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Midkine (MK) is a small secreted heparin-binding protein highly expressed during

embryonic/fetal development which, through interactions with multiple cell surface

receptors promotes growth through effects on cell proliferation, migration, and

differentiation. MK is upregulated in the adult central nervous system (CNS) after multiple

types of experimental injury and has neuroprotective and neuroregenerative properties.

The potential for MK as a therapy for developmental brain injury is largely unknown.

This review discusses what is known of MK’s expression and actions in the developing

brain, areas for future research, and the potential for using MK as a therapeutic agent to

ameliorate the effects of brain damage caused by insults such as birth-related hypoxia

and inflammation.
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INTRODUCTION

The structural and functional development of the brain depends on neurotrophic factors that
drive the growth, differentiation, and migration of neural precursor cells. Midkine (MK) and
pleiotrophin (PTN) are structurally and functionally related neurotrophic factors and are the only
two members of the neurite growth-promoting factor family. MK is called midkine because it
was originally identified as a cytokine highly expressed in mid-gestation in many organs of the
mouse, particularly the kidneys, heart, and brain (1, 2). PTN expression has a different pattern,
increasing from birth and persisting into adulthood (3, 4). However, expression of MK in the adult
is induced following many forms of injury, and in many forms of cancer (5), where it mediates
hypoxic or inflammatory-driven cell response pathways (6, 7). Previous work has demonstrated
the potential therapeutic efficacy of MK for repair and regeneration after ischemic brain damage
(8) and in seizure (9), and drug addiction-related brain injuries (10). Specifically, MK has been
shown to ameliorate cell death, modulate glial reactivity, and enhance proliferation and migration
of neural precursor cells (8, 10). MK also promotes hypoxia-induced angiogenesis (11) and serves
as a chemoattractant for leukocytes (12). However, the therapeutic potential of MK following injury
to the developing CNS has yet to be explored.

In this review, we discuss the spatiotemporal expression of MK and some of its key
receptors during neurodevelopment and the function of MK following injury-induced expression.
Both highlight the potential for the use of MK as a treatment for perinatal brain damage.
We also interrogated gene expression databases to bring together the developmental and
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cell specific expression of MK and where possible PTN and their
receptors. Perinatal brain damage arises from events such as
fetal hypoxia, birth asphyxia, exposure to in utero and postnatal
inflammation/infection (e.g., chorioamnionitis, sepsis), and/or
preterm birth. These global problems in perinatology all too
often result in death or life-time disabilities (13, 14), and account
for around 2.4% of the total Global Burden of Disease (15).
These disabilities include cerebral palsy, mild cognitive deficits,
learning difficulties, epilepsy, and pervasive behavioral deficits
such as autism spectrum disorders (16). At the present time,
the treatment options for perinatally acquired brain damage
are very limited. The option for impending preterm birth
is intrapartum use of magnesium sulfate preterm birth, but
there are no postnatal therapies. The option for term-born
infants diagnosed with neonatal encephalopathy (NE) linked to
hypoxia-ischemia (HI), (hypoxic-ischemic encephalopathy, HIE)
is hypothermia (head alone, or whole-body cooling), which is
only effective if commenced within 6 h of birth and requires
specialized medical facilities (17, 18). In both cases, lives are
saved and outcomes are improved, but the number needed
to treat (NNT) for intrapartum use of magnesium sulfate is
between 42 and 74 to see a significant reduction in rates of
cerebral palsy (18, 19), and the NNT is 7 for hypothermia
to see a reduction in mortality and severe morbidity (20),
meaning there are still many more infants that need help. This
is despite considerable efforts to find adjunct therapies for use
with hypothermia (21), and additional therapies for all infants. As
such, there remains a strong unmet need for treatments that can
be delivered easily and quickly, and over a wider window of time
after birth. The focus of this review is to evaluate the potential
for MK to meet this need. We surveyed publications listed
on PubMed using the search term MK, and then MK coupled
with cancer, brain, neuroprotection, infant, neonate, birth, HIE,
prematurity, and other terms as shown in Table 1. Of the 956
papers captured, only 22 (2.3%) were linked to studies in infants,
neonates, brain, and/or birth, 1 was linked to prematurity and
preterm birth, and none was linked to HIE or other commonly
associated conditions of fetal injury such as intrauterine growth
restriction. This demonstrates the great paucity of studies of
MK in relation to the cause and treatment of perinatally
acquired brain injury in the human neonate, despite the clear
potential that MK has in this regard that we will outline in
this review.

MIDKINE PROPERTIES

MK is a secreted, lowmolecular weight (13–18 kD) basic heparin-
binding protein (24). MK has a 46% homology to pleiotrophin
(PTN), and both share trophic and cytokine-signaling activities.
MK consists of 121 amino acids (25) and is highly endowed
with the positively charged basic amino acids-arginine, lysine,
and histidine (26). The mRNA and protein of mouse and human
MK are similar (27), with the amino acid sequence predicted
to have an 83% homology (28). The protein structure of MK is
composed of N-terminal and C-terminal halves linked by five
disulfide bonds. The C-terminal portion of MK holds a strong

TABLE 1 | Details of the spectrum of publications related to Midkine (MK),

highlighting the vast number of works across areas such as cancer, but the

striking lack of research in the area of perinatal brain injury (PubMed search,

August 20, 2020).

Search term Number of

PubMed hits

Hits relevant to the

intended search for

MK in perinatal brain

injury

Midkine 956 (98 reviews) –

Midkine AND Cancer 431 (41 reviews) –

Midkine AND Brain 158 (14 reviews) –

Midkine AND

Neuroprotection

18 (5 reviews) –

Midkine AND Nanoparticle 8 –

Midkine AND Inflammation 92 (12 reviews) –

Midkine AND Infant AND

Brain

3 1 (22)

Midkine AND Neonatal AND

Brain

7 0

Midkine AND Perinatal AND

Brain

7 0

Midkine AND Premature or

Preterm birth

6 1 (23)

Midkine AND

Hypoxic-ischemic

Encephalopathy

0 0

Midkine AND Fetal Growth

restriction OR intrauterine

growth restriction

0 0

conformation-dependent heparin binding site that is needed
for full expression of the neurite extension and plasminogen
activator activities, but not for promoting cell survival (25,
29). It is noteworthy that the effects of MK on neuronal
outgrowth and survival are highly dependent on the sulfate
groups (30).

MK binds to highly sulfated structures in the
glycosaminoglycan chain of proteoglycans, namely, chondroitin
sulfate-E structures and the tri-sulfated structure in heparin
sulfate disaccharide units prevalent on the cell surface and
within the extracellular matrix (31). In fact, MK protein is the
ligand for several receptor-type proteins implicated in various
physiological roles as described in Table 2. Though this provides
an array of potential therapeutic targets, these receptors also
have several potential ligands, and this has created difficulty in
defining the exact functions of MK.

DEVELOPMENTAL EXPRESSION OF
MIDKINE

MK gene expression is regulated by retinoic acid, a derivative
of vitamin A (43, 44). MK’s role in promoting cell proliferation,
differentiation, and mitogenic senescence during development is
once it shares with other trans-retinoic acid or retinoic-derived
gene products (45, 46). The most complete understanding of
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TABLE 2 | MK receptor-ligand binding and signaling functions.

MK binding receptors Biological functions References

Protein tyrosine

phosphatase ζ (PTPZ)

◦ Promotes survival of embryonic neurons

◦ Expressed on LRP6 and apoE receptor 2 (components of reelin, Wnt, and Dickkopf receptors) neurons

◦ Antiapoptotic activity with combined effects of PP1 and PTX—inhibitors of G protein-linked signaling

◦ Promotes migration of embryonic neurons

(32, 33)

Ryudocan (Syndecan-4) ◦ Expressed abundantly in peripheral bundle nerves

◦ Interacts with tissue factor pathway inhibitor ligand

◦ Function in anticoagulant function and inhibits placental cytotrophoblasts

(34)

Syndecan-1 ◦ Expressed in brain and spinal cord during earlier gestational period—E10 to E12

◦ Promotes neurogenesis

(35)

N-syndecan (Syndecan-3) ◦ Interacts with MK during late developmental period—E14 to E16

◦ Promote neurogenesis

(35)

Low-density lipoprotein

receptor-related protein (LRP)

◦ Promotes nucleus translocation

◦ Internalizes MK in the cytoplasm-bound nucleolin, a nucleocytoplasmic shuttle protein

◦ Promotes cell survival

(36)

Neuroglycan C ◦ Promotes CG-4 cells (glial precursors for oligodendrocyte progenitor cells)

◦ Promotes elongation in glial cells

(37)

β-integrins—α6β1 integrin and

α4β1 integrin

◦ α4β1 integrin promotes migration of osteoblastic cells

◦ α4β1 integrin governs haptotactic migration of osteoblastic cells

◦ Increase tyrosine phosphorylation of paxillin, a key molecule in Crk-II pathway

◦ α6β1 integrin promotes neurite outgrowth on embryonic neurons

(38)

Lipopolysaccharide-binding

(LBP) receptor—member of

low-density lipoprotein receptors

◦ Activates LBP adhesion in the cytoplasm and cell surfaces

◦ Activates and acts as “shuttle protein” in translocating into nucleus

◦ Promotes tumorigenesis process

(39)

Anaplastic lymphoma kinase

(ALK)

◦ Mitogenesis-potent proliferation of human endothelial cells from brain microvasculature and umbilical vein

◦ Promotes angiogenesis

◦ Activates Akt phosphorylation by 10-fold, with 2-fold increase in MAPK phosphorylation

◦ Activates NF-κB pathway

◦ Induces insulin receptor-1 to initiate mitogenesis and antiapoptosis

◦ Activates PI3K and MAPK pathways in varying ratio and response in cell types

(40–42)

ALK, anaplastic lymphoma kinase; ApoE, apolipoprotein E; LBP, lipopolysaccharide-binding; LRP, low-density lipoprotein receptor-related protein; MAPK1, mitogen-activated protein

kinase 1; MAPK3, mitogen-activated protein kinase 3; NF-kB, nuclear factor kappa-light-chain-enhancer of activated B cells; PTX, paclitaxel; PI3K, phosphatidylinositol-3-kinase; Akt,

protein kinase B; PP1, protein phosphatase 1.

the developmental expression of MK and PTN comes from
zebrafish and the altricial mouse and rat. In the sections
below, we outline this data and highlight what little is known
for humans, while also presenting data available from public
datasets, as summarized in Figures 1–5. In contrast to the
staging of developmental events in rodent (and of course
zebrafish), in humans, organogenesis occurs predominantly
in utero. Therefore, it is subject to the influence of the
maternal and intrauterine environment, and to the influence of
hormones and growth factors released by the placenta (47, 48).
In this regard, study of model pregnancies closer to human
pregnancy might be very important. For instance, it is known
that glucocorticoids negatively regulate MK expression (49).
Specifically, glucocorticoids downregulate MK expression in
alveolar cells isolated from fetal mouse lungs, and prolonged
and exaggerated MK expression occurs in adult mice lacking the
glucocorticoid receptor (49). Hence, the observation that MK
decreases after mid-gestation in some species might reflect the
increased fetal glucocorticoid secretion that occurs toward the
end of gestation, a process required for functional maturation of
many organs, including the lungs (50, 51), heart (52), and gut
(53).

Prenatal Expression
As indicated above, MK is named due to its high expression in
mid-gestation. This expression pattern in humans is highlighted
in Figure 1, but this data is from total cortical extracts, hiding
any cell-specific variance. Cell-type specific analysis using RNA-
sequencing across fetal and adult time points revealed that
across cell-types, MK expression is approximately 10-fold greater
in Mus musculus (house mouse) when compared to that of
humans (Figure 2). The most complete ontogenic description of
mammalian MK expression comes from rodents (summarized
in Table 3), for which localization of MK and PTN proteins
overlap in the embryonic stages (see also Figures 2–5). In the
mouse, intense expression of MK mRNA can be detected as early
as embryonic day 5 (E5) in the ectoderm and in the allantois
and chorion of the placental tissues (54). Then by E8.5, MK
expression is found throughout the whole mouse embryo as well
as in the extra-embryonic membranes (amnion and yolk sac)
(54), and in the placenta at E11.5 (55). Also, in themouse embryo,
strong MK mRNA is present throughout the developing cortical
plate at E14.5 and E15.5 (Figures 3, 4), and is also present in
the jaw, hindlimb bud, skin, placental capillary endothelial cells,
brain, and spinal cord (44) (Figure 3).
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FIGURE 1 | Developmental expression of human mRNA in the cortex for our proteins of interests and known receptors. Each plot shows the gene expression from a

frontal cortical sample on the Y axis (age) adjusted to the total average global gene expression across timepoints. Each blue dot is an individual human sample, and

the red line is the moving average of gene expression. Age on the Y axis is in weeks of gestation (far right) and then in years after birth. (A) Midkine (MDK). (B)

Pleiotrophin (PTN). (C) Syndecan-1 (SDC1). (D) Syndecan-3 (SDC3). (E) Syndecan-4 (SDC4). (F) Protein tyrosine phosphatase ζ (PTPRZ1). (G) Low-density

lipoprotein receptor-related protein (LRP1). (H) Neuroglycan C/chondroitin sulfate proteoglycan 5 (CSPG5). (I) Laminin binding protein precursor/40S ribosomal

protein SA (RPSA). (J) Anaplastic lymphoma kinase (ALK). Data collated from the http://braincloud.jhmi.edu/.
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FIGURE 2 | Gene expression profiling data of our targets of interest in purified cell populations from the mouse (Mus musculus, blue) and human (Homo sapiens, red)

at stages of development as indicated. (A) Midkine (Mdk/MDK). (B) Pleiotrophin (Ptn/PTN). (C) Syndecan-1 (Sdc1/SDC1). (D) Syndecan-3 (Sdc3/SDC3). FPKM,

fragments per kilobase of transcript per million mapped reads = the relative expression of a transcript. Top right inset on each panel shows the overall expression of

the gene relative to all transcripts in the analysis. Data collated from the http://www.brainrnaseq.org/.

In rats, MK protein immunoreactivity (IR) is found in the
ventricular zone of the cerebral vesicle at E10, whereas little
PTN-IR is detected here at this time. By E17 in the rat, both
MK and PTN-IR emerge radially from the ventricular zone
into the telencephalon, and dual expression is most intense in
the intermediate zone and subventricular zones beneath the

subplate. Moderate expression of MK and PTN is found within
the subplate, and most importantly, coexpression in the cortical
plate is localized to the radial glial processes (56)–a network
that governs migration of postmitotic neurons (57). Expression
patterns for MK protein at E17 (4) and MK mRNA at E14.5 and
E15.5 are similar (Figures 3, 4).
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FIGURE 3 | Gene expression in the embryonic day 14.5 mouse embryo for midkine (Mdk), pleiotrophin (Ptn), and syndecan-1 (Sdc1). Data for Syndecan-3 (Sdc3) not

available. Data for the common reference gene glyceraldehyde 3-phosphate dehydrogenase (Gapdh) and the immature neuronal gene doublecortin (Dcx) shown to

help understand the relative intensity in our targets. Data collated from Genepaint: https://gp3.mpg.de/.

FIGURE 4 | Gene expression in the mouse brain at embryonic (E) day 15.5, postnatal day (P) 7 and in adulthood for midkine (Mdk), pleiotrophin (Ptn), Syndecan-3

(Sdc3). Data for Syndecan-1 (Sdc1) not available. Data collated from GENSAT: http://www.gensat.org/index.html.

Of note, in human pregnancies, MK and PTN proteins are
present in amniotic fluid in normal mid-term pregnancy, during
preterm labor with or without rupture of the membranes, and at
term with and without labor (58); the significance is discussed
further below.

Postnatal Expression of Midkine
In postnatal life (P7), protein expression for MK in the
forebrain of the rat is now largely restricted to the choroid
plexus (4). However, there is an obvious discrepancy in this

restricted protein expression and mRNA levels, as mRNA
data shows that mRNA for MK is still robustly expressed
at P7 across the cortex (Figure 4). On the other hand, PTN
protein shows a distinct spatiotemporal pattern of expression
during completion of cortical lamination—corresponding to the
inside—out development of the cortex (Table 3) (4). Specifically,
PTN-IR is localized in the cell surface of neuronal cell bodies
and processes and is intensely expressed in the marginal layer
at P1, and cortical layer I at P7 and P14. PTN-IR is also robust
in the corpus callosum when assessed at P7, localized in the
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FIGURE 5 | Gene expression profiling data of our targets of interest at stages across development (P7-2 years) and across regions of the brain (cortex, blue;

hippocampus, green; striatum, red) from the mouse (Mus musculus). (A) Midkine (Mdk). (B) Pleiotrophin (Ptn). (C) Syndecan-1 (Sdc1); (D). Syndecan-3 (Sdc3).

FPKM, fragments per kilobase of transcript per million mapped reads = the relative expression of a transcript. Data collated from http://www.brainrnaseq.org/.
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TABLE 3 | Developmental expression of MK and pleiotrophin (PTN) in the rat brain.

Location Embryonic (E) or postnatal (P) days PTN expression MK expression References

Prenatal cerebral cortex Ventricular zone E10 ➯ ➯ ➯ (4)

Ventricular zone E14 ➯ ➯ ➯ ➯

Preplate E14 ➯ ➯ ➯

Ventricular zone and intermediate zone E17 ➯ ➯ ➯ ➯ ➯ ➯

Subplate E17 ➯ ➯ ➯ ➯

Cortical plate E17 and E18 ➯ ➯ ➯ ➯

Postnatal cerebral cortex Choroid plexus P7 Not detected ➯ ➯ ➯ (4)

Corpus callosum P7 ➯ ➯ ➯ Not detected

Cortical plate, marginal layer, and layer V P1 ➯ ➯ ➯

Layer VI P1 ➯ ➯

Layers I, III, and IV P7 ➯ ➯ ➯

Layers II, V, and VI P7 ➯ ➯

Layers I, II, III, V P14 ➯ ➯ ➯

Layer IV and VI P14 ➯ ➯

Postnatal cerebellum PLZ, PM, ML and PCL P1 ➯ ➯ ➯ ➯ (3)

EGL, ML and PCL and WM P3 and P5 ➯ ➯ ➯ ➯

IGL P3 and P5 ➯ ➯

EGL, ML and PCL and WM P7 ➯ ➯ ➯ ➯ ➯ ➯

IGL P7 ➯ ➯

IGL WM P14 ➯ ➯ ➯ Not detected

ML and PCL P14 Not detected

EGL, external granular layer; IGL, internal granular layer; MK, midkine; ML, molecular layer; PTN, pleiotrophin; PMZ, pre-migratory zone; PLZ, proliferative zone; PCL, Purkinje cell layer;

WM, white matter.

axoplasm and, to a lesser extent, the surface of callosal fibers.
In the forebrain, PTN-IR intensity peaks at P7–P14, consistent
with other reports of PTN mRNA peaking at around this
age before decreasing progressively into adulthood in humans
(Figure 1) and in rats (4, 59). Across postnatal life in rats (P7–
2 years), mRNA studies indicate that the regional heterogeneity
in expression of MK and its associated receptors continues
(Figure 4).

In the developing rat cerebellum in early postnatal life, MK
and PTN protein are coexpressed (3) (see Table 3). From P1 to
P5, PTN protein expression is found in the cerebellar cortex;
at P3, MK protein expression is colocalized with PTN, and
MK-IR reaches similar levels to PTN by P5. Most importantly,
at P7, intense expression of both proteins is colocalized to
neural and glial processes extending downward from the external
granular layer, through the molecular layer and Purkinje cell
layer, with weaker expression in the internal granular layer
but with intense expression in the white matter. This pattern
of expression is associated with Bergmann glial processes (3,
60)—a cerebellum-specific radial glial network that mediates
migration of postmitotic neurons (61). Expression of MK
diminishes from P7 to P14, while PTN-IR becomes restricted
to the internal granular layer and the white matter (4). This
comprehensive study of MK and PTN protein covered the
developmental ages of E17, P7, and P14, but mRNA data for
MK in the adult rat cerebellum (Figure 4) illustrates a robust
expression of MK transcript in the molecular layer that is worth
further investigation.

Developmental Importance of MK
Expression
During embryonic and early postnatal development in these
altricial rodents, both MK and PTN are highly expressed
in neurites and glial cell extensions (3, 4) and are key in regulating
neurite outgrowth (62–64), earning their membership in the
neurite outgrowth family. Co-expression of PTN and MK in
the embryonic stages of forebrain development is prominent in
regions where cell migration and neurite outgrowth occurs (4),
and the same is also true for the postnatal cerebellum, where
MK and PTN likely combine to mediate the development of fiber
networks (3).

Gene expression and protein studies suggest that MK
signaling in the rat embryo occurs predominantly through
members of the Syndecan (Synd) family, namely, Synd-1 and
Synd-3 (35). Each of the four Synd family members have a
specific, developmentally regulated pattern of tissue expression—
with high expression of the Synd-1 receptor before birth, which
then decreases postnatally, and high expression of the Synd-
3 receptor from immediately after birth (Figures 1–3) (65).
However, both receptor proteins are expressed during mid-
gestation, with expression of Synd-1 at E10-12, and Synd-3
at E10-16—implicating both in the early construction of the
CNS from the neural tube (66). Despite this, Synd-1 or Synd-
3 knockout (KO) mice are viable and fertile (67–69). However,
Synd-1 KO mice present with a growth restricted phenotype,
being, on average, 15% smaller in weight throughout the first
4 months of life, and this is detected as early as E17.5 (69).
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In addition, Synd-3 KO mice exhibit impaired migration of
glia and neurons in the cerebral cortex during development,
resulting in fewer neurons residing in the superficial cortical
laminae when assessed later in adult life (68). Both MK and
PTN facilitate neurite outgrowth in vitro (43, 70), and so MK
and PTN signaling via the Synd-3 receptor during corticogenesis
is implicated in axonal/neural migration. Moreover, Synd-3 KO
mice exhibit enhanced long-term potentiation in the CA1 region
of the hippocampus, resulting in impaired memory formation as
assessed using water maze and fear conditioning assays (67).

As outlined in mRNA datasets in Figure 2, Synd-3 is more
highly expressed than Synd-1 in bothMusmusculus and humans.
More importantly, RNA sequencing suggests that the density
of Synd-1 expression is approximately 100-fold less in humans
than that of the Mus musculus, and this difference is 50-fold
less for Synd-3. It is unknown currently if these differences
are real (71), and if they are, whether there are differences
in protein abundance or stability in humans that counteract
any higher expression of the mouse mRNA. Irrespective,
it is an example of how results from rodent experiments
must be interpreted cautiously considering that this difference
may indicate fundamental physiological differences between
organisms that prevent simple extrapolation of findings (72).

Difficulties in understanding the specific role of MK come
from the fact that MK interacts with several receptors (Table 2),
each of which have numerous potential ligands, thus limiting
the ability to delineate the activity of MK through receptor
blockade or KO studies. Also, there are structural and functional
similarities and complex feedback loops in actions between MK
and PTN. These lead to redundancy, illustrated by the fact that
(73), to date, there are no conditional KOmice for MK to provide
more nuanced data on functions. Nevertheless, MK KO mice do
still show an abnormal phenotype (74). Brain-specific structural
abnormalities in MK KO studies include delayed hippocampal
development, as shown by a transient abnormal increase in
calretinin in the granule cell layer of the dentate gyrus (75).
However, at this young adult stage of life for a rat, behavioral
analysis unveiled that MK KO mice exhibit increased anxiety
and impaired working memory assessed via the elevated plus
maze test and y-maze test, respectively. (67), suggesting that MK
activity via Synd-3 may serve to modulate hippocampal synaptic
plasticity. MK KO mice also exhibit reduced striatal dopamine
content, which has been interpreted as an increased vulnerability
for development of behavioral disorders such as schizophrenia
and autism, and abnormal serum levels ofMK have been reported
in people with these behaviors (76).

MK/PTN double KO (DKO) mice have been previously
produced by cross breeding mice heterozygous for MK and
PTN deficiency. DKO mice are born at one third the expected
frequency based on Mendelian segregation (77). The authors
attributed this to lethality occurring prior to E14.5; however, no
histological abnormalities of organ architecture were found at
this stage, and an earlier assessment was not made. DKO mice
present with a severe postnatally developing growth retardation
(50% reduction at 4 weeks of age) not corrected with high-calorie
postnatal feeding (77). As mentioned previously, Synd-1 KO
mice also present with a growth-restricted phenotype evident as

early as E17.5 (69). We speculate that MK and PTN signaling via
Synd-1 may be of functional importance during growth and may
provide key insights for exploring interventions to ameliorate
fetal growth restriction. MK/PTN DKO mice at 4 weeks of age
exhibit 40–50% reduction in the spontaneous locomotor activity
compared to wild-type (WT) mice, with the difference resolving
somewhat to a 20% deficit at 3 months of age (77). Interestingly,
MK, KO, and/or PTN KO mice have auditory deficits, but in
the case of DKO, the deficit is more severe, consistent with a
role for both PTN and MK in regulating the tectorial membrane
proteins α- and β-tectorin that are crucial proteins for cochlear
development (78).

MK and PTN proteins are present in the amniotic fluid from
at least midgestation to birth in normal pregnancies and those
disrupted by preterm labor (58). The functional significance and
the source of these heparin-binding growth factors in amniotic
fluid are unclear. It is known that both MK and PTN are
expressed during development of the epithelial-mesenchymal
interactions in the fetal lung (2, 49) and gastrointestinal tract
(2), and MK is expressed in embryonic mouse keratinocytes in
the epidermis (79). As such, MK in the amniotic fluid may be
participating in, or be a by-product of, the development of the
epithelia of the lung, gastrointestinal tract, and skin. Of course,
fetal urine is a major contributor to amniotic fluid, and amniotic
MK may also come from the fetal kidney, consistent with the
observation that MK is highly and constitutively expressed in the
kidney (80) and is involved in kidney nephrogenesis in the fetal
rat (81). The human fetus swallows amniotic fluid regularly for
at least the last half of pregnancy, and as such, amniotic MK may
have a role in promoting development of the luminal epithelium
of the gastrointestinal tract. Finally, given the current interest in
the use of amniotic stem cells for regenerative repair of perinatal
brain damage (82), it is worth investigating if amniotic MK
enhances the survival and potential for further differentiation of
these cells, as already shown for neurogenic stem cells ex vivo
(58, 83).

NEUROPROTECTION AND REPAIR

We outline in this section, the primary neuropathological
processes occurring in perinatal brain injuries and how these
may be influenced by MK. A summary of these processes for
encephalopathy of prematurity (EoP) and NE linked to HI is
given in Table 4 together with a summary of proposed MK
approaches. The focus of this review is perinatal brain injury,
but it is highly likely that MK would also be useful for targeting
damaging processes occurring during adult brain injury, such as
stroke or traumatic brain injury (8, 87). Injury process do differ
by age though, for example, that cell death in the developing
brain is more likely to occur via a caspase-dependent process
(88) and that microglia are in a “brain building” mode in the
developing brain, compared to an adult homeostatic role (89).
We wish to highlight that the developmental window in which
a perinatal injury occurs is a key determiner of the type of
damage that is caused (see Figure 6). For example, in preterm
born infants, there is a widespread interneuronopathy as these
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cells are still migrating throughout the last trimester, a period of
development disturbed by their early birth (91, 92). Interneuron
damage in neonatal stroke and HIE is limited to the region of
frank cell loss (93, 94). A role for HIE in preterm born infants

TABLE 4 | An outline of the common neuropathological processes occurring in

babies born preterm (with EoP) and those born at term with NE linked to HI (HIE)

[as reviewed by (84–86)] and the current available therapies (18–20) and proposed

application of MK.

Neuropathology EoP NE linked to HI Potential target

for Midkine

Microgliosis Yes Yes Yes

Astrogliosis Yes, when birth

<23 weeks of GA

Yes Yes

Neuronal death Limited Yes Yes

Oligo. death In severe cases Yes Yes

Oligo.

dysmaturation

Yes No Yes

Interneuron

dysmaturation

Yes No Possibly

Treatments Potential

midkine therapy

Description Magnesium sulfate Hypothermia Midkine

Timing/route At least 1 h before

birth, IV

72 h continuous

cooling (32–33
◦

C)

initiated within 6 h

of birth

Acute IV boli,

and/or chronic

intranasal

Efficacy (NNT) No change in

mortality,

decreased CP (74)

Reduced mortality

and rates of NDD

(7)

To be determined

EoP, encephalopathy of prematurity; NE, neonatal encephalopathy; HI, hypoxia-ischemia;

GA, gestational age; Oligo, oligodendrocyte; CP, cerebral palsy; IV, intravenous; NNT,

number to treat; NDD, neurodevelopmental disability.

is not conclusively supported (95), but oxygen variability is a
likely contributor to injury (96). Also, myelination deficits are
predominantly localized in areas such as the posterior limb of the
internal capsule and the corona radiata in infants with HIE (97,
98). However, in infants with EoP, white matter injury is diffuse
due to the vulnerability of populations of oligodendrocytes across
the brain, and this leads to global connectivity deficits (99). Other
key factors governing the specific pathogenesis include insult
severity, patient population (ethnicity, social demographics), and
standards of care/availability of care.

MK Expression Following Injury
Following hypoxic and/or inflammatory injury, there is
induction in MK expression. Specifically, MK has been shown
to mediate response to injury by suppressing programmed cell
death (apoptosis), modulating the glial response, propagating
peripheral immune cell recruitment, stimulating angiogenesis,
and enhancing proliferation and migration of neural stem
cells—all of which will be discussed further below.

The MK gene harbors response elements specific to signals
arising from hypoxia and inflammation (6, 40), two conditions
that are frequently associated with perinatal brain damage.
The hypoxia response element in the promotor region of
MK (6) binds with the transcription factor, hypoxia-inducible
factor 1α (HIF-1α). MK itself also increases HIF-1α expression
creating a positive feedback loop for signal propagation (6).
Hypoxic upregulation of MK expression likely explains the MK
expression observed in tumors, where higher levels correlate
with a worse prognosis (100, 101). The MK promoter region
also possesses a putative nuclear factor kappa light-chain
enhancer of activated B cells (NFκB) response element (7, 40).
Stimuli that induce NFκB activation include reactive oxygen
species, proinflammatory cytokines such as tumor necrosis
factor α (TNFα) and interleukin-1β (IL-1β), and the bacterial

FIGURE 6 | An outline of the timing of the more common perinatal insults relative to gross brain development. MRI panels adapted from Vasung et al. (90). Top,

representative MRI reconstructions showing the striking changes in brain development across the weeks of gestational development. Bottom, indications of the timing

(weeks of gestational age) of common perinatal insults.
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endotoxin, lipopolysaccharide (LPS) (102–105). MK expression
can be upregulated during many forms of inflammatory reaction
(102–105). Consistent with this, an elegant study that used
a prostate adenocarcinoma cell line showed that induction of
MK expression following TNFα exposure occurs in an NFκB-
dependent manner (7).

Cell Death
Many studies demonstrate thatMK is involved in the suppression
of apoptosis (9, 106–108). For instance, MK treatment in serum-
starved cortical neuronal cultures from E17 rats attenuates
expression of caspase-3 via rapid activation of the ERK
and Akt pathways by MK (106). This finding is consistent
with other in vivo evidence that MK has an antiapoptotic
effect by downregulating caspase-3 in hepatocellular carcinoma
and human meningiomas (107, 108). Furthermore, in vitro
knockdown of theMK gene using small interfering RNA (siRNA)
in gastric cancer cell lines inhibits cell growth, upregulates
proapoptotic Bax, downregulates antiapoptotic Bcl-2, increases
activity of caspases-3, -8, and -9, and increases release of
mitochondrial cytochrome c (109). Cell death occurs in the
perinatal brain in response to insults including HI in term
infants, and it is often ascribed to apoptotic processes (110, 111),
and MK may act to ameliorate these events. However, it is
not known if MK interacts with the more recently identified
necroptotic pathway—a form of cell death that is initiated using
the signal transduction mechanisms of apoptosis, but which
culminates with a necrotic phenotype (112, 113). Necroptosis is
largely mediated via receptor-interaction protein-1 (113) and is a
primary contributor to cell death where it is occurring following
perinatal brain injury (114–116). As such, it is now important to
assess the potential involvement of MK in necroptosis.

Reactive Gliosis
Microglial activation is almost ubiquitously reported across
forms of perinatal brain injury, and a causal role for these
processes in injury has been demonstrated across paradigms
(117, 118). Conversely, a neuroprotective role for microglia
is also shown in other experimental settings (119, 120). It is
now generally regarded that microglia play numerous different
roles in brain injury, dependent on the nature, severity, and
stage of development of the injury, and the timepoint of the
analysis (121, 122). Analysis of microglia in MK KO mice has
found no significant effects on distribution and morphology in
adulthood before or after LPS challenge (123). Another study
used fluorescently activated cell sorting (FACS) to phenotype
microglia from these mice and observed that MK−/− microglia
had higher expression of B7-2 (cluster of differentiation-80),
macrophage chemotactic protein-1 (MCP-1), and IL-1β, and
these differences were lost once the cells were activated with
either LPS or interferon γ (IFNγ) (124).

A pathological role for astrocyte activation becomes apparent
in infants older than 28 weeks gestational age, linked to
maturation of these supportive glia at that time (125–127).
These cells increase production of proinflammatory cytokines
and proliferate around focal lesions sites (128, 129). As such,
activation of astrocytes is reported in post-mortem studies of

infants with encephalopathy of prematurity (126, 130) and
infants with NE linked to HI (127, 131). As for microglia,
astrocytes also play roles in protecting the brain, with injury
leading to increased uptake of glutamate, production of
antioxidants, and production of trophic factors [as reviewed by
(132)]. Animal studies of brain injury, such as transient cerebral
ischemia causing damage to the hippocampal CA1 region in adult
male rats (133), and kainic acid-induced epileptic seizure injuries
in adult male mice (9), show that reactive astrocytes produceMK.
Similarly, astrocytes in autopsied adult human brains express
MK 4 days after ischemia (134), and MK is produced by
fetal human astrocytes in culture (135). Furthermore, following
middle cerebral artery occlusion (stroke model) in the rat, MK
expression is induced in the reactive astrocytes localized to the
zone surrounding the ischemic tissue at 4 to 14 days following
stroke (136). Glial-fibrillary acidic protein (GFAP)-IR astrocytes
are not only a source of MK but also produce chondroitin
sulfate proteoglycans (CSPGs)—broadly considered to impede
neuronal regeneration (137). In a rat model of spinal cord injury,
MK treatment overrides the inhibitory effects of CSPG’s on
neurite outgrowth (138). Specifically, MK treatment significantly
improved functional recovery of injured rats as assessed using
open field locomotor performance, grip strength, and correct paw
placement (138). Importantly, exogenous MK treatment in in
vitro purified astrocyte and microglia cell cultures did not induce
reactive astrocytosis or microgliosis (138).

Adding complexity to the role of MK in modulating reactive
gliosis is evidence of the response being stimulus dependent
and region specific. For example, amphetamine-induced reactive
gliosis (GFAP-IR) is enhanced in the striatum of adult MK
KO mice compared to WT; however, hippocampal GFAP-IR
is reduced (139). In contrast, adult MK KO mice treated with
LPS have reduced striatal GFAP-IR compared to WT—and in
the prefrontal cortex, there is a decrease in the perimeter and
circularity index of ionized calcium binding adaptor molecule
1 (Iba1; marker of microglia/macrophage) cells in MK KO
compared to WT (123). Of interest is that MK enhances
migration of microglia/macrophage isolated from the forebrain
of newborn mice when assessed in vitro (140). As such, MK may
contribute to the recruitment of microglia following injury to the
developing CNS.

Oligodendrocytes and Myelination
Oligodendrocyte maturation occurs via a highly orchestrated
set of sequential processes for which many of the numerous
regulatory pathways are known (141). How oligodendrocytes
are affected in forms of perinatal brain injuries depends on
the timing, nature, and severity of the brain injury (142–145).
Very generally, research in post-mortem and preclinical models
illustrates that severe injury at any time of development can lead
to the death of oligodendrocytes (142). Given the antiapoptotic
abilities of MK (outlined above), it may be a valid therapy for
this negative outcome of perinatal brain injury. In the preterm
brain, where injury is severe enough to cause cell loss, there
appears to be a compensatory proliferation, but the newly born
oligodendrocyte cells then fail to mature (146). In the cases of
moderate/mild injury in the preterm born equivalent brain, this

Frontiers in Neurology | www.frontiersin.org 11 October 2020 | Volume 11 | Article 568814

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Ross-Munro et al. Midkine for Perinatal Brain Injury?

oligodendrocyte dysmaturation occurs without any appreciable
preceding cell death (126, 147). Moderate levels of injury are the
most prevalent and only 5% are severe, cystic cases (148).

Receptors for MK (listed in Table 2) are found on
oligodendrocytes, with complex interactions with other
maturation pathways. For instance, Fyn tyrosine kinase-
mediated downregulation of Rho activity through activation
of p190RhoGAP is crucial for oligodendrocyte differentiation
and myelination. MK binds to the extracellular region of the
protein tyrosine phosphatase receptor type β/ζ (PTPRZ) that is
highly expressed by oligodendrocyte progenitors. Interestingly,
p190RhoGAP is also a substrate for PTPRZ indicating that the
presence of MK can influence the activity of the p190RhoGAP
cascade and, as such, oligodendrocyte maturation. It is worth
noting that in the adult brain, there is a pool of oligodendrocyte
precursors (OPC) responsible for the homeostatic replacement of
mature oligodendrocytes (149) and (attempted) replacement of
cells in the case of injury (150). PTN, via its inhibitory actions on
PTPRZ, supports this homeostatic self-renewal of the OPC pool
(151). In oligodendrocytes, PTPRZ signaling has antagonistic
roles for PTN and MK, but it is not yet known if MK plays a role
in the maintenance of this OPC pool.

There is little work on the effects of MK on oligodendrocytes
directly. Preliminary reports indicate that MK exposure increases
oligodendrocyte maturation in an immortalized precursor
population (OL1 cells) (152). It has similarly been shown that in
the oligodendroglia precursor cell line (CG4), MK acted via the
neuroglycan C receptor to stimulate process extension (37). Of
note, the authors also overexpressed the neuroglycan C receptor
in neuroblastoma cells and were able to induce a similar MK-
dependent cytoskeletal arrangement, indicating that this is not
necessarily a cell type-specific effect.

Looking for further evidence for a role of MK in
oligodendrocyte biology, we note that MK mRNA is increased
in the demyelinated white matter of the lumber spinal cord in a
mouse model of myelin oligodendrocyte glycoprotein-induced
experimental autoimmune encephalopathy (EAE) (153).
Subsequent studies of MK’s role in EAE (124, 154), including
experimental MK therapies, have not reported specific data on
the basal or post-insult state of the oligodendrocytes or myelin.
However, they have reported a causal link between MK and
suppression of regulatory T-cell (Treg) proliferation. We assume
that these studies had explored, but had not reported, on the
“low hanging fruit” of direct effects of MK on oligodendrocytes
or myelin in EAE. So then perhaps the lack of information on
any effect of MK on oligodendrocytes in such obvious models
itself rules out a significant interaction.

Recruitment of Peripheral Immune Cells
In adult animal models of brain injury, MK facilitates the
migration of leukocytes to the site of injury, namely, neutrophils
and monocytes/macrophages (12, 140). These immune cells
are implicated in modulating repair pathways and positive
processes such as angiogenesis (155–157). However, an excessive
stimulation of these processes is known to exacerbate brain
injury (118, 126, 158–160). In models of perinatal brain damage
linked to stroke and moderate systemic inflammation, the role

of macrophages is minimal (161, 162), but more significant in
models involving HI (160, 163). Under hypoxic conditions, both
neutrophils and monocytes isolated from adult human blood
transiently express MK, peaking after 4 h of exposure to 1%
oxygen (11), and MK-IR is localized to both the cell surface
and intracellular cytoplasmic vesicles. Following 6 h of hypoxia,
MK expression in neutrophils decreases to near baseline levels.
After 20 h of hypoxia, Western blotting techniques revealed
that MK expression in monocytes resembles that of normoxic
conditions; however, immunostaining for MK showed that the
cell membrane is almost completely saturated in MK. However,
MK is not detected in the supernatant of neutrophils and
monocytes, and so it is assumed that it is not secreted from
these cells. Instead, MK may participate in autocrine or cell–cell
contact-dependent paracrine signaling pathways. An alternate
hypothesis (proposed by 11) is that MK is internalized via
endocytosis to prevent an excessive inflammatory response, as for
IL-1β and the expression of its decoy receptor, IL-1RII.

MK is involved in extravasation of neutrophils. In neutrophils
isolated from adult human blood, MK mediates neutrophil
extravasation via interaction with low-density lipoprotein
receptor-1 (LRP-1), which, in turn, causes conformational
changes in β2 integrins promoting adhesion (12). It is unknown
if this mechanism of extravasation is age dependent; however,
neutrophil extravasation is impaired in MK KO mice in vivo
following hindlimb ischemia, and blockade of LRP-1 impairs
MK binding to neutrophils in vitro–suggesting an important role
for MK in neutrophil trafficking. Systemic neutrophil responses
are elevated in preterm born infants with brain injury (164),
but it is not clear if neutrophils have a significant role in the
development of brain injury in these infants (162, 165). In term-
born brain injury related to HI, neutrophils are clearly involved
in the sequence of events as the injury evolves (166–168), and if
one effect of MK was to reduce their transmigration, this could
be of significant therapeutic benefit.

The chemoattractant properties of MK for recruitment of
peripheral immune cells may explain, in part, the results
of a recent study on the examined traumatic brain injury
(TBI) in MK KO adult mice (87). Here, MK KO mice had
reduced levels of apoptosis at 7 days post-TBI as assessed via
cleaved caspase 3 expression and showed improved neurological
outcomes at 14 days following TBI. Importantly, MK KO mice
had reduced microglial/macrophage Iba1-IR at 3 days post-TBI
when compared to WT. Using immunohistochemical markers
for the proinflammatory-like or M1 (CD16/32+) and anti-
inflammatory-like or M2 (arginase1+) phenotypes at 3 days
post-TBI, MK KO mice had fewer M1 CD16/32+ cells in
the perilesional site. Furthermore, mRNA levels of other M1
markers (e.g., TNFα, CD11b) were reduced in MK KO compared
to WT. Flow cytometry was used to segregate macrophages
and microglia, and at 3 days post-TBI, MK KO mice had
increased levels of M2 arginase1+ microglia and M2 CD163+
macrophages, but fewer M2 arginase1 + macrophages. Thus,
these results suggest that MK modulates neuroinflammation
by influencing the polarization of microglia toward the M2
phenotype. However, in the case of TBI, blood–brain barrier
(BBB) permeability is significantly increased with effects seen
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up to 7 days post injury, facilitating leukocyte trafficking to the
brain parenchyma (169). As such, the chemotactic properties
of MK may potentiate injury to the adult CNS via amplifying
recruitment of peripheral immune cells, and this could explain
the reported beneficial effect of MKKO in the adult mouse model
of TBI (87). Due to known age-dependent differences in BBB
permeability, chemokine function, and leukocyte recruitment
following CNS injury (170), it will be important to characterize
the effect of MK activity in the context of the developing CNS.

Mast cells are first responders in the response of the brain to
experimental HI (171, 172). There is a well-known role for mast
cells in adult TBI (173, 174); however, the use of cromoglycate
in a P14 rat model has shown that they appear to have no
effect on injury outcome (175). A role for these cells in the
less developed (preterm) brain, possibly via their lesser known
homeostatic secretory roles, is unknown. It is logical that MK
may have an impact on developing brain injury as it has striking
effects on mast cell activation causing rapid and dose-dependent
degranulation (176). Mast cells themselves produce MK, and this
expression is increased in people with cystic fibrosis, which is
linked to the role of MK as a host defense protein (177).

Finally, MK suppresses Treg proliferation by suppressing the
activity of tolerogenic dendritic cells (124, 154). To the best of
our knowledge, the role of tolerogenic dendritic cells in perinatal
brain injuries is not known. Together with the host of effects on
other immune cells, MK may influence perinatal brain injury via
these populations.

Angiogenesis
Following HI brain injury in the adult human, a robust
angiogenic response occurs within 3–4 days (178). However,
several studies indicate that in the neonate, this response is
limited and occurs much later, and ischemic tissue presents
with severe and chronic signs of vascular degeneration spreading
beyond the site of injury (179–181). Indeed, a small study
has associated the presence of proangiogenic factors in the
serum of asphyxiated neonates with better outcomes (181), and
although MK does not appear to be critical for the development
of the vascular system (11), MK does promote angiogenesis
in certain situations. Angiogenesis is severely compromised
in MK KO adult mice subjected to occlusion of the right
femoral artery (hindlimb ischemia model) as assessed via
immunohistochemistry using markers for proliferation (Ki67)
and endothelial cells (CD31) (11). Also, treatment with an
antisense oligonucleotide targeting MK impairs angiogenesis
in the chick chorioallantoic membrane, and reduces tumor
progression in situ in hepatocellular carcinoma xenografts in
mice (182). Indeed, Synd-1 has been implicated in regulating
angiogenesis via activation of αvβ3 and αvβ5 integrins in human
vascular endothelial cells in vitro, and in mouse mammary
tumors in vivo, suggesting that activity of MK via Synd-1 may
modulate angiogenesis (183). Promoting angiogenesis supports
neural regeneration in amodel of neonatal stroke (184), and thus,
the angiogenic potential of MK following perinatal brain damage
may be relevant for exploring strategies to enhance this response.

Notably, endothelial cells are thought to be a major source
of soluble MK (11). MK is localized in the Golgi apparatus

of human umbilical vein endothelial cells (HUVECs) following
4 h of hypoxia (1% oxygen), and the supernatant of cultured
HUVECs contains increased MK levels after 4 and 20 h of
hypoxia. Interestingly, intraperitoneal injection of hypoxia-
preconditioned HUVECs in a neonatal rat model of HIE
ameliorates neuronal apoptosis, stimulates angiogenesis, and
attenuates neurovascular damage in the acute and subacute stages
of brain injury—and also improves motor and neuropathological
outcomes assessed later in adult life (185). The possibility
that the beneficial effects of hypoxia-preconditioned HUVEC
treatment may be attributable to the actions of MK is worth
further investigation.

As mentioned previously, MK facilitates migration and
extravasation of neutrophils and macrophages to sites of tissue
injury, and these cells promote angiogenesis (186). Thus,
MK’s angiogenic role may arise as a result of two primary
mechanisms: (i) directly by enhancing growth and proliferation
of endothelial cells and (ii) indirectly by recruiting neutrophils
and macrophages. With regard to the latter, resident brain
microglia/macrophages dominate the site of injury in the
acute stages following neonatal HI injury in the neonatal rat
(161). Also, microglia have been shown to prevent hemorrhage
following focal neonatal stroke in rat pups by modulating the
neurovascular response (119). As such, in the context of perinatal
brain injury, MK may not only enhance angiogenesis but may
also facilitate migration of microglia to the damaged vasculature
to preserve BBB integrity. Further work is needed to clarify this.

Proliferation and Migration of Stem Cells
and Regeneration
Inflammation and hypoxia have the effect of suppressing
neuroglial proliferation in the developing brain (187, 188),
although specific effects are linked to the severity of HI [as
discussed by (189)]. One important effect of MK is that it
promotes neural stem cell proliferation andmigration, andMK is
strongly expressed inmigrating neurons and radial glial processes
during development of the cerebral cortex and cerebellum in the
rat (4). Injection of MK mRNA into the embryos of zebrafish
promotes neurogenesis (190), and expression of MK in neural
precursor cells in mice promotes their survival and proliferation
(191). Viral-mediated short hairpin (sh) RNA knockdown of MK
also significantly reduces sympathetic neuron proliferation (42),
where MK-mediated proliferation was shown to occur largely
through the receptor anaplastic lymphoma kinase (ALK), as
shALK and shMK treatment in sympathetic ganglia resulted in
a similar reduction in proliferation (42). In zebrafish, the ALK
ortholog leukocyte tyrosine kinase (ltk) is critical for neurogenesis
of the developing CNS, where its overexpression increases
proliferation of neural progenitors (192). Indeed, MK-mediated
cell proliferation via ALK activation has been implicated in
many cell types and occurs via activation of downstream signal
transduction pathways PI3K and MAPK (41).

Unlike mammals, zebrafish can regenerate photoreceptor
neurons (193), providing a platform to assess MK’s role in
neuronal regeneration. The zebrafish has two species-specificMK
genes—mka andmkb (194). Analysis of retinal development and
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regeneration in zebrafish identified that mka is highly expressed
in stem cells destined to be retinal horizontal cells, and in
the outer layer of the retina, a prominent site of stem cell
differentiation (195). Importantly, mka is transiently expressed
in Müller cells in the developing retina—a retina-specific radial
glial network (195). Conversely, the zebrafish mkb is transcribed
in newly postmitotic cells deeply entrenched in the inner retinal
layers, and in the amacrine cells and other components in the
ganglion cell layer (195). During retinal development, MKA
protein is localized in the neuroepithelium and the retinal margin
and remains localized in the circumferential marginal zone of
the retina (196). Following photolytic death of photoreceptors,
mka adopts a center-to-peripheral pattern of expression in rods
and cones as photoreceptor function regenerates (196). Thus,MK
may be a trophic factor critical for development of the retina that
also mediates regenerative processes. The developing eye is very
sensitive to hypoxia and hyperoxia (197, 198)—consistent with
reports of retinal atrophy in human infants following perinatal
asphyxia (197) and “retinopathy of prematurity” that occurs due
to supraphysiological levels of oxygen (198, 199) and exposure
to perinatal inflammation (200). Currently, there is no effective
treatment to specifically repair the infant’s retina from such
damage, and MK may provide the effective therapy needed here.
This is further supported by research that showed that intravitreal
injection of MK rescued retinal damage induced by exposure to
high intensity light in adult rats (201).

In a rat focal brain ischemia model utilizing photoembolism,
MK overexpression produced by ipsilateral injection of an
adenoviral vector into the lateral ventricle 90min after injury
resulted in proliferation of neuronal stem cells, reduction of
infarct volume by ∼33%, and an increase in the number
of callosal and subventricular neuronal cells expressing other
migratory factors (202). These neuroprotective effects of MK
gene transfer persisted beyond the acute phase of infarction.
Taken together, there is evidence to support MK’s therapeutic
potential in enhancing neuronal regeneration following injury to
the CNS.

CHALLENGES AND POTENTIAL OF MK
TREATMENT IN THE PERINATAL PERIOD

As discussed above,MK has been shown to have diverse actions—
in a cell type and developmentally regulated manner. These
include effects on neurogenesis, neuronal survival, apoptosis, and
glial activation across inflammatory and hypoxic CNS insults.
There is an obvious promise for the use of MK in neonates with
perinatal brain damage, but careful consideration needs to be
made to factors such as patient selection (i.e., HIE with or without
exposure to additional inflammatory challenge (203), themode of
MK delivery (systemic, intranasal, intracerebroventricular), and
the timing to address the acute, secondary, or tertiary phases of
injury (204).

Systemic delivery of MK is appealing because alongside the
brain, other organs susceptible to inflammatory and hypoxic
damage in preterm and term neonates include the heart, lung,
kidney, and skeletal muscles, and in particular the diaphragm

[reviewed by (205)]. In term-born infants, a focus was on
understanding injury to the brain, but it is important to note
that NE can develop secondary to cardiac, pulmonary, hepatic,
and renal dysfunction, and is often exacerbated by systemic and
cerebral inflammation (206, 207). While brain-specific treatment
is an obvious clinical goal, there is the need to protect other
vital organs, and it is here that MK might offer benefits in
addition to the rescue of brain damage. For example, MK has
been shown to be cardioprotective in rodent (208), rabbit (209),
and pig (210) models of ischemic myocardial infarct by virtue
of both its antiapoptotic and potent angiogenic actions, leading
to reduced infarct size, less left ventricular scarring, improved
cardiac performance, and overall survival (211). Importantly, the
intracardiac injection ofMKprotein ameliorated heart failure not
only when delivered at the time of cardiac ischemia/reperfusion
injury but also following a delay of up to 14 days post-
infarct (208). This important finding suggests that MK treatment
might benefit neonates when given at various times after birth.
That is, unlike therapeutic hypothermia where the “window of
opportunity” to have an impact on perinatal HIE is only hours
after birth (17, 212, 213), MK treatment might not be so time
critical. It may be with caution that trials of systemic MK are
undertaken though, given the plethora of diverse effects of MK
on immune cells that may conflict with supportive recovery and
overall health of the infant. The complexity of cross-organ effects
is shown in studies where a putative therapy, erythropoietin, used
to prevent brain damage in preterm born babies (214–216) has
damaging effects on the lung in preterm lambs (217, 218). In the
case of term born infants, it is also worth noting that therapies
need to be tested in relation to hypothermia, the current standard
of care. In this case, careful pharmacokinetics need to be assessed
as it has recently been shown that cooling can lead to toxic
bioaccumulation of potential neurotherapeutics (219).

The BBB in the healthy neonate is functional and more than
capable of excluding circulating factors, as reviewed elsewhere
(220). There is no specific evidence of the ability (or not) of
MK to cross the BBB, although many neurotrophic factors are
known to not penetrate the brain parenchyma sufficiently to
facilitate neuroprotection (221). Evidence indicates that many
forms of perinatal brain injury open the BBB to varying degrees
related to the severity of the insult (162, 222–224). This regionally
selective opening of the BBB may then be a useful strategy to
deliver MK to the sites of injury while keeping it away from the
uninjured parts of the brain. Even so, the many pro- and anti-
inflammatory systemic effects of MK might mitigate against it as
an effective therapeutic agent but highlights the need for more
experimental evidence.

The poor penetration of MK into the brain could be assumed
to be reflected in the many experimental studies that use delivery
of MK by intracerebroventricular or direct intracranial injection
(9). Obviously, this delivery route comes with substantial risks
in infants, but it is worth noting that MK administration may
be no more complicated than the surgical techniques developed
for treating intraventricular hemorrhage or hydrocephalus. For
example, the DRIFT procedure, necessitating the placement of
two shunts into the infant’s brain (225), has been able to improve
the cognitive quotient of children with severe intraventricular
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hemorrhage by asmuch as 23 points (226). So, although not ideal,
as the future of MK testing proceeds, it may be worth including
intracerebroventricular delivery as it might directly target brain
injury and avoid the side effects of systemic administration.

Two other approaches for MK delivery are of more obvious
value for newborn infants. First, the intranasal route, which
has been used to deliver diverse proteins to the brains of
neonatal and adult experimental animals (e.g., insulin, IGF1,
Fgf2, C3a, EGF, anti-tPA, osteopontin) for protection and repair
(104, 227–230). What is lacking here is the experimental data
on the distribution of MK after nasal delivery. Second, a
route in might be mediated by new nanoparticle. For instance,
a polyamidoamine dendrimer has been used to successfully
deliver n-acetylcysteine to reduce brain injury in a rabbit model
of cerebral palsy induced by hypoxia/ischemia (231, 232). In
addition, a poly(lactic-co-glycolic acid)-poly(ethylene glycol)
(PLGA-PEG) nanoparticle has successfully increased the delivery
of the histone deacetylase inhibitor, curcumin, to the brain in
a model of term infant NE related to HI (233). An interesting
biomaterials approach involves the engineering of nanoparticles
to release their “cargo” in response to tissue damage–in this
case–in response to acidosis in the brain subsequent to ischemia
(234). This approach is valuable because it reduces possible off-
target effects of drug delivery. Indeed, highly targeted effects are
possible, as shown by Van Steenwinckel et al. who showed that
3DNAnanocarriers administered intraperitoneally not only cross
the BBB but are taken up specifically by microglia and not by
liver, bone marrow, or spleen macrophages (118). This enables
this 3DNA nanoparticles to target peptides, small molecules,
siRNA, and microRNA, and as such, could be used to deliver
MK itself or an MK modulator. 3DNA nanoparticles are 200-
nm diameter constructs that escape the endosome to enable
intracellular delivery of the tagged “cargo,” and appear to have
no toxicity in vitro or in vivo (235), and can be tagged with
fluorophores for tracking—making them an exciting prospect for
future studies.

CONCLUSION

Current methods of preventing or treating perinatal brain
damage have low success rates, and as such, there is a

need to develop novel therapeutic approaches. The evidence
summarized here shows the potential for MK, as an endogenous
growth factor and cytokine, to be used to mitigate processes
associated with perinatal brain injury such as apoptosis and
inflammation, as well the possibility of it inducing increased
turnover of the endogenous stem cell pools–neural, cardiac,
renal, or muscle. However, many of the experiments discussed
above were conducted in vitro and a few are conducted in vivo.
In vivo testing is always the key, but given the multitude of
cell and developmentally regulated effects of MK, it seems to
have even greater importance to prove the validity of MK as
a potential therapeutic. It will also be important to understand
the roles of MK in animal models of development and injury,
which incorporate the maternal–placental–fetal unit, such as the
precocial spiny mouse (236, 237), or fetal and newborn sheep
(165, 238). Current data predominantly comes from altricial
species but given the high levels ofMK in the amniotic fluid, there
is the possibility that preterm birth causes an MK deficiency,
and the effect of prematurity and brain injury in these infants
warrants attention. Therefore, further in vivo investigations
are needed to demonstrate the efficacy of MK, and improved
drug delivery platforms are warranted to determine how its
therapeutic efficacy and bioavailability can be fully realized in the
context of perinatal brain injury.
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