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Introduction

Iron is essential for several substantial metabolic processes 
in cells and organisms. It is incorporated in heme, proteins 
with iron–sulfur clusters and enzymes that participate in DNA 
synthesis and mitochondrial respiration.1 However, iron’s reaction 
with oxygen may lead to the generation of reactive oxygen species 
(ROS) and ultimately induce cellular toxicity and damage. 
Therefore, mammalian iron homeostasis is tightly regulated 
and maintained through the coordinated action of metabolic 
and signaling pathways that alter the expression of iron-related 
proteins at the transcriptional and/or posttranscriptional levels. 
There are mainly three regulatory systems: (1) the hepcidin/
ferroportin axis, which acts systemically, (2) the IRP/IRE system 
that acts on cellular iron, and (3) the hypoxia inducible factors 
(HIF) factors that regulate several genes of iron homeostasis.1

It was previously demonstrated in animal models that a host’s 
iron status can affect infection, with corresponding evidence in 

humans. Disturbances of iron homeostasis have been implicated 
in infectious disease pathogenesis. Viruses, similarly to other 
pathogens, can escape from immune recognition, but they require 
iron to grow and spread. If iron availability is high, infection 
can progress efficiently.2 Deflecting iron away from invading 
pathogens retards their growth, providing a chance to immune 
mechanisms to clear the infection.

Approximately 65% of body iron is incorporated in heme, 
which is found in hemoglobin, myoglobin, and respiratory 
enzymes (cytochromes, oxidases, peroxidases, etc.). Non-hemin 
iron of the body (35%) is stored in a complex with ferritin, 
which is the major cytoplasmic iron-storage protein, mostly in 
hepatocytes and splenic and liver macrophages.3 A minor fraction 
of iron exists in association with plasma protein transferrin 
(Tf), which transfers iron in cells and another one in proteins 
with iron–sulfur clusters. Erythropoiesis represents the largest 
physiological requirement for iron, where 90% of erythropoietic 
need is provided by iron recycling of senescent red blood cells 
through macrophages. It is known that iron excretion is not a 
regulated process.3 A small amount of iron is lost by bleeding, 
skin desquamation, sweating, or urinary excretion. These losses 
are replenished by dietary iron absorption, so that the body 
maintains non-toxic amounts in stores.

Hepcidin
Hepcidin is a 25-aa cystein-rich peptide, found in human 

serum and urine, and represents the key peptide hormone, which 
modulates iron homeostasis in the body. The human hepcidin 
gene (Hamp) consists of three exons that encode an 84-aa 
preprohepcidin peptide that is cleaved at a characteristic furin 
cleavage site to produce the mature 25-aa hepcidin peptide.4,5 It 
is mainly produced by the liver and upon maturation, released in 
circulation.6 However, hepcidin expression has also been recorded 
at different levels in monocytes, macrophages, adipocytes, and 
brain cells. Hepcidin is a type II acute phase protein7 whose 
upregulation systemically suspends iron absorption from intestinal 
enterocytes, as well as iron recycling from macrophages.8,9 Iron 
and inflammation elevate hepcidin expression, while anemia and 
hypoxia diminish it.10 The interplay of these pathways and the 
relative prevalence of one upon another controls the expression 
of hepcidin.

Hepatitis C
Hepatitis C has emerged as a global health problem suffered 

by 170 million persons, which represents approximately 3% of 
the human population worldwide.11 HCV is a positive-stranded 
RNA virus of the Flaviviridae family. Other known flaviviruses 
are the yellow fever and the dengue viruses. The HCV 9.6-kb 
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An estimated 30–40% of patients with chronic hepatitis C 
have elevated serum iron, transferrin saturation, and ferritin 
levels. Clinical data suggest that iron is a co-morbidity factor 
for disease progression following HCV infection. iron is essen-
tial for a number of fundamental metabolic processes in cells 
and organisms. Mammalian iron homeostasis is tightly regu-
lated and this is maintained through the coordinated action of 
sensory and regulatory networks that modulate the expression 
of iron-related proteins at the transcriptional and/or posttran-
scriptional levels. Disturbances of iron homeostasis have been 
implicated in infectious disease pathogenesis. Viruses, similarly 
to other pathogens, can escape recognition by the immune 
system, but they need iron from their host to grow and spread. 
Hepcidin is a 25-aa peptide, present in human serum and urine 
and represents the key peptide hormone, which modulates 
iron homeostasis in the body. it is synthesized predominantly 
by hepatocytes and its mature form is released in circulation. 
in this review, we discuss recent advances in the exciting cross-
talk of molecular mechanisms and cell signaling pathways by 
which iron and hepcidin production influences HCV-induced 
liver disease.



466 Virulence Volume 5 issue 4

genome contains 5′ and 3′ untranslated regions (UTRs) flanking 
a long open reading frame (ORF) that is translated via a highly 
structured mRNA stem-loop sequence, the internal ribosome 
entry site (IRES).12 The resulting polyprotein is processed to 
yield structural (core, E1, and E2) and non-structural (p7, NS2, 
NS3, NS4A, NS4B, NS5A, and NS5B) proteins.13 Abnormal iron 
levels have been recorded in about 50% of chronic hepatitis C 
(CHC)-infected patients.14

In this review, we will focus on hepcidin and its role as a key 
player in iron homeostasis, outline the molecular mechanisms 
implicated in HCV-mediated hepcidin regulation and delineate 
the impact of iron on the pathogenesis and treatment of HCV 
infection.

Systemic and Cellular Iron Homeostasis

Dietary iron may be encountered either as heme or non-
heme iron. Heme ferrous iron (Fe2+) is acquired through meat 
ingestion in the form of hemoglobin or myoglobin.15 Heme is 
absorbed through heme carrier proteins into the enterocytes, 
where iron is released by heme oxygenase-1. The duodenal 

cytochrome b (DCYTB) enzyme reduces non-heme ferric iron 
(Fe3+). Subsequently, divalent metal transporter 1 (DMT1, 
also known as DCT1 or Nramp2) transports Fe2+ across the 
endosomal membrane of enterocytes into the cytoplasm. Within 
enterocytes, iron is stored in ferritin or, alternatively, exported 
into circulation via FPN1. Hephaestin oxidizes ferrous iron to 
Fe3+, which is then bound to transferrin (Tf) for transport within 
the plasma.15,16 Circulating Tf is subsequently endocytosed by 
transferring receptor 1 (TfR1) into endosomes through clathrin-
coated pits, thereby providing iron to body cells (Fig. 1).

Systemic iron flux in the body is controlled by the liver secreted 
peptide hormone hepcidin.1 Hepatic hepcidin binds to ferroportin 
(FPN1, also known as Ireg1),17-19 the only known cell iron exporter 
in the surface of enterocytes, hepatocytes, and macrophages18 
(Fig. 1). It induces its ubiquitination, subsequent internalization 
into the cytoplasm and degradation,9 thus preventing iron release 
from the cells. FPN1 expression is controlled by hepcidin and 
by the transcription factor nuclear factor erythroid 2-like 2 
(NRF2).20 Furthermore, hepcidin in enterocytes mainly inhibits 
DMT1 transcription, thus blocking apical intestinal iron 
absorption.21,22 Elevated iron stores or Tf-Fe3+ levels upregulate 
hepcidin expression through the BMP/HJV/SMAD and HFE/

Figure 1. Hepcidin is primarily synthesized in hepatocytes and then released into the circulation. when hepcidin reaches circulation, it regulates iron 
metabolism by controlling iron transport to duodenal enterocytes and iron export from macrophages.



www.landesbioscience.com Virulence 467

TfR1/TfR2 signaling pathways, respectively.23,24 During 
inflammation, hepcidin is also upregulated by proinflammatory 
cytokines, such as IL-6, IL-1, IL-22, and others, via the JAK-
STAT signaling pathway. Hepcidin expression is reduced by 
erythropoiesis, hypoxia, and ROS via modulation of CCAAT 
enhancer binding protein α (C/EBPα) expression.25 Recently, 
it has been demonstrated that hepcidin expression is regulated 
positively or negatively by microRNAs (miRNA).26,27

Monocyte and macrophage hepcidin is likely to be more 
important on a local rather than systemic level, contributing to 
host defense and may modulate inflammatory processes.28

Iron is crucial for life. Because of its highly reactive nature 
that may cause cell damage through ROS formation, the whole 
homeostasis network must be tightly controlled so that iron 
toxicity is kept to a minimum.29 This tricky task is mainly 
accomplished posttranscriptionally by the iron-regulatory 
protein (IRP)/iron-responsive element (IRE) regulatory network. 
IRP1 and IRP2 are cytoplasmic proteins, which belong to the 
aconitase superfamily. They adjust intracellular iron homeostasis 
by binding specifically and with high affinity to conserved IREs 
in mRNA UTRs.30,31 Depending on the location of the IREs 
on the 5′- or 3′-UTR, IRP binding regulates gene expression 
differentially. Intracellular iron levels are essentially modulated 
through coordinated alterations in ferritin and TfR1. In a state 
of iron depletion, IRPs bind to IREs and stabilize TfR1 mRNA 
(IRE in 3′-UTR), while decreasing translation of ferritin mRNA 
(IRE in 5′-UTR). Eventually, the uptake and availability of iron 
within the cell is increased. Equally, elevated iron stores lessen 
IRE binding activity, thereby improving ferritin translation, 
reducing stability of TfR1 mRNA and eventually favoring iron 
sequestration over uptake. IRP2, which is homologous to IRP1 
is regulated in response to stimuli other than iron, since it lacks 
aconitase activity. These stimuli include hypoxia and oxidative 
stress characterized by increased ROS production or reactive 
nitrogen intermediates. Apart from adjusting ferritin and TfR1 
levels, IRPs can also affect the stability of mRNAs of other 
proteins involved in iron acquisition, such as DMT1, Alas2, 
Aco2, and FPN1.32

Approximately one-third of the body’s total iron is stored 
in hepatocytes and liver macrophages. Conglomeration of iron 
produces oxidative stress resulting in increased lipid peroxidation. 
This induces the destruction of organelle membranes and, as 
a result, cell death via hepatocyte necrosis or/and apoptosis. 
Products of oxidative stress cause the release of profibrogenic 
cytokines and promote an inflammatory reaction that acts as 
a stimulus for liver macrophages. Those mechanisms activate 
hepatic stellate cells (HSC)—sources of collagen and other 
extracellular matrix elements.33,34 On the contrary, when 
hepatoma cells were directly exposed to hypoxia, hepcidin 
production was reduced, implying that low oxygen intracellularly 
is linked to hepcidin regulation.35,36

Increased hepatic iron stores are associated with a higher risk 
of hepatocellular carcinoma (HCC) development, failure of 
antiviral treatment, and significantly worse clinical outcomes 
in patients suffering from CHC.37-40 Hereditary defects in iron 
homeostasis-related host genes have been deemed responsible 

for iron overload; nevertheless, it may be the product of viral 
propagation, in which diminished hepcidin expression may play 
a key role.41

In summary, the three major molecular pathways implicated 
in the regulation of hepcidin are: JAK/STAT, BMP/SMAD, and 
HFE/TfR2 followed by ERK1/2. Formation of the hepcidin-
ferroportin complex triggers phosphorylation, internalization 
and degradation of ferroportin through activation of JAK2 
kinase. This, in turn, signals the phosphorylation of STAT3 and 
initiates changes in the expression of STAT3-responsive genes. 
Among the latter, SOCS3 reduces IL-6 and TNFα expression, 
thus diminishing hepcidin production further and completing a 
negative feedback loop.42 Alternatively, hepcidin may be regulated 
through the bone morphogenetic protein/SMAD (BMP/
SMAD) pathway. The TGF-β superfamily members BMPs bind 
to and activate their respective receptors, thereby promoting 
phosphorylation of the regulatory SMADS (R-SMADs), which 
heterodimerize with SMAD4. These complexes then translocates 
into the nucleus, where they increase Hamp gene transcription.43 
Finally, induction of phosphorylated ERK1/2 seems to be linked 
to TfR2 and to its binding to holotransferrin. Interestingly, 
phosphorylated ERK1/2 have been shown to regulate furin 
mRNA and protein expression and ultimately, through furin, 
MAPKs may control hepcidin expression.44

HCV Life Cycle is Affected by Iron

It has been demonstrated that about 30–40% of CHC 
patients have elevated serum iron and ferritin, as well as 
transferrin saturation.45-47 A correlation between increased 
cellular and systemic iron levels and HCV patients with poor 
prognosis and severe deterioration in liver metabolic processes 
has been previously reported.46-48 To date, HCV is known to 
activate several different signaling pathways that lead to ROS 
production and/or ER stress, both in hepatocytes and liver-
residing macrophages.49

The precise molecular mechanisms by which iron may 
influence HCV-induced liver disease are still obscure and 
hepcidin expression in HCV infection remains controversial.

Iron and HCV IRES-dependent translation
Successful production of HCV viral proteins depends on the 

host cell protein machinery. HCV expression is predominantly 
regulated translationally, through the interaction of cellular 
translation initiation factors and the HCV IRES within the 
5′-untranslated region (5′-UTR)50. It has been proposed that 
increased intracellular levels of iron may be associated with 
enhanced HCV IRES-dependent translation. Cellular factors 
involved in promoting HCV translation, bind specifically to 
HCV RNA in an iron-dependent manner. Notably, these factors 
also interact with the IRE.51

Studies have shown that the translation initiation factor 3 (eIF3) 
is absolutely required for HCV RNA translation initiation.50,52-54 
HCV genotypes respond differently to iron perturbations and this 
may be a matter of iron-dependent control of eIF3. For example, 
HCV-1b-infected patients have higher hepatic iron concentrations 
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than patients infected with HCV-2a or -2b.55 Therefore, one could 
hypothesize that HCV-1b translation is considerably influenced 
by iron in vivo. In these patients, responsiveness to treatment was 
accompanied by significantly lower hepatic iron content than 
that in non-responders, whereas this was not true for HCV-2a 
or 2b-infected patients.55 Interestingly, it was also reported that 
HCV mRNA levels were positively correlated with intrahepatic 
eIF3 mRNA levels. Thus, iron-mediated eIF3 activation may 
increase HCV translation, thereby inducing HCV propagation 
through infection progression. Moreover, Theurl and colleagues 
showed that in HCV-1b, iron-dependent translation was 
accomplished via eIF3 induction, whereas HCV-6a remained 
iron-unresponsive. This group proposed that iron-mediated 
regulation of HCV translation may require high binding affinity 
of eIF3 to its corresponding binding site on the HCV IRES. This 
may not be the case for all HCV genotypes, which are known to 
exhibit sequence alterations in this part of the IRES.53

Inhibition of iron-induced eIFs found in HCV patients with 
iron overload56 using small peptides and chemical compounds, 
might potentially be an exceptionally good candidate therapeutic 
target. To this end, a recent study proposed that the efficiency of 
IFN-α against HCV multiplication may correspond, partly, to 
its ability to modulate the expression of vital HCV translation 
factors.55

Finally, La protein was one of the first host elements identified 
to interact with the IRES and stimulate HCV IRES-mediated 
translation. Together with eIF3, La protein was significantly 
elevated in iron-treated cells and this increase was partly inhibited 
by iron chelator deferoxamine (DFO).56 Taken together, the 
above discussed data suggest that iron mediates the recruitment 
of specific factors onto HCV IRES, and, as a result, regulates 
viral translation.

Iron and HCV replication
Contradictory data exist as to whether iron exerts promoting 

or inhibitory effects on HCV replication.51,53,57-59 Clinical data 
suggested that iron is a co-morbidity factor for disease progression 
following HCV infection.46 Increased iron can favor HCV 
replication, but it is more likely to promote disease progression 
by enhancing oxidative stress, thereby leading to chronic 
inflammation. In CHC, mutations in the hemochromatosis 
protein (HFE) gene have been linked to hepatic iron overload,60 
since numerous studies have described an association between 
HFE genotypes and iron overload in CHC patients.46,61 The 
direct effect of HCV on hepcidin synthesis may constitute an 
alternative mechanism.62

Transgenic mice expressing the HCV polyprotein have been 
shown to have reduced hepatic expression of hepcidin as a result 
of HCV-induced oxidative stress.62 Nishina and colleagues 
performed reporter gene experiments to identify which hepcidin 
promoter region was affected by HCV proteins. They concluded 
that the reduced hepcidin transcriptional activity in the HCV full-
length open reading frame (FL-N/35 lineage) transgenic mouse 
was due to decreased C/EBPα DNA binding activity, which 
has been previously shown to regulate hepcidin transcription. 
Furthermore, this was associated with increased expression of 
a C/EBP repressor called C/EBP homology protein (CHOP). 

It was proposed that HCV-induced iron loading mediated an 
increase in ROS, which resulted in CHOP upregulation and 
prevention of C/EBPα binding to the hepcidin promoter. This, 
in turn, upregulated ferroportin expression, increased iron export 
from the duodenum and macrophages, raised serum iron and 
transferrin saturation, and eventually resulted in elevated hepatic 
iron levels. However, the animal models disregarded the role of 
inflammation, which is a potent hepcidin inducer.

On the other hand, hepcidin mRNA levels were significantly 
higher in the liver of the core gene transgenic mice, as opposed 
to control mice.63 These mice have been known to develop HCC 
after a certain period with increased oxidative stress and steatosis. 
Indeed, in this study, deregulation of hepcidin resulted in hepatic 
iron overload, which ultimately deteriorated oxidative stress, as 
expected.39,63,64

HCV-mediated inhibition of hepcidin was demonstrated in 
several in vitro studies.39,62,65,66 Again, these were criticized for not 
taking into consideration the effects of inflammation, which may 
counteract ROS-induced hepcidin repression in CHC patients, 
via the well-studied upregulation of hepcidin by proinflammatory 
cytokines, mainly IL-6.67,68 Miura and colleagues65 reported 
evidence that HCV-induced ROS downregulated hepcidin 
expression in Huh7 cells, while it was restored by the use of anti-
oxidants in HCV replicon cells. Furthermore, it was shown that 
HCV-induced ROS could activate histone deacetylases (HDACs) 
with subsequent modulation of Hamp gene transcription. 
Inversely, suspension of HDAC activity restored histone 
acetylation, resulting in enhanced hepcidin expression, in full-
length genomic replicon cells.

On the other hand, Miyachi and colleagues69 reported that 
hepcidin expression was surprisingly augmented in replicon cells, 
as compared with cured cells. Cytoplasmic STAT3 expression 
was increased in both cell lines as a result of IL-6 stimulation, 
with higher levels observed in the cured cells. In contrast, the 
phosphorylated form of the protein was more abundant in the 
nucleus of the replicon cells, thereby suggesting that JAK/STAT3 
activation was more pronounced in this system. Interestingly, 
inhibition of SOCS-1 and SOCS-3 gene expression upregulated 
STAT3 activation and hepcidin expression. Hepcidin returned to 
background levels following SOCS-1 overexpression, most likely 
due to suppression of STAT3 activation.69

In addition, having established that iron suppresses subgenomic 
HCV replication in replicon cells by binding to and silencing the 
HCV RNA-dependent RNA polymerase, NS5B, Fillebeen and 
colleagues70 speculated that the virus may manipulate the cell into 
reducing its iron stores, as part of its replicating strategy, during 
the early stages of infection. Alternatively, iron-deficient cells may 
be more receptive into hosting subgenomic HCV replication. 
According to these hypotheses, maintaining a “physiological” 
iron pool7 may depend on many variables, including the particular 
stage of systemic and/or hepatic inflammatory disease.

Cell signaling pathways involved in hepcidin modulation 
and affected by HCV infection

HCV proteins are well known to interact with host cellular 
factors implicated in cell signaling pathways, cell cycle regulation, 
transcriptional regulation, cell proliferation, inflammation, liver 
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fibrosis, and apoptosis.71 Functional screening of HCV proteins 
revealed that almost all of them, structural and non-structural, are 
modulators of the cellular signaling pathways (STAT3, MAPKs, 
and BMPs-SMADs) that are implicated in hepcidin regulation 
(see Fig. 2), making the interplay between these pathways more 
complex.

Core protein
Fukutomi and colleagues showed with microarray analysis 

that in HCV core-expressing Huh7 cells, 372 out of 12 500 
known human genes were differentially regulated, with most of 
those involved in cell growth or oncogenic signaling.72 Studies 
from our laboratory (Foka P, Dimitriadis A, et al., CMLS 
accepted) and others have implicated HCV core protein in the 
upregulation of IL-673,74 and the subsequent transactivation of 
STAT3 through phosphorylation. In addition, it has been shown 
that in HCV core transgenic mice and HCV core transfected 
cell lines, STAT3 interacts with and is activated by HCV core 
through phosphorylation, while the latter increases Stat3 gene 
expression75,76 (Foka P, Dimitriadis A, et al., CMLS accepted). 
The subsequent regulation of Hamp gene expression is very 
well documented. On the contrary, STAT1 and p-STAT1 
expression are markedly reduced in HCV core transfected cells, 
since core binds STAT1 and causes its proteasome-dependent 
degradation.77

Wild-type HCV core protein has been shown to activate 
the transforming growth factor-β1 (TGF-β1) promoter and 
upregulate its expression through the p38/MAPK pathway. As 
a result, the SMAD pathway is activated.78 In contrast, HCV 
core variants that were isolated from a liver tumor preparation 
and exhibited specific mutations not found in adjacent non-
tumor or serum isolates, were shown to be responsible for 
inhibiting the TGF-β cascade in stably transfected cell lines 
and primary human hepatocytes. Further investigation 
revealed that direct physical interaction between tumor-derived 
HCV core and SMAD3 inhibited the activated SMAD3/4 
complex from binding to target gene promoters.79,80 This 
reduction in TGF-β levels was accompanied by an epithelial to 
mesenchymal transition. Finally, our research revealed that in 
HCV core expressing HepG2 cells, SMAD4 protein levels were 
upregulated. This upregulation was accompanied by increased 
SMAD4 translocation to the nucleus, while both were blocked 
by dorsomorphin, an inhibitor of the BMP type I receptor 
(TβR-I) that specifically inhibits the BMP/SMAD pathway. 
The BMP/SMAD pathway activation resulted in increased 
Hamp gene promoter activity, which was matched accordingly 
by an increase in hepcidin mRNA and protein levels (Foka P, 
Dimitriadis A, et al., CMLS accepted).

Recently submitted data by our team provide an insight for 
the link between the two aforementioned pathways. Specifically, 
HCV core transfection in hepatic cells led to an increase in the 
casein kinase 2 (CK2) levels and an augmentation in CK2 activity. 
The use of a specific CK2 inhibitor, dominant negative CK2 
construct or RNAi interference inhibited the activation and the 
increase in STAT3 and SMAD4 expression, while it eradicated 
the HCV core-mediated hepcidin expression. Those data suggest 
the direct involvement of CK2 in HCV core-mediated hepcidin 

regulation by the BMP/SMAD and STAT3 pathways (Foka P, 
Dimitriadis A, et al., CMLS accepted).

Lastly, HCV core protein signals through the p38 MAPK/ERK 
cascade, since it activates the Raf-1 kinase, a central component 
of the pathway that phosphorylates MEK1.81,82 Subsequently, 
MEK1 phosphorylates ERK1 and ERK2.83 We have shown that 
non-enveloped HCV nucleocapsids, which can be naturally 
found in the bloodstream of HCV infected patients,84 were able 
to enter cells of hepatic origin, where they modulated the MAPK 
cascade by activating ERK1/2 pathway.85

E1 and E2 glycoproteins
The impact of other structural proteins in cell signaling 

involved in hepcidin modulation is more indirect. Zhao and 
colleagues showed that in human hepatoma Huh7 and L-02 
cells, HCV E2 mediated a specific activation of the MAPK/
ERK-ATF-2 pathway, through interaction with CD81 and 
low density lipoprotein receptor (LDLR).86 Phosphorylation 
levels of the upstream kinases Raf-1 and MEK1/2, as well as 
the downstream kinase p38/MAPK, were elevated following 
E2 treatment. Pretreatment of cells with the upstream kinase 
MEK1/2 inhibitor U0126, or blocking antibodies against CD81/
LDLR, was enough to suppress the E2-induced MAPK/ERK 
activation.86,87

NS3–NS4A protein
The HCV NS3 protein is able to activate JNK kinase without 

affecting its expression, as seen in NS3-transfected HepG2 cells. 
This activation however, is not accompanied by p38/MAPK 
or ERK1/2 activation.88 On the contrary, two different studies 
revealed that in hepatoma cells HCV NS3 expression activates 
the MAPK/ERK1/2 pathway. Feng and colleagues showed that 
ectopic expression of NS3 N-terminal part or the whole NS3 
sequence augmented ERK1/2 phosphorylation without affecting 
their expression.89 Nevertheless, the observed p38/MAPK 
and ERK1/2 activation was attributed to the NS3-induced 
amphiregulin expression.90

Figure 2. Schematic illustration of the crosstalk between the three main 
cell signaling pathways involved in the regulation of hepcidin and their 
modulation by HCV structural and non-structural proteins.
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The HCV NS3–4A complex, which contains NS3 and 
its cofactor NS4A, has recently been shown to interact with 
SMURF2, a negative regulator of TGF-β signaling. In cells 
expressing the HCV NS3–4A complex, TGF-β stimulation 
mediated an increased and prolonged TGF-β-induced 
phosphorylation of SMAD2/3 that was abrogated by SMURF2 
overexpression. Neither NS3–4A protease activity nor SMURF2 
ubiquitin–ligase activity were required to affect TGF-β signaling. 
Therefore, by targeting SMURF2, the HCV NS3–4A complex 
appeared to block the negative regulation of TGF-β signaling, 
thereby increasing the responsiveness of cells to TGF-β.91

NS4B protein
A recent report demonstrated that the HCV NS4B protein 

also affects cell signaling pathways and in particular the STAT 
pathway. Huh7 cells transfected with the HCV NS4B protein 
exhibited increased STAT3 promoter activity, accompanied by 
increased protein expression, phosphorylation, and translocation 
of STAT3 to the nucleus. In addition, HCV NS4B overexpression 
resulted in suppression of STAT3 repressor, SOCS3. In order 
to elucidate the upstream signaling pathways implicated in the 
regulation of STAT3 expression, the authors discovered that the 
ERK1/2 and JNK kinases were involved, since NS4B transfection 
led to increased levels of phosphorylated ERK1/2 and JNK, while 
repression of these kinases abrogated STAT3 activation.92

NS5A protein
HCV NS5A has been implicated in the activation of STAT 

pathway via increased STAT3 phosphorylation and translocation 
to the nucleus. In addition, HCV NS5A transactivates STAT3-
regulated promoters.9,93 However, a direct association between 
those two molecules has not been observed. The effect has 
been attributed to the increased phosphorylation of the STAT3 
upstream kinase JAK1, with which NS5A physically interacts.93

The HCV NS5A protein can also modulate TGF-β signaling 
since the synthesis and secretion of TGF-β1 was found 
upregulated in HCV NS5A transfected cells. The effect was 
attributed to increased ROS production.94 Conversely, Choi 
and Hwang showed that HCV NS5A inhibited the TGF-β-
mediated signaling pathway in hepatoma cell lines via physical 
interaction with TβR-I. Furthermore, NS5A protein co-localized 
with TβR-I in the cytoplasm of Huh7 cells and inhibited TGF-
β-mediated nuclear translocation of SMAD2, while it abrogated 
the phosphorylation of SMAD2 and the heterodimerization of 
SMAD3 and SMAD4.95 Finally, HCV NS5A inhibits the activity 
of transcription factor activating protein-1 (AP1), which occurs 
through inhibition of ERK1/2 phosphorylation.96,97 This effect 
was attributed to the interaction of HCV NS5A protein with 
growth receptor-bound protein 2 (Grb2).97

Iron and Lipid Metabolism in HCV Infection

Recently, numerous proteomic and microarray gene 
expression studies have revealed a link between lipid metabolism 
and iron homeostasis.98 CHC presented with hepatitis 
C-associated metabolic syndrome (MetS), often accompanied 
by hypocholesterolemia,99 low ApoB levels, hyperglycemia, 

enhanced risk for type 2 diabetes, and predisposition to obesity.100 
HCV particle assembly following replication happens on lipid 
droplets.101 Indeed, HCV creates lipid-rich cellular surroundings 
to assist major viral functions, such as infection replication, 
virion assembly, and secretion, trafficking, and escape from host 
immune system. Viral particles associate and become complexed 
with VLDL during lipoprotein assembly. Then, following VLDL 
secretion, they circulate in patient serum in the form of Lipo-
Viro-Particles (LVP). Consequently, the virion is not exposed 
to serum neutralizing antibodies and may escape immune 
surveillance. Later, it may be adsorbed by cellular LDL receptors, 
facilitating viral penetration into host cells.102

Both host and viral factors seem to be involved in steatosis 
development, whose establishment and severity may be genotype-
dependent.103 Recent metabolomic studies have identified a great 
number of host genes implicated in lipid metabolic processes 
related to HCV life cycle, but hardly studied,104 such as fatty acid 
metabolism and biogenesis, glycerosphingo- and phospholipid 
biosynthesis, and arachidonic acid metabolism, shedding 
new light in the relationship between the virus and host lipid 
metabolism. On the other hand, the main viral components 
responsible for the virus’s usurping of the host lipid metabolism 
seem to be HCV core protein along with NS5A. Specifically, 
HCV core has been found to accumulate on the surface of lipid 
droplets, the cell’s intracellular storage sites for triacylglycerols 
and cholesterol esters.105 In addition, core transgenic mice suffer 
from aberrant liver inflammation, which progresses to severe 
hepatic steatosis and HCC development.106 Finally, core together 
with NS5A act as powerful transcriptional modulators, either 
directly through physical interaction with the transcriptional 
machinery or indirectly by altering signaling pathways,85,107 
epigenetic mechanisms,108 and the activity of transcription 
factors that are responsible for maintaining physiological hepatic 
lipid metabolism. For example, core enhances lipogenesis by 
upregulating fatty acid synthase (FAS) through activation of 
nuclear retinoic X receptor α (RXRα).109 Both molecules are 
crucial for de novo synthesis of fatty acids. In addition, core has 
been shown to activate all isoforms of sterol regulatory element 
binding proteins (SREBPs), the master regulators of fatty acid 
and cholesterol biosynthesis and cellular uptake of lipoproteins.110 
It also increases SREBP1c gene expression in an liver X receptor 
α (LXRα)/RXRα-dependent manner.102 Increased LXR 
expression linked with LXR/RXR transactivation, have been 
associated with core- and NS5A-mediated hepatic lipogenesis 
through PI3K signaling.111 Furthermore, core and NS5A mediate 
alterations in activity and expression of peroxisome proliferators-
activated receptors α (PPARα) and γ (PPARγ), which are 
essential for β-oxidation, secretion of fatty acids, adipogenesis, 
and lipid oxidation.112-114 Finally, we have showed that HCV core 
downregulates the lipid regulatory factor ANGPTL-3 through 
HNF-1α loss of DNA binding, in an LXRα/β-dependent 
manner.115

Slowly but steadily, a link between lipid metabolism and iron has 
emerged, mostly from large cohort studies, globally. High serum 
ferritin and/or transferrin have been positively correlated with 
elevated triglycerides and in some cases reduced HDL levels,116,117 
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both of which were related to increased insulin resistance and the 
MetS.118 The link may be forged on the basis of disturbed hepatic 
iron stores and the iron-mediated hepatic steatosis that stems from 
it. Thus, the liver appears to be the key organ, where the interplay 
between iron and lipid metabolism takes place.119 In fact, over 
one-third of the patients who suffer from non-alcoholic fatty liver 
disease (NAFLD), the major manifestation of MetS in the liver, 
have also been found to suffer from hyperferritinemia and possess 
increased hepatic iron stores.120 Naturally, elevated hepcidin 
accompanies the biochemical alterations found in these patients.116

Animal studies using mostly rats, have showed that iron 
deficiency is capable of altering several metabolic processes 
related to lipid metabolism in the liver.57,121-123 Nevertheless, 
there is no general consensus over whether pathways of lipid 
metabolism are positively or negatively regulated by systemic 
iron restriction, mostly because different types of animal models, 
amount of delivered iron and varied experimental protocols 
have been used to generate the data.119 In addition, some authors 
reported increased concentrations of serum and hepatic lipids 
and lipoprotein content, as well as qualitative and quantitative 
changes in saturated mono- and polyunsaturated fatty acid 
composition,124 while others found that iron restriction caused 
lower plasma cholesterol, triglycerides, and phospholipid levels.125 
Despite these discrepancies, iron deficiency has been demonstrated 
to affect lipid metabolism largely through diminished activity of 
key, rate-limiting enzymes of various lipid metabolic pathways 
that use iron as a cofactor,123 such as LCAT,125 carnitine,57 or 
stearyl coA desaturase.125

As discussed earlier, ferrous iron is a catalyst for the formation 
of ROS thereby inducing cellular oxidative stress and lipid 
peroxidation. This burdened oxidative status is detrimental 
to individuals with increased iron body stores due to genetic 
conditions like hereditary hemochromatosis or even excess 
dietary iron intake. It manifests with impaired mitochondrial 
metabolism, changes in the ratio of saturated to unsaturated 
phospholipids and alterations in membrane fluidity, damage to 
cellular organelles and necroinflammation.126,127 A very important 
aspect of iron overload-induced oxidative stress is considered the 
activation of hepatic stellate cells (HSC), which in turn secrete 
fibrotic factors that promote hepatofibrinogenesis and later 
cirrhosis characteristic to NAFLD.128 NAFLD often progresses to 
the less benign non-alcoholic steatohepatitis condition (NASH). 
In animal models of iron overload combined with a high fat diet, 
insulin resistance is also evident and is accompanied by low HDL 
levels and impaired glucose and lipid metabolism.120

Finally, recent studies support the notion that iron may be 
capable of regulating broader lipid metabolism aspects of the 
MetS, such as atherosclerosis initiation and progression and 
type 2 diabetes development through manipulation of major 
lipid metabolism-specific transcription factors. For example, 
Bories and colleagues demonstrated that LXRα was activated 
by iron overload in atheroma-located macrophages, thereby 
initiating lipid and iron efflux from these cells.129 Furthermore, 
administration of an iron-rich diet in hamsters resulted in 
elevated cholesterol serum levels through reduction of PPARα 
levels.130

Several clinical studies have demonstrated the co-existence of 
elevated hepatic iron and serum ferritin with lipid peroxidation 
due to the expected increase in oxidative stress and hepatic 
steatosis.131-133 In fact, there is growing evidence that iron may 
modify lipid metabolism, quite likely through hepcidin.134 
Nevertheless, the interactions between these factors and their 
combined effect on the development of persistent or severe 
liver disease either under the instruction of HCV proteins or, 
when pre-existing, as facilitating agents for HCV infection and 
replication, have not been studied so far. It is the opinion of the 
authors that the iron–lipid interplay will constitute a new field of 
study in HCV pathobiology in the years to come.

Hepcidin in HCV Disease Progression  
and Response to Therapy

CHC is frequently associated with hepatic iron overload.135 
Hepatic steatosis, a histological hallmark of CHC, observed 
in 40–80% of the patients, is related to increased liver 
inflammation, progression to liver fibrosis, poor therapeutic 
responses to interferon α-based anti-viral treatment and liver 
carcinogenesis.136-139 Iron accumulation within the liver may 
contribute to liver disease. Thus, it has been considered to be a 
fundamental mechanism of HCC development.33,140 The role of 
hepcidin in human HCC deserves to be studied, since there have 
been only few reports on this matter.141 However, it is known that 
CHC patients have low serum hepcidin levels, an occurrence that 
is linked with enhanced necroinflammation and fibrosis.142,143

The influence of intrahepatic iron deposition to disease 
severity and progression in chronic liver diseases not related 
to hemochromatosis, remains elusive. Several studies have 
addressed the association between CHC disease stage and 
hepatic iron overload; the majority but not all of these studies 
support the linkage between advanced fibrosis and increased 
iron in non-parenchymal reticuloendothelial system cells (for 
example sinusoidal, endothelial, and portal tracts).40,144,145 In 
NAFLD patients, the extent of hepatic iron deposition may 
be associated with the dual regulatory mechanism (iron stores 
and inflammation) of hepcidin.146 Moreover, parenchymal 
iron deposition is an important feature of the alcoholic liver 
disease (ALD), although in this case, iron accumulation in the 
macrophages is more noticeable toward the advanced stages 
of disease.16 Finally, it has been shown that the HSC may be 
activated by oxidative stress;147 nevertheless, its precise effect 
on these cells may vary, depending on the restricted conditions 
posed by the iron-filled cells.

More data are needed on liver hepcidin gene expression 
and serum hepcidin level as well as biochemical hepatic iron 
measurements combined with longitudinal follow-up studies, 
to define the involvement of hepatic iron to disease severity and 
advancement and the potential effect of iron exhaustion, for 
treating common disorders of the HCV-infected liver.

Recent data suggested a linkage between prohepcidin, 
concentrations and PEG-IFN/ribavirin therapy in CHC.148 
Comparable levels of serum prohepcidin between CHC and 
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