaf length (ELL), tassel maximum axis length
(TMAL), tassel branch number (TBN), leaf number
above ear (LNAE); seven yield-related traits, i.e. ear
length (EL), ear diameter (ED), cob diameter (CD),
kernel number per row (KNPR), cob grain weight
(GW), cob weight (CW), kernel width (KW); three
flowering-related traits, i.e. days to anthesis (DTA),
days to silking (DTS) and days to heading (DTH)
[44]. The amino acids measured in dry maize kernel in-
clude Ala, Arg, Asx, Glx, Gly, Lle, Leu, Lys, Met, Pro, Phe,
Val, Tyr, His, Cys, Thr and Ser, and the total concentra-
tion of amino acids [45].
Of the 17 agronomic traits examined, 7 were corre-

lated with root hair length (P ≤ 0.05), which were EH,
ELW, TBN, LNAE, and all three flowering-related
traits (Fig. 2a). Meanwhile, of the 18 amino acids, 3
were correlated with root hair length (P ≤ 0.05),
which were Gly, Lys and Arg (Fig. 2b). The Pathway
Association Study Tool (PAST) was further performed
to elucidate the biochemical pathways likely contrib-
uting to root hair elongation [46–48]. Under the
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statistical threshold P < 0.01, a total of 8 and 1 meta-
bolic pathways exhibited significant associations with
increased or decreased root hair length, respectively
(Table S2 and S3). Overall, the close correlations of
root hair length with other agronomic or metabolic
traits above-mentioned suggest that the root hair oc-
currence is correlated to other aspects of plant devel-
opment and growth.

GWAS on maize root hair length
Using 1,253,814 SNPs covering the whole maize genome
with a minor allele frequency (MAF) ≥ 0.05, we per-
formed GWAS to explore the genetic loci underlying the
root hair length. Under the mixed linear model (MLM)
[49, 50], which accounts for false positives arising from
the population structure (Q matrix) and kinship rela-
tionship (K matrix) of the natural variation in the popu-
lation, a stringent threshold of –log10P ≥ 5.2 was
designated as the threshold for calling significantly asso-
ciated SNPs. The Manhattan plots for the SNPs associ-
ated with root hair length were shown in Fig. 3. In total,
18 significant SNPs were detected, which are located on
chromosomes 1, 2, 4, 5, 6, and 10, explaining the pheno-
typic variations ranged from 6.3 to 10.1%. Moreover,
GWAS was also performed using the general linear

Fig. 1 Phenotypic variation of root hair length. a Diagram of B73 (left) and Mo17 (right) root hair length. Bars = 1 mm. b Frequency distributions
of root hair length. Classes of trait values are shown on X axis and counts of inbred lines with the phenotypic values for these bins are shown on
Y axis. c Boxplot of root hair length distribution in different subpopulations. Kruskal-Wallis test was applied to examine the difference of traits
among subpopulations. Different letters indicate significance levels at P ≤ 0.05. No. of inbred lines included in each subpopulation are 117, 30, 22
and 112 for MIXED, NSS, SS and TST, respectively

Table 1 Phenotypic statistics of root hair trait for the 281
inbred lines

Traita Minimum Maximum Mean SDb CVc

Ratio 0.20 1.42 0.95 0.24 0.2526
a The ratio of root hair length of inbred lines to B73 control
b Standard deviation
c Coeffcient of variation
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model (GLM). Under the stringent threshold of –
log10P ≥ 6.5, a total of 14 SNPs were identified, 12 out of
which overlapped with MLM-derived SNPs (Fig. S1). As
there were 8 MLM-derived SNPs on chromosome 6
present within the same LD region (r2 ≥ 0.2), and the
leading SNP_ 75630277 was selected as the representa-
tive of this locus (Table 2), yielding a total of 11 SNPs
used for the further analysis.

Genes co-localized with significant SNPs
Protein-coding genes harboring or nearest to the
significant SNPs were nominated as the candidates as-
sociated with root hair (Table 2). The allelic effect of
haplotype coordinated with significant SNPs on root
hair phenotypes was assessed (Fig. 4 and Figure S2).
The most significant SNP (chr6.S_ 34221678, P-value =
1.70E-07, R2 = 9.0%) locates in the fourth exon of
GRMZM2G403003 (Fig. 4a), encoding a TON1 recruit-
ing motif (TRM) protein. The average root hair length
for A allele was substantially shorter than T allele (P ≤
0.01, Fig. 4d). The second significant SNP (chr5.S_

198197360, P-value = 1.80E-07, R2 = 9.8%) locates in
the third intron of GRMZM2G044851 (Fig. 4b),
encoding the nitrate transporter 1.5. The average root
hair length for allele with A was greatly longer than al-
lele with C (P ≤ 0.01, Fig. 4e). The third significant SNP
(chr6.S_ 75630277, P-value = 3.97E-07, R2 = 9.7%),
which is the one with other 7 SNPs within the same LD
region, locates at the promoter region of
GRMZM5G825276 (Fig. 4c), encoding a GDSL-like
lipase. The average root hair length for allele with A
was greatly longer than allele with G (P ≤ 0.01, Fig. 4f).
It is noted that the haplotype analysis for the other
eight genes was depicted in Fig. S2.

Discussion
Root hairs enlarge the root surface area and thereby
play vital roles in plant absorbing water and nutrient,
as well as coping with biotic and abiotic stress. In re-
cent years, extensive mutation-based studies have
been carried out to dissect the genetic regulatory
network determining root hair development, but we

Fig. 2 Correlation coefficients of root hair length with other agronomic and amino acidmetabolic traits. a Correlation coefficients between root
hair length with 17 agronomic traits. b Correlation coefficients between root hair length with 18 metabolic traits. *Significant at P ≤ 0.05;
**significant at P ≤ 0.01. The correlation level is color-coded according to the color key plotted in the middle

Fig. 3 GWAS showing significant P-values associated with root hair length based on the mixed linear model (MLM). a Manhattan plots of MLM
for root hair length. The horizontal dashed line represents the significance threshold -log10(P) = 5.2. b QQ plot of MLM showing the ratio of the
observed and the expected P-values for root hair length. The solid diagonal lines represent agreement between observed and expected
probability distributions assuming null SNP–trait association
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lack fundamental knowledge about whether and how
root hair is controlled in a plant natural variation
population. In this work, we interpreted the natural
variation and the associated genetic architecture of
root hair length in a maize association panel, and a
set of putative candidate genes controlling root hair
development were revealed by performing GWAS
analysis.

Phenotypic variability and coordination of root hair
length with other processes of plant development and
growth
Maize was domesticated from its wild ancestor, teosinte
(Zea mays ssp. parviglumis) about 8000–9000 years ago.
Nowadays, modern maize displays a large geographic
distribution from tropical to temperate climate. There-
fore, population structure is associated with significant
differences in maize morphology [51]. In this study, we
observed that root hair exhibits wide length variation
with normal distribution. Interestingly, tropical lines dis-
played shorter root hairs relative to temperate lines, im-
plying that the adaption of maize from tropical to
temperate regions was probably accompanied by the
character of lessening root hair growth.
In our investigation, the root hair at the length dimen-

sion was negatively rather than positively correlated with

several morphological and metabolic traits. This is
somewhat counter-intuitive. However, it is known that
the maize plant is a monocot and has a fibrous root sys-
tem consisting of massive adventitious and lateral roots,
the anatomy of which is markedly different from dicoty-
ledonous model Arabidopsis [52–54]. In this context, it
is possible that the other aspects of root system may en-
able maize to have adequate larger surface area to sup-
port plant growth under normal soil condition.
Meanwhile, it is worthy to be mention that to facilitate
high throughput phenotyping, the root hair from the
emerging primary roots after 3-days post germination
was assessed in this study, thereby whether the growth
rate will alter distinctly in different inbred lines is uncer-
tain at this point.

Putative genes involved in root hair morphogenesis
We identified a total of 11 candidate genes associated
with root hair elongation, and the homologs of three
genes have been reported to influence root hair develop-
ment in Arabidopsis. GRMZM2G100288 encodes a
receptor-like protein kinase, and its closest homologs in
Arabidopsis is FERONIA (FER), which is well known as a
key hub of cell signaling networks mediating various
hormone, stress, and immune responses [55–65]. Root
hair initiation and elongation require functional FER,

Table 2 SNPs, chromosomal position and candidate genes significantly associated with root hair trait identified by GWAS
using MLM

Chr Position
(bp)

Allele R2

(%)a
MAFb P-value Gene Gene interval (bp) Annotation

1 55388394 T/C 8.0 0.08 5.16E-
06

GRMZM2G100288 55388285–55391652 Receptor-like protein kinase (FERONIA)

2 148870290 C/T 10.1 0.09 9.39E-
07

GRMZM2G147446 148863858–
148867640

UDP-rhamnose/UDP-galactose transporter 5

2 229021546 G/A 9.3 0.07 5.81E-
06

GRMZM2G078013 229020754–
229026704

NBS-LRR disease resistance protein

4 20054633 C/G 6.3 0.06 4.79E-
06

GRMZM2G064644 20054312–20054951 ROP-interactive CRIB motif-containing protein
(RIC2)

4 34337601 C/T 9.3 0.07 1.15E-
06

GRMZM2G000471 34335083–34336530 Aquaporin NIP5–1

5 198197360 A/C 9.8 0.05 1.80E-
07

GRMZM2G044851 198193875–
198198340

Nitrate transporter 1.5

6 5509266 A/G 7.4 0.05 3.65E-
06

AC193598.3_
FG002

5503430–5507323 NBS-LRR disease resistance protein

6 34221678 T/A 9.0 0.08 1.70E-
07

GRMZM2G403003 34217717–34222233 TON1 recruiting motif 19 (TRM19)

6 75630277 A/G 9.7 0.06 3.97E-
07

GRMZM5G825276 75630353–75630906 GDSL-like lipase

10 2049694 C/A 9.2 0.16 2.00E-
06

GRMZM2G180244 2049440–2055121 NBS-LRR disease resistance protein

10 138881367 T/G 9.9 0.29 9.85E-
07

GRMZM2G091579 138880717–
138881634

Uncharacterized protein

a Percentage of phenotypic variation explained by the additive effect of the single significant SNP
b Minor allele of frequency
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and its loss-of-function caused severe root hair defects
[66–68]. GRMZM2G064644 encodes a protein contain-
ing a CRIB motif required for its specific interaction
with GTP-bound Rop1 (plant-specific Rho GTPase),
promoting root hair development [69–71].
GRMZM2G403003 encoding a TON1 recruiting motif
(TRM) proteins is able to target TON1 to cortical mi-
crotubules [72]. It has been reported that the disruption
of transverse cortical microtubules is essential for root
hair initiation [73, 74].
Nucleotide binding site leucine-rich repeat (NBS–

LRR) comprises a large class of disease resistance
proteins that play a widespread role in plant protection
against pathogens [75, 76]. Surprisingly, out of 11 candi-
date genes associated with root hair elongation, 3 encode
NBS-LRR protein. Although disease resistance is the
only function demonstrated for NBS-LRR proteins so
far, their functions in other areas of plant biology cannot
be excluded [77]. For instance, Arabidopsis BNT1 en-
codes an atypical TIR-NBS-LRR protein and works as a
regulator of the hormonal response to stress. The dis-
ruption of BNT1 could result in dramatic alteration in
root hair distribution [78].

The function and morphology of root hairs in relation to
the acquisition of water and nutrients have been well stud-
ied previously [79]. Root hair length could be stimulated
and elongated under different nutrient deficiencies, such as
phosphorus, potassium, magnesium, iron, or manganese
[80–84]. GRMZM2G000471 and GRMZM2G044851 en-
code an aquaporin and a nitrate transporter, respectively.
The loss-of-function of HvEXPB7 and OsWOX11 severely
suppressed root hairs under drought conditions [85, 86].
AtNPF7.3/NRT1.5 has been reported to alter lateral root
architecture under potassium deprivation [87].
Root hair requires robust activity of various metabolism

pathways to support its polar elongation [24, 88–90].
GRMZM2G147446 encodes a UDP-rhamnose/UDP-galact-
ose transporter situated in the Golgi lumen where UDP-
galactose is used for synthesis of noncellulosic polysaccha-
rides and glycoproteins [91–94]. GRMZM5G825276
encodes a GDSL-like lipase involved in lipid biosynthesis
[95, 96]. Overall, although the involvement of these candi-
date genes in root hair growth and development is biologic-
ally conceivable, their biological importance waits further
functional validation. Meanwhile, once functionally proved,
how the natural polymorphisms in these genes regulating

Fig. 4 The allele effects of significant SNPs located around representative genes for root hair length. a–c Regional plots showing association
mapping results for SNPs located around GRMZM2G403003 (a), GRMZM2G044851 (b), GRMZM5G0825276 (c). d–f Allele effects of the most
significant SNPs for root hair traits. *Significant at P ≤ 0.05; **significant at P ≤ 0.01. (d) GRMZM2G403003, (e) GRMZM2G044851, (f)
GRMZM2G825276. Each dot represents an SNP. The horizontal dashed black line represents the significant threshold –log10(P) = 5.2
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root hair growth are the other intriguing questions worthy
of future studies. Moreover, given that the importance of
root hair in plant growth, especially under water or nutrient
limitation condition, understanding and manipulating the
molecular regulatory network of root hair development
would prospectively benefit and facilitate the crop breeding
program.

Conclusions
Prior to this study, genetic architecture and genes con-
trolling natural variation in maize root hair development
remains unclear. We elucidated a broadly natural vari-
ation in the root hair length in a maize association
population. Several genetic loci putatively regulating the
natural variation in root hair were revealed by perform-
ing GWAS, shedding light on novel knowledge about
the genetic basis of root hair development in maize.
Given that the importance of root hair in plant nutrient
acquisition and water uptake, candidate genes identified
in this study provide a list of research targets for future
functional characterization to understand how root hair
growth is naturally regulate, and benefit the breeding
program to improve maize varieties with proper root
hair morphology assisted by molecular breeding and
engineering.

Materials and methods
Association mapping panel and genotyping
Association tests were conducted in an association panel
consisting of 281 inbred lines, which are publicly avail-
able at http://maizego.org/. The maize lines in this asso-
ciation panel were clustered into three subpopulations,
including 22 SS lines, 30 NSS lines and 112 TST lines,
and the remaining 117 lines fall into a mixed subpopula-
tion. Detailed information about the origins of these
lines was described in previous studies [42, 43]. The 1.25
million high-quality SNPs (MAF > 5%) and the estimated
population structure and kinship were assessed using
the method previously described [97, 98].

Phenotypic data collection and statistical analysis
Maize seeds were surface-sterilized in a 10% NaClO
solution for 5 min, rinsed several times with distilled
water, and germinated in moist germination paper
rolls (Anchor Paper) at 28 °C under constant darkness
as previously described [25]. The root hair length of
primary roots from 3-day-old plants were captured
using stereo microscope. Quantification of the root
hair length was measured from captured images using
ImageJ. Given that the limited number of inbred lines
could be measured at the same time, we cultured 15
inbred lines in each batch, and selected 5 representa-
tive plants at the same developmental stage to meas-
ure the root hair length. To rule out the variation,

the B73 line was used as control of each batch. Even-
tually, the ratio of root hair length between each indi-
vidual inbred line and B73 were collected and
inputted as phenotypic data.

Genome-wide association mapping and phenotypic
variance contribution of significant loci
A GWAS on root hair length was performed using Tas-
sel 5.2 under both GLM and MLM. Considering the
non-independence of SNPs caused by strong LD, it is
usually too strict for significant association detection
when the threshold is derived from the total number of
markers. Thus, the effective number of independent
markers for the multiple adjustment were used to obtain
the P value thresholds [99, 100]. The 165,248 markers in
approximate linkage equilibrium with each other were
found by PLINK (window size 50, step size 50, r2 ≥ 0.2)
[101]. Then, we used the uniform Bonferroni-corrected
thresholds at α = 1 for MLM and α = 0.05 for GLM as
the significance cutoffs as reported in the previous stud-
ies [37, 44, 102]. Finally, the suggestive P value was com-
puted by 1/n and 0.05/n (n = 165,248), and we obtained
the suggestive threshold 6.05 × 10− 6 for MLM and
3.03 × 10− 7 for GLM, respectively.
To estimate the phenotypic variance explained by each

significant SNP, we used ANOVA to construct linear
models of Y = αX + βP + ε (1) and Y = βP + ε (2). In this
model, Y is the phenotype, X is the SNP genotype, P is
the matrix of three subpopulations (NSS, SS and TST), α
is the SNP effect, β is the subpopulation effects, and ε is
random effects. Thus, the R2 of each significant SNP
after adjusting for the population structure effects were
reported as previously described [37].

Pathway analysis
The pathway analysis was performed in https://
maizegdb.org/past. The resulting SNP-trait association
data and effects data generated by TASSEL were imple-
mented in the pathway analysis. During the process of
loading data, the LD data is filtered to drop rows where
the loci are not the same, and then unneeded columns
from the TASSEL output are dropped [103]. Only path-
ways with five or more mapped genes were considered
in the analysis. Significance of the enrichment score was
determined by permutation analysis (1000 random per-
mutations of the effect values).

Prediction of candidate genes
To search the candidate genes underlying associated
SNPs, we selected the most significant/leading SNPs
within the same LD block (R2 < 0.2) to represent the
locus, and candidate genes were nominated by the lead-
ing SNP positioned. The physical locations of the SNPs
were recorded according to the B73 RefGen_v2 (www.
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maizesequence.org). The corresponding genes were an-
notated based on the literatures describing the function
of their homologs in other species or the information re-
trieved from conserved domain database (CDD).
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