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Abstract
Late-onset neurodegenerative diseases remain poorly understood as search continues for

the perceived pathogenic protein species. Previously, variants in Superoxide Dismutase 1

(SOD1) causing Amyotrophic Lateral Sclerosis (ALS) were found to destabilize and reduce

net charge, suggesting a pathogenic aggregation mechanism. This paper reports analysis

of compiled patient data and experimental and computed protein properties for variants of

human SOD1, a major risk factor of ALS. Both stability and reduced net charge correlate

significantly with disease, with larger significance than previously observed. Using two inde-

pendent methods and two data sets, a probability< 3% (t-statistical test) is found that ALS-

causing mutations share average stability with all possible 2907 SOD1 mutations. Most im-

portantly, un-weighted patient survival times correlate strongly with the misfolded/unfolded

protein copy number, expressed as an exponential function of the experimental stabilities

(R2 = 0.31, p = 0.002), and this phenotype is further aggravated by charge (R2 = 0.51, p =

1.8 x 10−5). This finding suggests that disease relates to the copy number of misfolded pro-

teins. Exhaustion of motor neurons due to expensive protein turnover of misfolded protein

copies is consistent with the data but can further explain e.g. the expression-dependence of

SOD1 pathogenicity, the lack of identification of a molecular toxic mode, elevated SOD1

mRNA levels in sporadic ALS, bioenergetic effects and increased resting energy expendi-

ture in ALS patients, genetic risk factors affecting RNAmetabolism, and recent findings that

a SOD1 mutant becomes toxic when proteasome activity is recovered after washout of a

proteasome inhibitor. Proteome exhaustion is also consistent with energy-producing mito-

chondria accumulating at the neuromuscular junctions where ALS often initiates. If true, this

exhaustion mechanism implies a complete change of focus in treatment of ALS towards

actively nursing the energy state and protein turnover of the motor neurons.

Introduction
An urgent challenge in biology and medicine is to translate the vast amount of genomic data
now available into phenotypes, preferably by mapping genetic variations via the transcribed
protein properties to organism-level phenotypes. Such a mapping could substantially accelerate
the understanding of disease mechanisms, prospects of early diagnosis, and personalized
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treatments reflecting the specific genotypes of individual patients, and could enable a new era
of “smart” disease management.

Amyotrophic Lateral Sclerosis (ALS) is the most common degenerative disease of the motor
neurons: It initiates within limbs or bulbar muscles and is eventually lethal due to collapse of
muscular breathing function[1][2][3][4]. As other complex late-onset neurological disorders,
no effective treatment exists and current drugs delay disease progression by only some months
[1]. ALS manifests in two forms: Familiar ALS (FALS) with inherited risk genotypes accounts
for*10% of cases and sporadic ALS (SALS) without apparent heritability accounts for*90%
of cases[1][3][5]. Whereas the median age of ALS diagnosis is mid-to-late fifties[1][6], it is
commonly a decade earlier for FALS[3], although very dependent on the variant.

Neurological disorders share molecular pathological features such as deposition of protein
aggregates, metal dyshomeostasis, mitochondrial and oxidative stress, inflammation, and apo-
ptosis[7][8][9] and the aging phenotype is central to disease manifestation, which is aggravated
by multiple genetic, life-style, and environmental risk factors[9][10]. Thus, a spectrum of phe-
notypes exist even in families sharing the same genetic risk variant.

Genetic risk factors constitute the primary framework for understanding disease mecha-
nisms[5]. Up to 2/3 of the FALS cases correlate with variations in*15 genes[1][5], the two
most important being Superoxide Dismutase 1 (SOD1, explaining 10−15% of FALS cases[1][3]
[5][11]) and the hexanucleotide repeat expansion in open reading frame 72 on chromosome
9 (C9ORF72), explaining up to 40% of FALS cases in Europe and North America[12]. The first
was identified twenty years ago[13] and the latter only identified in 2011[14][15]. SALS also
has some (*10%) genetic background[5][16]. Both SOD1 and C9ORF72 have roles also in
SALS[12,14], and recently identified genetic risk factors point to roles of RNA metabolism
(TAR-DNA binding protein 43[17], FUS[18][19]) and protein processing (SQSTM1[20], VCP
[21]) in the disease[5].

As a systemically important, highly expressed and stable protein, the knowledge of SOD1 is
substantial, making it a central framework for understanding ALS[11]. Also, the severity of
some SOD1-variants such as A4V suggests that SOD1-variants are likely to reveal pathogenic
insight. The protein, shown in Fig. 1, is one of three human SOD isoforms that protect against
oxidative stress caused both by exposure and the mitochondria's normal secondary production
of O2

- [22][23]. SOD1 is a homo-dimer consisting of two β-barrel (Greek key) monomers with
Cu and Zn in the active site. SOD1 performs two half-reactions in a catalytic cycle that oxidizes
two toxic superoxide radicals O2

- to one molecule of O2 and one H2O2, while the catalytic
metal ion Cu shifts between oxidations states I and II[22][24].

The variants causing FALS are found across the protein[22][25]: Fig. 1 shows all sites repre-
senting variants with known ALS patient data, as collected in this work (only shown for one
subunit for clarity) mapped on the high-resolution structure 2C9V.pdb[26]: Red colors repre-
sent age of onset< 55 years, green> 55 years, and yellow mixed phenotypes. As seen, the sites
and colors spread across the entire protein, i.e. there is no clear relationship between pathoge-
nicity and structural location (full data in S1 File). The commonly cited 2−3[5] years of survival
time covers a spread from less than a year to*20 years (see data later in this paper), providing
enlightening variability in phenotypes that facilitate genotype-phenotype analysis.

Mice without wild-type SOD1 do not normally develop ALS[1], and FALS is autosomal
dominant[11], i.e. presence of wild-type SOD1 in heterozygotes does not prevent FALS as seen
from co-expression[27]. Thus, SOD-1 mutants are considered to gain an unknown toxic func-
tion[1][3][22] relating to e.g. redox toxicity or toxic aggregation, although the specific toxic
mechanism and species have not been identified[28][29][30]. Several reports found that insta-
bility of SOD1 variants correlates with disease severity[31][32][33] and many SOD1 mutations
do reduce stability[22][34][35], consistent with pathogenic aggregation. However, average
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instability is expected, as a typical mutation destabilizes by*1 kcal/mol[36]. Some ALS-caus-
ing SOD1 mutations do not reduce stability of the aggregation-prone apostates, but may still
increase aggregation propensity due to e.g. changes in hydrophobicity or net charge[29][33]
[37], although data from 13 ALS-causing variants correlated poorly with disease duration[38].
Aggregation propensity was found to relate to disease duration but not significantly (p = 0.14,
R2*0.23) and not with age of onset[37]. Misfolding is coupled to metal release[25][39], and
mutations may reduce metal content[40][41] to destabilize the holoprotein but not the apopro-
tein. Still, experimental holodimer and apomonomer stabilities are highly correlated (R = 0.83)
[42], so state-specific effects constitute only part of the picture, importantly undermining the
idea of one particular (i.e. state-specific) toxic protein species.

In this work, the latest reported patient data and experimental and computed biochemical
properties of SOD1 variants have been collected and analyzed for 150 missense mutations, in-
cluding 77 variants with patient data and 30 with experimentally known stabilities. Using the
expanded data set, stability and charge correlate strongly with disease phenotype, even more
strongly than previously found[33]. Second, by using a new approach that computes directly
the stability of all possible mutations in the protein and compares these with the stabilities of
the disease-related mutants, a new statistical test is provided that shows that stability is a signif-
icant factor at the 97% confidence level. Third, it is shown that patient phenotypes correlate
more strongly with the copy number of misfolded proteins derived directly from experimental
stabilities without parameterization than with stability itself as previously investigated, provid-
ing the strongest correlation so far identified from un-weighted data. Based on this, a new
mechanism of neurodegeneration resulting from general exhaustion of motor neurons is sug-
gested that can reconcile a range of observations and provide a completely new framework for
researching and treating ALS and possibly other neurodegenerative diseases.

Methods

Collection of data
Experimental free energies of folding (ΔΔG) were collected from Vassal et al.[38], Nordlund
et al.[43], Lindberg et al.[32], Stathopulos et al.[44], and Byström et al.[29] SOD1 variants

Fig 1. 64 Sites in human SOD1 subject to 77 missense variants for which patient age of ALS onset t(o) has been reported, out of 150 variants
studied in this work. A) seen from the dimer longside perspective.B) seen from the end perspective. Sites are marked in ball-and-stick on the protein
structure (2C9V.pdb[26]) according to t(o)< 55 (red), t(o)> 55 (green), or sites with variants showing phenotypes with both t(o)> 55 and t(o)< 55. See
Table I in S1 File for details. Figure made with ViewerLite 4.2, Accelrys.

doi:10.1371/journal.pone.0118649.g001
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causing ALS and their associated patient data were collected from the compiled data from the
ALS online genetics database[45] and fromWang et al.[33] after removing redundant data.
Additional phenotype data were collected for recently studied variants such as K3E[46], V31A
[47], R115C[48], C7W[49] and several others: Table I of the S1 File shows the compiled stabili-
ties and patient data of SOD1 variants with references. In total, 150 single-site missense muta-
tions (non-synonymous substitutions) were compiled, of which 77 variants have associated
patient data, providing the most complete ALS-SOD1 data base yet studied.

Nature and heterogeneity of collected data
Heterogeneity of phenotype data is a major issue in genotype-phenotype correlations for late-
onset multifactor diseases such as neurological diseases, because the risk modifiers from other
genes, life style, and environment increase data noise[9]. Also, to put the data into clinical con-
text, one should consider the frequencies of each variant and its overall vs. regional contribu-
tion to disease.

Regional dependence demonstrates the role of additional risk modifiers: The frequency of
variants is highly region-dependent, with the large frequencies of A4V seen primarily in the
United States. In recent analysis, 92 out of 1220 ALS cases in the United States had SOD1 mu-
tations (ALSSOD)[50]. Of these, 39 (42%) were A4V and 9 (10%) were I113T. Review of pa-
tient data from Alberta, Canada suggested that I113T is also common in this area, with 11
independent observations out of 47 SOD1 variants identified, whereas A4V did not show up
[51], revealing substantial regional dependence.

Also, major heterogeneity in reported patient phenotypes exists (Table I of S1 File). Despite
the heterogeneity and large standard deviations, significant genotype-phenotype correlations
were previously identified after weighting data according to the number of patient observations
n[33]. There are various ways to reduce noise in a data: The statistically simple one is to de-em-
phasize data with too large spread or to small n, since a few observations are most likely insig-
nificant, as seen e.g. from the heterogeneous data reported from families of only two affected
members[52]. The previously used approach of weighting data by n partly solves this problem
[33]. However, due to the very large spread in n, such weighting reduces correlation to effec-
tively only the very most abundant variants such as A4V, H46R, E100G, and I113T (n> 50,
see Table I in S1 File) at a drastic loss of information for the many low n phenotypes.

Analysis of data
Patient data for both age of onset, t(o), and survival times, t(s), were analyzed, together with
age of death, t(d) = t(o) + t(s). t(o) is affected by uncertainties in time of diagnosis (i.e. when
did symptoms actually begin). Also, some variants reflect late-onset but rapid disease progres-
sion, which some researchers might characterize as severe, others as mild. However, as age in-
creases, the general fitness of the patient will play a role, and risk modifiers will play out
strongly in the total phenotype. Thus in principle, a survival time t(s) of 2 years after an onset t
(o) at 60 years is not as severe as it would be if the patient had t(o) = 50 years. In contrast,
early-onset, long-duration phenotypes could be classified as severe if only t(o) was used, even if
the duration postpones death beyond other late-onset variants. Thus, it is of interest to also
study a third phenotype, t(d) = t(o) + t(s), as this measure potentially resolves some of
these complications.

These patient data were correlated against collected experimental stabilities, computed sta-
bilities (see below), and the following additional computed properties: Changes in net charge,
hydrophobicity, beta and alpha propensities and logarithms thereof (to convert into free energy
scale), and any of these weighted by their solvent accessible surface of the mutated site, since
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any pathogenic property might depend on its solvent exposure. Correlations were carried out
linearly and with logarithms, and subjected to regression analysis. Statistically significant corre-
lations were reported with correlation coefficients and p-values.

Computing the misfolded copy numbers resulting from SOD1 variants
Due to the strong correlations found between patient data and SOD1 stability and charge, and
the implied absence of simple state-specific toxicities, an alternative systemic pathogenic model
was investigated. We have recently described a proteostatic maintenance model that can ex-
plain a range of trends in properties of proteomes suggesting selection to minimize proteostatic
costs, since energy spent on the proteome makes up a large fraction of the total energy budget
of cells[53]. The proteostasis of protein i can be described by the simple kinetic model[53]:

mRNAi!
ksi Fi Ð

k1i

k2i

Ui!
kdi Di ð1Þ

Here, Fi is folded protein copies, Ui is unfolded copies, and Di are degraded peptide fragments,
with respective kinetic constants. Since ksi is constant, it requires higher expression rate per
time unit. For an abundant protein, this cost may exhaust motor neurons already stretched by
other energy demands. The cellular maintenance energy (in J s-1) allocated to one protein i per
time unit can be estimated using the equation by Kepp and Dasmeh[53] (please notice that the
original equation has a factor 2 error that does not affect the model):

dEm ∕ dt ¼ Ai

1

1þ exp �DGi
RT

� �
 !

kdiNaai
ðCsi

þ Cdi
Þ ð2Þ

This equation also defines proteostatic exhaustion as an increase in the energy required to
maintain proteostasis, primarily caused by increased turnover costs. In this equation, Ai is the
total protein abundance, ΔGi is the stability, and Naai, Csi, and Cdi are the number of amino
acids in protein i and the average synthetic and degradation cost (in units of J) per amino acid
in protein i[53]. The four parameters KdiNaai(Csi + Cdi) were simplied as one constant, ci = 10-7,
a reasonable value derived for protein turnover. This maintenance cost can be shown to act di-

rectly on the amount of misfolded protein, since Ui ¼ Ai
1

1þexp
�ΔGi
RTð Þ

� �
. Any change in energy

costs is therefore proportional to ΔUi, which can be computed form experimental stabilities of
the variants. This expression was used to compute dEm/dt for both wild-type and SOD1 vari-
ants. Realistic values of Ai and ΔGi/RT were chosen to be 100,000 and −25. Importantly, these
constants do not affect the statistical correlation which depends only on the relative change in
cost: This phenotype is a function of the stability, and thus, contains no adjustable parameters
and the same accuracy as the experimental stabilities.

Calculation of variant stabilities
To enable a statistically significant assessment of the role of protein stability and charge in
ALS, these properties were computed for all the 150 SOD1 variants including the 120 where ex-
perimental stabilities are not available. For this purpose, two methods were used, POPMUSIC
2.1 [54][55] and I-MUTANT 2.0 [56][57], which provide accurate descriptions of the stabilities
of SOD1 mutants, compared to several other methods[42]. The structure used for calculation
was the high-resolution structure 2C9V.pdb[26], which produced accurate stabilities in recent
work[42]. Importantly, although local variations will occur when using distinct crystal
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structure templates, the results obtained with these two methods are generally structure-insen-
sitive compared to other stability calculators[42].

Human protein variants represent arising mutants that on average have certain characteris-
tics such as destabilizing tendency, since they mostly impair the fitness-optimal properties of
the wild type. This bias will affect genotype-phenotype correlations and should thus be consid-
ered by comparing disease-causing variant properties against not just the wild type but also the
full background of all possible mutations. With the advent of fast protein property calculators,
such a procedure is now feasible. This work explains how they can be used to substantially in-
crease the significance of genotype-phenotype correlations due to i) large numbers compared
to experimental data, and ii) cancellation of systematic errors in computation when comparing
variant sets. In SOD1, the full background set amounts to 2907 mutations (19 x 153) that were
previously computed with POPMUSIC for matters of calibrating computational methods[42].
When comparing the distributions of property changes of the disease variants against all possi-
ble variants, a student’s t-test can be performed on the distributions to investigate the null hy-
pothesis that the distribution means are identical. This type of analysis provides a useful tool
for genotype-phenotype correlation analysis that compliments linear regression analysis.

Results and Discussion

General trends in patient data of SOD1 variant carriers
Table I in S1 File shows the compiled data for 150 missense substitutions in SOD1. For each
mutation, the classification of the site as beta sheet, metal-binding region, or cysteine bridge re-
gion is given, together with the solvent-accessibility of the mutated site calculated by POPMU-
SIC2.1 (using the high-resolution structure 2C9V.pdb[26]), the experimental monomer or
dimer free energy changes relative to the wild type, if available, the number of patients n from
whom the phenotype is estimated, and the phenotypes of age of onset t(o), survival time t(s),
and age of death t(d), all in years.

The total number of patients n is 1053. However, due to the large variations in frequencies
of the variants, some variants contribute highly to these data, with four variants having n> 50:
A4V (212), H46R (70), E100G (54), and I113T (53). The statistical significance of the pheno-
type estimates is very dependent on n, but also depends on the severity of the variant, with
more severe variants having less variable disease durations, as other risk factors play a reduced
role in these cases. Also, in some reports, only t(o) is reported since patients have not been
monitored until death. These 36 onset ages are not analyzed further in this work but are re-
ported in S1 File for completion.

When weighting each variant’s phenotypes with their observed frequency share of the
remaining 1017 observations, one obtains the following averages for SOD1-associated ALS:
t(o)* 47.5 years, t(s)* 5.8 years, and t(d)* 53.3 years. If one considers the variant average
without weighting by the frequency of each variant, the numbers would be quite similar:
t(o)*47.4 years, t(s)*5.5 years, and t(d)*53.6 years. These data can be compared with
the SALS figures of t(o)* 58 years, showing that on average, SOD1 variants reduce t(o) by
roughly 10 years.

Changes in SOD1 stability and net charge correlate with ALS patient
survival times
Fig. 2 shows the correlation between disease phenotypes t(s) and t(d) and experimental stability
changes (ΔΔG) of holodimers with or without account for charge variation, for the 30 variants
where experimental stabilities are available (numerical data are given in S1 File). The
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comparison for t(s) in Fig. 2A is an updated version of the analysis previously done by Wang
et al. using 28 data points[33], now augmented with additional patient data.

Notably, disease onset t(o) did not correlate with stability changes, as also found previously
[33]. However, as previously reported, disease duration t(s) correlates significantly with the ex-
perimentally measured stability change of the dimer SOD1 (R2 * 0.22, p* 0.0081, standard
error*5.2 years, Fig. 2A). With the new data available used, this correlation is considerably
strengthened compared to the previously reported R2 *0.12 (R = 0.34) for un-weighted data
(the correlation increases if data are weighted by n, as mentioned in the Methods section[33]),
and now the correlation is significant at the 95% confidence level, which it was not previously.
Furthermore, also the age of death t(d) = t(o) + t(s) correlates significantly with stability in-
creases (R2 * 0.17, p* 0.024, standard error 7.5 years, Fig. 2B). Thus, the present analysis re-
veals the first statistically significant correlations at the 95% confidence level for un-weighted
ALS patient data, showing clearly the importance of protein stability in SOD1 pathogenicity.

Furthermore, charge has previously been found to be an important co-determinant of path-
ogenicity of SOD1 variants[29][33][37]. To appreciate this, correlating the sum of ΔΔG and
the change in net absolute charge │ΔQ│of the SOD1 variant markedly improved correlation
vs. t(s) without any parameterization (R2 * 0.34, R = 0.58, p* 0.00080, standard error*4.9
years, Fig. 2C) with t(d) correlations being similar (Fig. 2D). If this two-property linear fit is op-
timized (ΔΔG + 1.7ΔQ), R2 increases to 0.37. Thus, this analysis, using updated patient data
without any weighting substantially strengthens previous conclusions that both protein stabili-
ty and net absolute charge play major pathogenic roles in SOD1-associated ALS. Whereas a
positive ΔΔG increases the tendency of the protein to misfold and unfold, reductions in net
negative charge of SOD1 are likely to increase aggregation propensity, as evident e.g. from the
work by Chiti and Dobson et al.[58]

A final observation from the analysis summarized in Fig. 2 is that the mild phenotypes are
responsible for most of the outliers, with a triangular shape of outliers observed in all four

Fig 2. Patient survival time and age of death vs. stability and charge changes.Correlation between (A)
average survival time or (B) age of death (in years) of ALS patients carrying any of 30 SOD1 variants vs. the
corresponding experimental stability changes (kcal/mol). (C) average survival time and (D) age of death
correlated against combined stability and net charge changes.

doi:10.1371/journal.pone.0118649.g002
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regression plots. This documents a “mild-phenotype” noise effect that should be considered in
future studies of late-onset diseases such as neurological diseases. The most likely explanation
for this effect is that mild phenotypes arise from genetic variants with a smaller contribution to
the total risk (which, in general, is a sum of genetic, environmental, and life-style risk factors),
thereby increasing the noise from other risk modifiers, both genetic and non-genetic.

Significant destabilization in known SOD1 variants vs. the mutation
background
The limited number of mutants with experimentally measured stabilities prevent a full-scale in-
vestigation of the role of stability across known SOD1 variants. Furthermore, mutations are on
average likely to be destabilizing by at least 1 kcal/mol[36], so it is relevant to investigate the
stability of ALS-causing SOD1 variants in the context of the “expected” stability change of a
random SOD1 mutation.

To obtain such an estimate, we used two methods, POPMUSIC 2.1 and I-MUTANT 2.0, re-
cently shown to provide the most accurate descriptions of stabilities of SOD1 mutants with ex-
perimentally available stabilities [42]. For the mutations studied in this work, the correlation
coefficient between POPMUSIC and experiment is 0.52 (R2 = 0.27). Furthermore this increases
to 0.70 (R2 = 0.49) if only one outlier is removed (the A4V variant with the large experimental
destabilization energy of 4.3 kcal/mol; see S1 File).

While computational methods are generally subject to substantial errors[42], comparison of
relatively large data sets computed by the same method will reduce systematic errors and,
using the correct physics that is present in the models, provide a strong tool for estimating the
significance of a potentially pathogenic property against the total mutation background. This
mutation-background test has not been applied before and is a valuable compliment to linear
regressions. The MAEs of POPMUSIC and I-MUTANT are approximately 1 kcal/mol [42]
and smaller when the systematic error is removed by comparison of the two variant sets. Sec-
ond, errors in individual site calculations will be less important because data for all variants can
be calculated. One can then use Student’s t-test for comparing the two distributions, providing
a further test of pathogenic hypotheses.

Similarly, ΔQ for all possible mutations was computed from the possible changes based on
existing charges of amino acids (e.g. 30 mutations would reduce charge by two, corresponding
to D or E substitutions of one of the 15 positively charged sites. There are 117 neutral sites, giv-
ing 117�15 = 1755 mutations with ΔQ = 0 from these, + 15 and 21 from the positive and nega-
tive sites. In total, 1791 mutations do not change charge, 474 decrease it by 1, 570 increase it by
1, 30 decrease by 2, and 42 increase by 2). These values of ΔQ provide a background distribu-
tion for comparison to the ΔQ values observed for ALS-related mutations.

Fig. 3 shows the result of comparing the change in charge (ΔQ), stability (ΔΔG), or both, for
all 150 variants (blue) against the background distribution of all possible 2907 SOD1 mutations
(red). As seen, the ΔQ distributions are similar with a small tendency towards reduced net
charge in the reported SOD1-variants. In contrast, ΔΔG computed with both POPMUSIC
(Fig. 3B) and I-MUTANT (Fig. 3D) differ significantly from expectation and are shifted to-
wards less stability. When ΔQ and ΔΔG are considered together, this picture prevails (Fig. 3C
and 3E). Since this result is obtained with two distinct methods, it further documents the ro-
bustness of the mutation-background test. From POPMUSIC, the average stability of the 150
SOD1-variants is 1.21 kcal/mol vs. 1.05 kcal/mol for all possible mutations. From I-MUTANT,
these numbers are 1.10 kcal/mol and 0.91 kcal/mol, showing the same tendency. With both
methods, the stabilities of reported SOD1 variants differ significantly at the 95% confidence
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level from the expected background stability (t-test, two-tailed, non-equal variances). These
data are compiled in Table 1.

Since the conclusion drawn above could depend on the choice of the 150 variants, the same
analysis was performed with the 60 variants for which ALS clinical phenotypes have been con-
firmed for at least 3 persons (n� 3). The results, shown in Fig. 4, are fully consistent with the
general picture found for all 150 variants, with the notable difference that the 60 documented
ALS-causing variants show a further reduction in stability of 0.08−0.11 kcal/mol relative to the
mutation background, having average ΔΔGs of 1.32 and 1.18 kcal/mol according to POPMU-
SIC and I-MUTANT, respectively. These findings are highly significant (p = 0.021 and 0.0058
for the POPMUSIC and I-MUTANT analysis, respectively).

Thus, even while mutations generally tend to destabilize, the observed stabilities of reported
SOD1 variants are significantly lower than the 2907-mutation background of SOD1, and this
effect is emphasized further in the confirmed ALS-causing variants where patient data are
available. In conclusion, by using two different statistical tests, one for linear regression and
one for comparison of distributions, it is shown that reduced stability and net charge correlate
with ALS pathogenicity at the 95% confidence level, the strongest evidence so far reported for
their implication in ALS.

Systemic and non-specific causes of ALS: The role of protein expression
As described above, using compiled patient data and both experimental and computed protein
properties, this work establishes protein stability and charge as major pathogenic properties of
ALS, with statistical support from two different analyses at the 95% confidence level without
any weighting of raw data. As evident from the location of ALS-causing mutations (viz. Fig. 1),
the structural context is relatively unimportant, as also implied by the high correlation of
dimer and monomer experimental stability data [42]. Thus, specific local modes of molecular
action are not likely to cause disease. Instead, the global properties of protein stability and

Fig 3. Putative ALSmutations vs. all possible mutations.Distributions of all 150 knownmissense SOD1
mutations relating to ALS (blue) vs. background distributions of all 2907 possible missense mutations (red).
(A) charge change from sequence (ΔQ); (B) free energy change (ΔΔG) computed with POPMUSIC; (C) ΔΔG
computed with IMUTANT; (D) free energy (IMUTANT) plus charge change; (E) free energy (POPMUSIC)
plus charge change.

doi:10.1371/journal.pone.0118649.g003
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aggregation tendency (as implied by net protein charge) explain patient data. Furthermore, the
late-onset multi-risk nature of ALS points to some systemic mechanism at play that has previ-
ously been overlooked. The question then naturally arises: How does protein destabilization or
aggregation become pathogenic if not by a structurally distinct toxic molecular mechanism?

SOD1 is one of the most abundant proteins in humans, and particularly expressed in ener-
gy-requiring cells such as neurons and motor neurons that have high mitochondrial respiration
levels and thus, high production of superoxide [22][23]. Given this systemic role of SOD1,
other disease mechanisms than commonly discussed toxic molecular species per semight
be envisioned.

Some hints to a systemic disease mechanism come from the apparent inconsistencies in
SOD1 expression data: Higher SOD1 activity has been observed in transgenic mouse models
due to overexpression, whereas many SOD1 variants in fact have reduced specific activity[59].
A central, but apparently overlooked observation from multiple studies is that at high

Table 1. Statistics after test for same mean of ALS-causing SOD1 mutations and all 2907 possible mutations (student’s t-test, two-tailed,
different variances).

POPMUSIC 2.1 I-MUTANT 2.0

All reported 150 mutations All possible 2907 mutations All reported 150 mutations All possible 2907 mutations

avr ΔΔG (kcal/mol) 1.21 1.05 1.10 0.91

variance (kcal/mol) 0.78 1.15 0.60 0.81

p-value 0.030 —- 0.0051 —-

60 mutations with n � 3 —- 60 mutations with n � 3 —-

avr ΔΔG (kcal/mol) 1.32 —- 1.18 —-

variance (kcal/mol) 0.74 —- 0.52 —-

p-value 0.021 —- 0.0058 —-

doi:10.1371/journal.pone.0118649.t001

Fig 4. Confirmed ALSmutations vs. all possible mutations.Distributions as in Fig. 3, but based on the 60
SOD1mutations with known patient data relating to ALS (blue) vs. background distributions of all 2907
possible missense mutations (red). (A) charge change from sequence (ΔQ); (B) free energy change (ΔΔG)
computed with POPMUSIC; (C) ΔΔG computed with IMUTANT; (D) free energy (IMUTANT) plus charge
change; (E) free energy (POPMUSIC) plus charge change.

doi:10.1371/journal.pone.0118649.g004
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expression levels, co-expression of wild-type-SOD1 with A4V[60], G85R[61], and G93A[62]
variants in fact aggravate pathogenicity. However, at lower expression levels, in the study by
Bruijn et al.[27] similar mouse survival was measured for G85R carriers on a normal wild-
type-SOD1 background and on a knockout- wild-type background, i.e. wild-type-SOD1 did
not affect the G85R phenotype significantly. These data are consistent with gain of toxic func-
tion but also clearly show expression-dependence and that wild-type and mutant both aggra-
vate toxicity at high expression levels: These observations are currently unexplained.

Proteostatic exhaustion from misfolded SOD1 turnover can explain ALS
patient data
The apparently contradictory observations requires a mechanism that, in the limit of high ex-
pression levels, has protein copy number as an important pathogenic property. The steady-
state copy numbers of misfolded and folded proteins can be estimated directly from cell-specif-
ic and protein-specific parameters, and more importantly, the cellular energy cost of handling
a protein scales linearly with the total copy number of misfolded proteins[53]. Thus, protein
overexpression rather than any specific molecular toxicity is a plausible cause of ALS: If SOD1
is overexpressed and destabilized, higher turnover of degradation-prone proteins variants and
higher steady-state copy numbers will increase proteostatic maintenance costs[53].

From this mechanism, the pathogenicity of a protein variant depends on its combined pro-
teostatic burden, which depends on its degradation and synthesis costs, its turnover rate, and
notably, on the amount of misfolded protein which can be estimated from the thermodynamic
stability. This energetic burden is expressed in a simple form by Equation (2). The simple turn-
over Equations (1) constitute a minimal framework required to explain these costs. The more
general situation is given in Fig. 5, which accounts for the most important processes of SOD1
turnover. This larger scheme is required if one is to understand the mechanistic context of all
the genetic risk factors associated with the neurological disease, as some genetic risk factors af-
fect the RNA turnover and others the protein pool.

When using Equation (2) directly as a framework for understanding neurodegeneration, re-
duced protein stability as well as expression levels directly increase dEm/dt. Equation (2) takes
the form of an energy cost that scales linearly with the number of misfolded proteins Ui, and at
steady state, this number can be derived from the stability, if other variant properties do not
change significantly. The relative cost of a protein variant can be directly studied by this model
by comparing dEm/dt of variant and wild type, to estimate the increase in proteostatic cost as-
sociated with the variant[53].

To estimate the role of proteostatic energy in ALS, Equation (2) was used to compute The
misfolded copy numbers Ui before and after mutation at steady state, and from these, dEm/dt
for each SOD1 variant for which experimental ΔΔG is available, by using Ai = 100,000 and the
wild type stability of ΔG/RT = −25 (See Table IV in S1 File for numerical data). Importantly,
these numbers do not affect the correlation statistics, which only depend on the relative values
of Ui from the exponential function of ΔΔGmultiplied by the constants in Equation (2). As
seen from Table IV in S1 File, for the more destabilizing variants, the misfolded copy numbers
increase by more than 1000-fold. This calculation reveals the burden of misfolded proteins in-
side a typical cell expressing a highly destabilizing SOD1 variant even if total copy numbers Ai

are unaffected. From these changes in Ui associated with a variant, the energy cost is estimated
from Equation (2) using a conversion constant ci = 10-7, which is a realistic typical value de-
rived previously from cell-specific turnover data such as life time, synthetic cost, and degrada-
tion cost[53].
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The results of these calculations excluding or including charge are shown in Fig. 6. It can be
seen that mild phenotypes remain outliers in the data (notably the variant I104F with a re-
ported t(s) of 21.3 years), which is expected. However, converting stabilities into misfolded
protein copies via Equation (2) reveals a substantially stronger and highly significant correla-
tion (R2 = 0.31, p = 0.002) to patient survival times than stability alone. If charge is included in
the regression, this correlation is substantially further improved, providing the strongest two-
property correlation to un-weighted patient data so far observed (R2 = 0.51, p = 1.8 x 10-5).

This analysis shows that protein misfolding diseases such as ALS are not necessarily caused
by specific molecular toxicity of misfolded protein species, but possibly by systemic exhaustion
due to elevated protein turnover. This mechanism could explain why identification of such ma-
licious protein states has so far been unsuccessful[1][4][9].

Recent findings are explained by the exhaustion mechanism of neuro-
degeneration
Many recent discoveries are consistent or can be directly explained by the exhaustion mecha-
nism proposed in this paper.

1. First, it has been established that ALS patients early in their disease histories experience sig-
nificantly increased resting energy expenditure that is currently not understood[63],[64].
This finding is directly explained by the proposed mechanism, where pathogenicity is due
to motor neuron exhaustion by elevated proteostasis costs, as demonstrated by the increased
costs of SOD1 variants in Fig. 6.

Fig 5. Kinetic scheme describing processes involved in SOD1 proteostasis. Both the RNA pool and the
protein pool contribute to proteostatic costs and can thus both involve risk factors in a proteostatic
exhaustion mechanism.

doi:10.1371/journal.pone.0118649.g005

Fig 6. Correlation of survival times t(s) of ALS patients vs. the change in proteostatic energy cost
associated with SOD1 variants from Equation (2). (A) without and (B) with charge changes included.

doi:10.1371/journal.pone.0118649.g006
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2. Second, SOD1 mutants have been found to significantly impair mitochondrial respiration
[65][66] and cause metabolic abnormalities[67]. These observations suggest an energetic
role of these mutants on ALS pathogenesis, consistent with a mechanism of motor neuron
degeneration resulting from energy shortage[68].

3. Third, recently identified genetic risk factors, notably the most important one, the
GGGGCC hexanucleotide repeat expansion in an open reading frame on chromosome 9,
C9ORF72, accounts for a large fraction of ALS and is most likely associated with abnormal
RNA processing and transcriptional inefficiency[14]. Other recently identified genetic risk
factors also affect RNA metabolism (TAR-DNA binding protein 43[17][69], FUS[18][19])
or protein processing (SQSTM1[20], VCP[21]). Also, TDP-43, a risk factor in ALS, has
been suggested to modulate SOD1 levels[70]. Proteostatic exhaustion as the pathogenic
mechanism of neuro-degeneration fits well with these observations acting both on mRNA
and protein pools (Fig. 5), since inefficiency in the mRNA turnover would increase costs of
maintaining the steady-state mRNA pool, thus increasing the total maintenance costs of the
motor neurons.

4. It has also been recently found that SOD1 mRNA levels in SALS are significantly elevated
(by*30% on average) whereas protein SOD1 levels are roughly similar to controls[71].
This is consistent with transcriptional inefficiency and increased costs of maintaining the
mRNA pool. Decreased stability increases costs of SOD1 variant turnover that correlate
strongly with disease onset, using unchanged total Ai (i.e. SOD1 levels), as seen in Fig. 6.
This correlation relates to the SOD1-related FALS cases, whereas elevated costs of handling
the mRNA pool then relate to some SALS cases, although SALS pathology has also been
found to involve misfolded wild-type SOD1 protein forms[72][73].

5. Wild-type SOD1 knock-out mice do not show ALS-like pathology under normal circum-
stances[4]. Normally this is interpreted as a proof of a gain of toxic function. However, over-
expression of wild-type-SOD1 alone does produce motor deficits although to a smaller
extent than mutants[74]. These observations are explained by proteostatic exhaustion: Each
wild-type copy is less degradation prone than destabilized SOD1 variants but still, high ex-
pression increases turnover costs even for the same thermodynamic stability, viz. Ai in
Equation (2). In contrast, knock-out mice cannot express SOD1 and therefore will not be
subject to proteostatic exhaustion.

6. There is a critical experiment that can test the validity of the proposed exhaustion model vs.
the prevailing “molecular toxicity”model: Expression of SOD1 variants with and without
protein turnover. If the proteasome is inhibited in cells expressing SOD1 variants, disease
would be aggravated according to the molecular toxicity model, because more toxic mis-
folded proteins would be available. However, according to the proteome exhaustion model,
the disease would be relieved at least to some extent while the cost of protein turnover is re-
duced to enable normal cell function.
Importantly, such an experiment was performed in 2014: It was shown that the toxicity of
the G85R mutant of SOD1 is small under normal conditions and during inhibition of the
proteasome, but when proteasome activity is recovered after washout of the proteasome in-
hibitor MG132, soluble oligomers of mutant SOD1 correlated strongly with cytotoxicity
[75]. This finding is explained by the present exhaustion mechanism: As mutant protein
oligomers accumulate, protein degradation becomes increasingly expensive and cause cell
death. Proteasome inhibition can lead to several-fold higher levels of SOD1[76]. This would
aggravate disease if the protein copies were toxic by themselves, but will reduce the cost of
mutant turnover and rescue the cells if proteome exhaustion causes disease. Recently,
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functionally impaired variants of Ubiquilin-2 have been implicated as a risk factor in ALS
[77]. As a central link to the proteasome-mediated degradation of proteins, these findings
are consistent with the exhaustion mechanism.

7. Recently, it was shown that treatment of transgenic G37R SOD1 mutant mice with a copper
complex increases the steady-state concentration of the expressed mutant SOD1 but also
improves motor function and life span[78][79]. It was found that the copper supplement in-
creases the amount of holo-SOD1 due to enhanced metal incorporation. The authors con-
cluded that metal supplements specifically directed towards SOD1 could be a useful
therapy. This is consistent with a disease mechanism acting on misfolded proteins (Fig. 6):
Rescue of the folded holodimer can then reduce the degradation-targeted misfolded SOD1
pool (U), to improve survival by reducing turnover costs by increasing the amount of folded
protein (F).

Some SOD1-mutations reduce metal content to the effect of destabilizing the holoprotein,
but in some cases not the apoprotein[40][41]. Since protein misfolding is generally related to
metal release[25][39], these mutations, even if they do not destabilize the apoprotein, may be
pathogenic for the same reason as the apoprotein-destabilizing mutations: They would increase
the pool of non-native apoprotein targeted for degradation, and thus, increase the burden of
protein turnover. This may explain why metal-imbalance in the form defined recently (i.e.
metal redistribution by loss of functional bound M(II) pool but concomitant enrichment of
free chelatable M2+ pool [9]) can cause neurological disease, since the turnover of abundant
misfolded apoproteins will increase the cellular maintenance energy.

Concluding remarks
Genotype-phenotype relationships are a major focus area of modern biology, promising im-
provements in our molecular understanding of disease, diagnostic tools, and personalized ther-
apies. Amyotrophic Lateral Sclerosis (ALS) is an excellent test case of such relationships, with
many data available for pathogenic variants of superoxide dismutase 1 (SOD1). In this work,
we show the power of such approaches in the quest for disease mechanisms.

Why are neurodegenerative diseases mostly sporadic and have late onset and multiple risk
modifiers, including variations in several proteins and non-coding parts of DNA? And yet why
do they all associate with protein misfolding, metal dyhomeostasis, metabolic deficiencies, mi-
tochondrial pathologies, and oxidative stress? Why are disease-causing variants spread across
the entire protein structure? These facts indirectly point to a systemic impairment of the cells
subject to disease. The present work suggests that pathogenesis works strongly via the mis-
folded protein copies. Both the widely assumed mechanisms of toxic misfolding or aggregation
and a general increased energy cost of SOD1 turnover are consistent with these data but only
the latter proposed mechanism may also explain several other observations relating to RNA
metabolism and bioenergetic effects, as noted above.

When the organism is subject to aging, protein expression levels associated with metabolic,
stress, DNA repair and other maintenance controls increase[80]. Since age is the dominant risk
factor of late-onset diseases, this aging phenotype needs to be addressed in pathogenic models.
The exhaustion mechanism is consistent with this basic fact as exhaustion is likely to become
critical when the maintenance costs are increased by aging.

A final question requires answering: Why does ALS occur in the motor neurons, while
SOD1 (or its variants) is expressed throughout the body? To see this, one should consider that
the motor neurons are among the most energy-requiring cells due to the ATP cost of making
action potentials. In a model that emphasizes proteome exhaustion as causing disease, it
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follows naturally that the cells that have high energy demands will be primarily affected. Im-
portantly, the currently existing molecular toxicity model, which emphasizes molecular modes
of toxicity and not energy, does not explain this but would work on any cell type as long as
SOD1 is highly expressed. Accordingly, fatigue-resistant motor neurons are less affected than
other motor neurons[81].

A very recent computational model by Le Masson et al.[82] shows how vulnerable motor
neurons are to energy deficits. While the model does not explain how energy deficits arise, it
nicely demonstrates how reduced ATP availability affects action potentials and ion homeosta-
sis, with depolarization as an ultimate consequence. This work this provides a direct link from
the exhaustion model to the general homeostasis of the motor neurons.

Since the energy is produced by the mitochondria, with the proteome exhaustion model, it
is not surprising that mitochondria accumulate within the neuromuscular junctions, where the
SOD1-FALS is thought to begin[83]. This feature of mitochondrial accumulation is directly ex-
plained by the exhaustion model and is (also) not explained by the molecular toxicity model.

The proteostatic exhaustion mechanism may apply also to other protein misfolding-related
neurodegenerative diseases. These diseases share many commonalities: oxidative stress, aggre-
gated protein deposits, metal ion disorder, diabetes-like pathologies, and metabolic disorders
such as impaired glucose utilization[9]. Insoluble aggregates as toxic species are being aban-
doned[38] in favor of small soluble oligomers in ALS[2][3][4] and Alzheimer’s Disease[9]. Ac-
cording to the present proposed mechanism, this is not due to a toxicity of the oligomers
themselves but rather the fact that these abundant, soluble oligomers are (in contrast to aggre-
gates) targeted by the proteasome, causing proteome exhaustion. In contrast, fibrils and aggre-
gates as found in extracellular deposits are non-pathogenic because they do not contribute to
the turnover pool, and consequently, one may also infer that inclusion bodies and extracellular
aggregates may in fact be ways to protect the cells against the burden of costly
protein turnover.

Although changes in SOD1 mRNA levels have been related to SALS, there are only rare and
partly conflicting data yet on the transcriptional dysregulation in ALS[84]. However, the genet-
ic risk factors recently identified support a mechanism where energy costs from mRNA turn-
over aggravate disease[14][17][18][19]. Further studies into these complex mechanisms would
help to elucidate the pathogenic mechanisms acting on the mRNA and protein pools, viz.
Fig. 5.
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